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Abstract: This study presents underwater explosion tests with three different TNT charge weights
to investigate the dynamic responses of a fixed steel sheet. A finite element model was established
and benchmarked by comparing the bubble development and deformation distribution from the
tests. The steel sheet shows a deformation process of hogging, sagging, and hogging again, due to
the actions of shock waves, bubble expansion, bubble collapse, and bubble pulsation. The air may be
sucked into the bubble during the hogging process, making the bubble collapse earlier and resulting
in a relatively lower sagging deformation for large charge weights of TNT. The deformation caused
by bubble pulsation is larger than that by the shock waves, owing to the large time duration of bubble
pulsation. A parametric analysis was conducted to study the influence of steel grade, plate thickness,
detonation distance, and the shape and position of charges on the dynamic behavior of steel plates
subjected to underwater explosions. It shows that the damage to the steel plate gradually decreases,
with the increase in steel strength, plate thickness, and detonation distance. The influence of the
shape and position of charges is limited. The largest deformation is observed when the detonation
distance increases to bubble radius.

Keywords: underwater explosion; steel sheet; shock wave; bubble pulsation; finite element analysis

1. Introduction

Underwater explosion presents a complicated process [1–3], differing from explosions
in the air. The shock wave from an underwater explosion propagates over a very long
distance and maintains its destructive ability, since the density of water is 1000 times that
of air. In the case of mid-field and far-field explosions, only the shock wave pressure is
considered [4–6]. In the case of a near-field explosion, the shock wave is first produced
when the explosive is detonated underwater, and it will reflect when it propagates to
contact the free liquid surface and the structural surface, causing the pressure of the nearby
water to drop sharply. A cavitation effect will occur when the water pressure drops to the
cavitation limit [7,8]. Subsequently, the high-temperature and high-pressure detonation
products form a bubble in the water [9–11]. The movement of the bubble causes the flow
of water, which is generally defined as a retarded flow [12–14]. When the bubble expands
to its maximum volume, it begins to shrink. High-velocity water jets are formed during
shrinkage [15,16]. After the bubble shrinks to a minimum volume, it will rebound to form a
pulsating pressure [17]. The structural damage caused by underwater explosions is usually
severe, and the deformation development and failure mechanism of structures subjected to
bubble pulsation and water jets during near-field explosions are complicated [11,18–20].
Hence, studies on underwater explosions are always research hotspots.

As the most common components of ships or marine structures, steel plates may be
locally damaged by underwater explosions, resulting in overall failure in some cases. Hence,
a steel plate subjected to underwater explosions needs to be systematically investigated
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to clarify the deformation development and failure mechanism, and finally provide a
reference for anti-explosion design. Many researchers have investigated the damage effects
of plate structures subjected to underwater explosions. Rajendran et al. [6] investigated the
damage to a circular plate subjected to underwater explosions, and a new prediction model
has been proposed by considering the input shock energy, deformation contour, material
properties, and plate thickness. Jiang et al. [21] conducted experimental tests to study the
dynamic responses of pre-cracked aluminum plates subjected to underwater explosions.
Leblanc et al. [22] numerically studied the dynamic responses of curved composite plates
subjected to underwater explosions. Results showed that the deformation of the plate is
significantly affected by the plate curvature, plate thickness, and thickness distribution.
Jin et al. [23] numerically investigated the interaction between an underwater explosion
bubble and a moveable plate with the basic characteristics of a sandwich structure using
the boundary element method (BEM). Zhang et al. [24] calculated the dynamics of an
underwater explosion bubble near elastic–plastic boundaries by combining the BEM and
the finite element method (FEM). The results indicated that the damages caused by the
retarded flow, pulsating pressure, and jetting load on the structures cannot be ignored.

However, the existing research still has limitations: (1) some research only investigated
the behavior caused by the shock waves, without considering the subsequent bubble
pulsation and water jets which typically also resulted in severe damage to structures;
(2) for those studies on the dynamic responses caused by bubble pulsation, existing methods
typically ignored the effect of shock waves, and separately considered the actions of
shock waves and bubble pulsation [25–27]. Those investigations adopted the BEM, which
assumed that a high-pressure bubble was generated after the explosion, and the initial
radius and pressure of the bubble were set to simulate the bubble pulsation process, without
simulating the shockwave propagation; (3) The response of the elastic–plastic boundary in
the whole process of the underwater explosion had not been investigated deeply. Therefore,
a systematic study on the dynamic response of steel plates under the coupling action
of shock waves, retarded flow, bubble pulsation, and water jets (i.e., the whole process
of underwater explosion) is urgent, to further clarify the deformation development and
failure mechanism.

In this study, underwater explosion tests with three TNT equivalents were carried
out to investigate the dynamic responses of a fixed square steel sheet. The whole process,
including impulsive pressure of shock waves and bubble pulsation, and final deformation,
was experimentally obtained. A finite element (FE) model was established using a coupled
Eulerian–Lagrangian (CEL) method [28]. Based on the obtained experimental results, the
established FE model was benchmarked by comparing the whole development process
of the bubble and deformation distribution. The mechanism of underwater explosions
was systematically clarified using the benchmarked FE model, and a parametric analysis
was conducted to study the influence of steel grade, plate thickness, detonation distance,
and the shape and position of charges on the dynamic behavior of steel plates subjected
to underwater explosions. Based on the obtained results from both experiments and FE
analyses, the coupling effect of the underwater explosion was systematically investigated,
which provided a great basis for evaluating the local damage to steel structures and ships
subjected to underwater explosions.

2. Experimental Program
2.1. Overview of Test

In this study, three underwater explosion tests were carried out to investigate the
dynamic response of a fixed square steel sheet. The test system was designed according to
the literature [3,4,9]. A trinitrotoluene (TNT) charge was employed, with charge weights
(W) of 2.5 g, 5 g, and 10 g, respectively. The detonation distance (R) was 100 mm for all
three tests. The 2.5 g TNT charge was a cylinder with a diameter of 12.5 mm and a height
of 12.5 mm; the 5 g TNT charge was 15.8 mm in both diameter and height; the 10 g TNT
charge was 19.8 mm in both diameter and height. The dimension of the square steel sheet
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(B × B) was 700 mm × 700 mm, and the thickness (ts) was 2 mm. A rigid steel frame was
employed to constrain the steel sheet with bolted connections of 50 mm in width, as shown
in Figure 1. Hence, the actual size of the tested steel sheet was 600 mm × 600 mm. The steel
sheet was made of grade Q235, with a yield strength of 245 MPa and Young’s modulus of
206 GPa. Table 1 summarizes the parameters of all the tests.
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Figure 1. Schematic view of fixed steel sheet (unit: mm).

Table 1. Summary of test parameters.

No. Specimen Dimension (B × B × ts mm) Steel Grade Charge Type R (mm) W (g)

1
600 × 600 × 2 Q235 TNT 100

2.5
2 5
3 10

2.2. Test Setup and Instruments

The underwater explosion tests were conducted in a water tank, with dimensions
of 2 m × 2 m × 2.2 m, as shown in Figure 2. The specimen was fixed on a steel frame
with a height of 1.1 m, which was approximately located in the central area of the water
tank, ensuring that the boundary of the water tank could be ignored. Four 30 kg weight
blocks were applied on the four feet of the steel frame to ensure the fixed boundaries. The
TNT charge was strapped to the steel frame at a detonation distance of 10 cm below the
center of the tested steel sheet. No.8 electric detonators and an electric igniter were used.
Three underwater pressure sensors PCB 138A-5a were used to record the dynamic pressure
force of shock waves. At the same height as the explosive, these pressure sensors were
arranged at a distance of 0.4, 0.5, and 0.6 m from the explosive (see Figure 2), which were
connected through the cables to a signal conditioning and data acquiring system from
National Instruments (NI). A high-speed camera was also adopted to monitor the explosion
process through the observation port of the water tank.
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Figure 2. Overview of underwater explosion tests. (a) 3D view of water tank, specimen, and
instruments. (b) Top view of specimen. (c) Front view of specimen.

3. Test Results and Discussion
3.1. Process of Underwater Explosion

Figures 3–5 show the whole process of the underwater explosion, which was obtained
from the high-speed camera during the experimental tests of 2.5 g, 5 g, and 10 g TNT
charge. For various charge weights with the same detonation distances, the process of
explosions was similar, showing the explosion starting, bubble expanding, and bubble
collapsing. It should be noticed that the bubble size was greatly enlarged, and the time to
reach the maximum bubble was also lagging, as the charge weight increased from 2.5 g to
10 g. This is because the released internal energy from a heavier charge is relatively larger
than that from a lighter charge, resulting in larger pressure inside the bubble and larger
time duration of explosion action.

The whole process of the underwater explosion was as follows. Taking the specimen
with 2.5 g TNT as an example, the shock wave was rapidly formed and propagated
outwards to the steel sheet after the explosion started at 0 ms. A bubble was also quickly
generated and expanded after the explosion occurred, owing to the high pressure inside the
bubble. The hogging deformation of the steel sheet was observed, owing to the shock wave,
and at about 3.75 ms the hogging deformation typically reached the first peak. With the
expansion of the bubble, the hogging deformation began to change to sagging deformation
of the steel sheet, since the pressure inside the bubble (at the bottom of the steel sheet) was
smaller than the ambient pressure of water (at the top of the steel sheet). When the bubble
reached its maximum volume at about 16.25 ms, the steel sheet reached maximum sagging
deformation, and the bubble began to shrink. At about 33.75 ms, the bubble basically
collapsed and huge pressure was inside the bubble with a very small volume. Then, bubble
pulsation was formed, leading to the obvious hogging deformation again of the steel sheet.

It should be noted that the time for reaching the complete collapse of the bubble for
specimens with 10 g TNT was slightly earlier than that of specimens with 2.5 g and 5 g
TNT. This was mainly because the deformation of the steel sheet was relatively large, and
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the steel plate protruded from the water’s surface and sucked in part of the air during the
hogging process, which made the bubble collapse earlier.
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3.2. Impulsive Pressure

The impulsive pressure of underwater explosions was recorded by the pressure sensors.
However, the impulsive pressure results of the specimen with 10 g TNT had not been collected,
since the pressure sensors were damaged by the large shock wave. Figures 6 and 7 show
the impulsive pressure time–history curves of specimens with 2.5 g TNT and 5 g TNT. It
showed that the impulsive pressures of shock waves at the distances of 0.4 m, 0.5 m, and
0.6 m away from the explosion point are 11.0 MPa, 7.2 MPa, and 6.8 MPa for 2.5 g TNT,
respectively; the impulsive pressures at the distances of 0.5 m, and 0.6 m away from the
explosion point are 12.5 MPa and 11 MPa for 5 g TNT, respectively. The impulsive pressure of
5 g TNT is about 1.7 times that of 2.5 g TNT, resulting in the larger deformation of specimens.
The time duration of the impulsive pressure of the shock wave is relatively short, showing
approximately 0.08 ms for 2.5 g TNT and 0.04 ms for 5 g TNT. It should be noted that the
impulsive pressure on the steel sheet is much larger than those tested results, owing to the
closer detonation distance of tests (i.e., 0.1 m).

The impulsive pressure of bubble pulsation was also recorded for the specimens with
2.5 g TNT. Although the sensors were far from the location of the explosion, resulting
in a much smaller impulsive pressure than that at the specimen’s location, the bubble
pulsation phenomenon was still clearly observed. The time duration of impulsive pressure
of bubble pulsation is relatively large, showing 0.24 ms for 2.5 g TNT, which is approxi-
mately 3 times that of the shock waves. Hence, although the impulsive pressure of bubble
pulsation is lower than that of the shock wave, the hogging deformation of the steel sheet
is generated again.
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3.3. Deformation

Figures 8–10 show the residual deformation after testing for specimens with 2.5 g, 5 g,
and 10 g TNT. All specimens present obvious hogging deformation after the explosion tests,
showing a large deformation in the center of the steel sheet. As the charge weight increased,
the maximum deformation was significantly increased, showing 18.55 mm, 38.8 mm, and
59.0 mm for specimens with 2.5 g, 5 g, and 10 g TNT, respectively.
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sheet was modeled with a mesh size of 25 mm. It should be noted that the mesh sensitivity 
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conducted. As shown in Figure 12, the predicted displacements are similar for models 
with various mesh sizes, and the maximum displacement of the model with an 8 mm 
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time is 10, 24, and 48 h (using AMD EPYC 7643 with 48 cores) for mesh sizes of 8 mm, 4 
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prediction accuracy and cost efficiency. Symmetrical boundary conditions (XSYMM, 
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4. Finite Element Analysis
4.1. Establishment of FE Model
4.1.1. Details of FE Model

An FE model of underwater explosion tests was established using ABAQUS/Explicit.
Generally, water, air, and charge were modeled using the Eulerian element (EC3D8R) by
the Eulerian method, and the Eulerian volume fraction method to define the properties
of all fluid materials in the element (i.e., water, air, and charge) was used in the Eulerian
domain. The steel sheet was simulated using shell elements (S4R) by the Lagrange method.
Hence, a coupled Eulerian–Lagrangian (CEL) method [28] combining the advantages of
both the Euler and Lagrange methods was utilized in this study.

To save the calculation resources, 1/4 of the model was established, as shown in
Figure 11. The mesh size of Eulerian elements at the explosion area (i.e., the distance is
400 mm away from both the top, bottom, left, and right sides of the explosive) was 4 mm,
and a gradient mesh was used outside the explosion area, with a maximum size of 150 mm.
There are approximately 5 million elements for the Eulerian domain. The square steel sheet
was modeled with a mesh size of 25 mm. It should be noted that the mesh sensitivity
analyses with different mesh sizes (3 mm, 4 mm, and 8 mm) for the Eulerian domain were
conducted. As shown in Figure 12, the predicted displacements are similar for models with
various mesh sizes, and the maximum displacement of the model with an 8 mm mesh size
is slightly larger than those of 3 and 4 mm mesh sizes. In addition, the costed time is 10,
24, and 48 h (using AMD EPYC 7643 with 48 cores) for mesh sizes of 8 mm, 4 mm, and
3 mm, respectively. Hence, the mesh size of 4 mm was adopted, considering the prediction
accuracy and cost efficiency. Symmetrical boundary conditions (XSYMM, YSYMM) were
set at the symmetrical surface, and fixed boundaries were set on the remaining surfaces.
The fixed region of the steel sheet with 50 mm in width was also established in the FE
model, which has an effect on the generation and collapse of the bubble.
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4.1.2. Equation of State

(1) Water

For water, the Mie–Grüneisen equation of state was adopted in ABAQUS, as shown in
Equation (1), which assumed that the pressure of water (p) is a function of the density (ρ)
and the internal energy of the unit mass.

p − pH = Γρ(Em − EH) (1)

where pH is the Hugoniot pressure; EH is the Hugoniot energy; Em is the specific internal
energy per unit mass; Γ = Γ0ρ0/ρ is the Mie–Grüneisen coefficient.

The relationship between EH and pH can be expressed in Equation (2).

EH =
pHη

2ρ0
(2)

where η = 1 − ρ0/ρ, and ρ0 is the reference density. pH can be given by:

pH =
ρ0c2

0η

(1 − sη)2 (3)

Assuming the velocity of shock wave Us and the velocity of particle Up have a linear
relationship, i.e., Us = c0 + sUp, the Mie–Grüneisen equation can be presented in Equation (4).

p = Γ0ρ0Em +
ρ0c2

0η

(1 − sη)2 (1 −
Γ0η

2
) (4)

where c0 is the speed of sound; Γ0 is a material constant, and s is a constant in the Us–Up
equation. In this study, the density of water ρwater is 1000 kg/m3, the speed of sound in
water c0 is 1450 m/s, and s = 0 is adopted [28].

(2) Air

The ideal gas equation of state for air was adopted, as expressed in Equation (5).

p + pA = ρR(θ − θZ) (5)

where pA is the ambient pressure, θ is the current temperature, θZ is the temperature
corresponding to absolute zero, and R is the gas constant (i.e., 287 J/kg/K) [28]. In this
study, pA is set to 101,300 Pa, and the density of air is 1.225 kg/m3 [28].

(3) Detonation
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The well-accepted equation of state (i.e., JWL [29]) for detonation products was em-
ployed, as shown in Equation (6).

p = A(1 − ωρ

R1ρc
) exp(−R1

ρc

ρ
) + B(1 − ωρ

R2ρc
) exp(−R2

ρc

ρ
) + ωρEm (6)

where A, B, R1, R2, and ω are the material parameters, ρc is the density of charge, and ρ is
the density of the detonation product. The material parameters in this study are defined
as follows [28]: ρ0 = 1630 kg/m3, A = 3.7377 × 1011 Pa, B = 3.7471 × 109 Pa, R1 = 4.15,
R2 = 0.9, ω = 0.35, Em = 3.8 × 106 J/kg. In addition, the detonation velocity of the TNT
charge is 6930 m/s [29].

4.1.3. Dynamic Constitutive Model of Steel

Referring to previous studies [30], a continuous dynamic constitutive model of steel
considering the influence of both strain rate and yield strength was employed in the FE
model to depict the dynamic stress–strain curve across wide ranges of steel grades at various
strain rates, as shown in the Equations (7)–(14). Note that the static stress–strain relationship
model (i.e., Equation (8)) should be converted to the true plastic stress–strain curve.

σ = σs(ε) · DIFavg(
.
ε, fy) (7)

σs(ε) =


Eε
fy

fy + ( fu − fy)

{
0.4ε∗ + 2ε∗

[1+400(ε∗)5]
0.2

} (8)

ε∗ =
ε − εsh

εu − εsh
(9)

εu = 0.6(1 −
fy

fu
), but εu ≥ 0.06 for hot-rolled steel (10)

εsh = 0.1
fy

fu
− 0.055, but 0.015 ≤ εsh ≤ 0.03 (11)

DIFavg(
.
ε, fy) = 1 + (

.
ε

Davg
)

1
pavg

(12)

Davg = 1000(
fy

235
)

6

(13)

pavg = 3(
fy

235
)

0.2

(14)

where σ and ε are the stress and strain, respectively, f y, f u, and E are the yield strength,
ultimate strength, and Young’s modulus of steel, respectively. εu and εsh are the ultimate
strain and strain-hardening strain of steel.

.
ε is the strain rate.

4.2. FE Model Benchmarking

The whole process of the underwater explosion was also obtained by the FE analysis.
Figures 3–5 also compare the whole process of the underwater explosion from the high-
speed camera during the experimental tests and the FE analysis for specimens with 2.5 g,
5 g, and 10 g TNT charges. It shows that the process of explosions is similar for tests and
numerical results, and the periods of explosion starting, bubble expanding, and bubble
collapsing have approximately coincided. Moreover, the bubble dimensions of tests and FE
analysis are also similar.

The failure mode of the fixed steel sheet after the underwater explosion obtained by
the FE analysis was in good agreement with the test results. As shown in Figure 13, the
specimens exhibit an obvious hogging deformation, where the maximum deformation
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appears in the central area. The deformation distributions between the test results and
numerical results are almost consistent, with the variation of charge weights. Figure 14
shows the comparison of maximum deformation between tests and FEA, illustrating a great
agreement. The predicted values from FEA for specimens with 2.5 g, 5 g, and 10 g TNT
were 17.9 mm, 33.9 mm, and 54.9 mm, respectively, which only had less than 13% deviation
from the test results. Hence, the established FE model in this study can reasonably predict
the dynamic behavior of steel sheets subjected to underwater explosions.
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Figure 14. Comparison of maximum deformation between tests and FEA.

4.3. Mechanism of Underwater Explosion

Based on the benchmarked FE model, the displacement time–history curve, contact
stress between the steel sheet and water, and von Mises stress of the steel sheet have been
analyzed in the section. Figures 15–17 show the displacement and stress development of
specimens with 2.5 g TNT, 5 g TNT and 10 g TNT. In these figures, the a, b, and c points are
the central point of the steel sheet, 100 mm away from the central point, and 200 mm away
from the central point, respectively.

For the specimen with 2.5 g TNT, the deformation development process of hogging,
sagging, and hogging again was observed in Figure 15a. Large contact stress (about 50 MPa)
between the steel sheet and water was observed in Figure 15b, which is mainly due to shock
waves at the early stage of underwater explosions (0.1 ms). The deformation was quickly
increased to 20 mm at 2.9 ms, and the steel sheet yielded in most areas (see Figure 15c).
Subsequently, owing to the pressure inside the bubble (at the bottom of the steel sheet)
being smaller than the ambient pressure of water (at the top of the steel sheet), a sagging
deformation began to be generated, and the contact stress was reduced to a relatively low
level. At about 32.3 ms (Point 3), bubble pulsation was formed when the bubble collapsed.
At this time, the contact stress in some areas was also increased to approximately 50 MPa,
leading to the hogging deformation again. It should be noted that owing to the large time
duration of bubble pulsation, the deformation caused by bubble pulsation may be larger
than that by the shock waves. Due to the combined effect of the hogging deformation and
the sagging deformation, the distribution of von Mises stress was not uniform when the
maximum deformation was reached (Point 4). The maximum stresses were concentrated
on the center and supports of the steel sheet. For the specimen with 5 g TNT, the process of
deformation development, contact stress, and von Mises stress are similar to those of 2.5 g
TNT, as shown in Figure 16.

For the specimen with 10 g TNT, the deformation development process of hogging,
sagging, and hogging again was also observed in Figure 17a. However, the deformation
of the steel sheet was relatively large, some air had been sucked into the bubble during
the hogging process, which made the bubble collapse earlier and result in a relatively
lower sagging deformation. Hence, only the central area of the steel sheet showed sagging
deformation (i.e., points a and b in Figure 17a); point c showed no sagging deformation.
After point 3 in Figure 17, the deformation was basically kept unchanged, and the contact
stress was reduced to a low level.
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Figure 15. Displacement and stress development of specimens with 2.5 g TNT. (a) Displacement 
time–history curve. (b) Contact stress (CPRESS). (c) von Mises stress of steel sheet (S, Mises). 
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Figure 15. Displacement and stress development of specimens with 2.5 g TNT. (a) Displacement
time–history curve. (b) Contact stress (CPRESS). (c) von Mises stress of steel sheet (S, Mises).
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Figure 16. Displacement and stress development of specimens with 5 g TNT. (a) Displacement time–
history curve. (b) Contact stress (CPRESS). (c) von Mises stress of steel sheet (S,Mises). 
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Figure 16. Displacement and stress development of specimens with 5 g TNT. (a) Displacement
time–history curve. (b) Contact stress (CPRESS). (c) von Mises stress of steel sheet (S, Mises).
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Figure 17. Displacement and stress development of specimens with 10 g TNT. (a) Displacement
time–history curve. (b) Contact stress (CPRESS). (c) von Mises stress of steel sheet (S, Mises).

4.4. Parametric Analysis

To further investigate the dynamic behavior of fixed steel sheets subjected to under-
water explosions, a parametric analysis was conducted systematically herein, with the
variations of charge weight W (5 g and 10 g), steel grade (Q235, Q355, Q460, Q550, and
Q690), thickness of steel sheet ts (1 mm, 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm), detonation
distance R (60 mm, 100 mm, 200 mm, 300 mm, 400 mm, and 500 mm), and shape and
position of charges (i.e., the length-to-diameter ratios are 1:1, 5:1, and 10:1; the cylinder
TNT charges are arranged vertically or transversely, marked as V and T, respectively).
Other parameters remained unchanged, i.e., the dimension of the steel sheet B × B is
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600 × 600 mm, and the boundary is all fixed. The employed parameters were typically
based on the tests, and considered the advances in materials and possible application in
actual engineering structures and ships. Table 2 summarizes the detailed information.

Table 2. Summary of test parameters.

No. Parameters
Dimensions
(B × B mm)

Length-to-Diameter
Ratio of the Charge W (g) Steel Grade Thickness

ts (mm) R (mm)

1

Steel grade 600 × 600

1:1 (V) 10

Q235

2 100
2 Q355
3 Q460
4 Q550
5 Q690

6

1:1 (V) 5

Q235

2 100
7 Q355
8 Q460
9 Q550

10 Q690

11

Thickness 600 × 600

1:1 (V) Q235

1

100
12 4
13 10 6
14 8
15 10

16

1:1 (V) 5 Q235

4

100
17 6
18 8
19 10

20

Detonation
distance

600 × 600

1:1 (V) 10 Q235 2

60
21 200
22 300
23 400
24 500

25

1:1 (V) 5 Q235 2

200
26 300
27 400
28 500

29
Length-to-
diameter

ratio
600 × 600

1:1 (T)

5 Q235 2 300
30 5:1 (V)
31 5:1 (T)
32 10:1 (V)
33 10:1 (T)

4.4.1. Effect of Steel Grade

Figure 18 shows the influence of steel grade (Q235, Q355, Q460, Q550, and Q690)
on the displacement time histories, the deformation caused by shock waves, and the
maximum deformation of the steel sheet. As the yield strength of the steel sheet increases,
the deformation caused by shock waves is gradually reduced, as the flexural resistance
is improved when using high-strength steel. Under the explosions with 5 g TNT, the
sagging deformation is obvious after the first shock wave, and then the bubble pulsation
significantly increases the hogging deformation. Although the yield strength of the steel
sheet increases, the maximum deformation caused by the bubble pulsation is slightly
reduced. For the explosions with 10 g TNT, the hogging deformation caused by shock
waves is relatively larger, and the sagging deformation is not obvious. The maximum
deformation caused by bubble pulsation is typically lower than those caused by shock
waves, especially for high-strength steels. Using higher-strength steel can reduce the
deformation and improve the capacity of the steel sheet subjected to underwater explosions.
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Figure 18. Effect of steel grade. (a) Displacement time histories (5 g TNT). (b) Displacement time
histories (10 g TNT). (c) Deformation (5 g TNT). (d) Deformation (10 g TNT).

4.4.2. Effect of Plate Thickness

Figure 19 shows the influence of plate thickness (1 mm, 2 mm, 4 mm, 6 mm, 8 mm,
and 10 mm) on the displacement time histories, the deformation caused by shock waves,
and the maximum deformation of the steel sheet. As the plate thickness increases, the
sagging deformation becomes less obvious. For the explosion with 5 g TNT, the hogging
deformation caused by bubble pulsation is slightly larger than those caused by shock waves.
When the plate thickness is larger than 4 mm, the hogging deformation caused by bubble
pulsation is basically lower than those caused by shock waves for 10 g TNT. The maximum
deformation is reduced with the increase in plate thickness. Using thicker steel sheets can
reduce the deformation and improve the capacity of the steel sheet subjected to underwater
explosions, especially for the deformation caused by bubble pulsation.

4.4.3. Effect of Detonation Distance

Figure 20 shows the influence of detonation distance (6 cm, 10 cm, 20 cm, 30 cm,
40 cm, and 50 cm) on the displacement time histories, the deformation caused by shock
waves, and the maximum deformation of the steel sheet. As the detonation distance of
the underwater explosion increases, the deformation caused by shock waves is gradually
reduced, since the shock waves are significantly decreased. For the explosion with 5 g TNT,
the hogging deformation caused by bubble pulsation is larger than those caused by shock
waves, and the sagging deformation also becomes smaller. When the detonation distance
of the underwater explosion increases to the bubble radius, the action of bubble pulsation
becomes larger, leading to the larger deformation of the steel sheet; the deformation is
also reduced when the detonation distance is further increased. Owing to the air sucked
inside the bubble, the bubble pulsation is reduced for explosions with 10 g TNT, resulting
in similar deformations caused by shock waves and bubble pulsation.
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Figure 19. Effect of plate thickness. (a) Displacement time histories (5 g TNT). (b) Displacement time
histories (10 g TNT). (c) Deformation (5 g TNT). (d) Deformation (10 g TNT).
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Figure 20. Effect of detonation distance. (a) Displacement time histories (5 g TNT). (b) Displacement
time histories (10 g TNT). (c) Deformation (5 g TNT). (d) Deformation (10 g TNT).
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4.4.4. Effect of Shape and Position of the Charge

Figure 21 shows the influence of shape and position of charges (the length-to-diameter
ratios are 1:1, 5:1, and 10:1; the cylinder TNT charges are arranged vertically or transversely)
on the displacement time histories, the deformation caused by shock waves, and the
maximum deformation of the steel sheet. It shows that the shape of the charge has a slight
influence on the displacement of a fixed steel sheet subjected to underwater explosions.
As the length-to-diameter ratio of the charge increases, the deformation caused by both
shock waves and bubble pulsation is slightly reduced. In addition, the deformations were
almost similar when the charge was arranged vertically or transversely. Figure 22 compares
the bubble development for various shapes of the charge. It shows that at the early stage
of the underwater explosion (e.g., 0.25 ms), the bubble presents an ellipsoid when the
length-to-diameter ratio increases to 5:1 and 10:1. However, the bubble shows a similar
sphere at 3.6 ms, although the length-to-diameter ratio varies. This is the main reason for
the limited influence on the dynamic behavior of steel sheets subjected to various shapes
and positions of the charge. Nevertheless, the charge with a 1:1 length-to-diameter ratio
which is arranged vertically still causes a relatively large blast effect, resulting in slightly
larger deformation of the steel sheets.
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5. Conclusions

Three underwater explosion tests with three different TNT charge weights (i.e., 2.5 g,
5 g, and 10 g) were conducted to investigate the dynamic response of a fixed square steel
sheet. A FE model was established and benchmarked based on the test results. The
deformation development and stress mechanism of underwater explosions have been
analyzed experimentally and numerically. Several conclusions can be drawn as follows:

1. The steel sheet shows a process of hogging deformation, sagging deformation, and
hogging deformation again, due to the actions of shock waves, bubble expansion,
bubble collapse, and bubble pulsation. The air may be sucked into the bubble during
the hogging process, making the bubble collapse earlier and resulting in a relatively
lower sagging deformation for the explosions with a large charge weight of TNT.

2. The time duration of the impulsive pressure of bubble pulsation is relatively large,
which is approximately three times that of shock waves. Although the impulsive
pressure of bubble pulsation is lower than that of shock waves, the deformation
caused by bubble pulsation is larger than that by the shock waves, owing to the large
time duration of bubble pulsation.

3. The damage to the steel plate gradually decreases, with the increase in steel strength,
plate thickness, and detonation distance. Using higher-strength steel and thicker
steel sheet can reduce the deformation and improve the blast capacity of the steel
sheet, especially for the deformation caused by bubble pulsation. The action of
bubble pulsation becomes larger when the detonation distance increases to bubble
radius (about 40 cm), resulting in the largest deformation. A limited influence on
the dynamic behavior of steel sheets subjected to various shapes and positions of the
charge was observed.
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