Pitting and General Corrosion Susceptibilities of Materials for High Level Radioactive Waste (HLW) Disposal
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pitting Susceptibility
3.2. Uniform (General) Corrosion Rates
3.2.1. Tafel-Extrapolated Results in Simulated Pore Solutions
3.2.2. Comparison of the Measured Corrosion Rates
- 254. SMO < C-276/C-4/Alloy 825/Zr702/SDX100
- Hastelloy C-2000 < C-4/SDX100
- Hastelloy C-22 < C-276/904 L/Alloy 825/C-4/SDX2507/Alloy 31/SDX100
- AISI 316L < C-4/Alloy 825/SDX100
- LDX2304 < C-4/Alloy 825/SDX100
- SDX2507/254SMO/316L/Alloy825/Hastelloy C-22/LDX2304 < SDX100;
- SDX2507/254SMO/Alloy825/Hastelloy C-22/LDX2304 < Zircaloy 702;
- Hastelloy C-22 < Duplex 2205/Al6XN/Alloy 31/Hastelloy C-4/Hastelloy C-276.
3.2.3. Effect of Alloying Elements and pH on the Measured Corrosion Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dehandschutter, B.; Sintubin, M.; Vandenberghe, N.; Vandycke, S.; Gaviglio, P.; Wouters, L. Fracture analysis in the Boom clay (URF, Mol, Belgium). Aardkd. Meded. 2002, 12, 245–248. [Google Scholar]
- Kursten, B.; Druyts, F.; Gens, R. The Belgian Supercontainer concept–corrosion issues. In Sulphur-Assisted Corrosion in Nuclear Disposal Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–18. [Google Scholar]
- Kursten, B.; Smart, N.R.; Senior, N.A.; Macdonald, D.D.; Caes, S.; De Souza, V.; Gaggiano, R. Overview of anaerobic corrosion of carbon steel radioactive waste packages in alkaline media in support of the Belgian supercontainer concept. Mater. Corros. 2021, 72, 32–51. [Google Scholar] [CrossRef]
- Bel, J.J.; Wickham, S.M.; Gens, R.M. Development of the Supercontainer design for deep geological disposal of high-level heat emitting radioactive waste in Belgium. MRS Online Proc. Libr. (OPL) 2006, 932, 122.1. [Google Scholar] [CrossRef]
- Xia, D.; Song, S.; Zhu, R.; Behnamian, Y.; Shen, C.; Wang, J.; Luo, J.; Lu, Y.; Klimas, S. A mechanistic study on thiosulfate-enhanced passivity degradation of Alloy 800 in chloride solutions. Electrochim. Acta 2013, 111, 510–525. [Google Scholar] [CrossRef]
- Naghizadeh, M.; Nakhaie, D.; Zakeri, M.; Moayed, M.H. Effect of thiosulfate on pitting corrosion of 316ss: I. critical pitting temperature and pit chemistry. J. Electrochem. Soc. 2014, 162, C71. [Google Scholar] [CrossRef]
- Zanotto, F.; Grassi, V.; Balbo, A.; Monticelli, C.; Zucchi, F. Stress corrosion cracking of LDX 2101® duplex stainless steel in chloride solutions in the presence of thiosulphate. Corros. Sci. 2014, 80, 205–212. [Google Scholar] [CrossRef]
- Chasse, K.R.; Raji, S.; Singh, P.M. Effect of chloride ions on corrosion and stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solutions. Corrosion 2012, 68, 932–949. [Google Scholar] [CrossRef]
- Xia, D.H.; Zhu, R.K.; Behnamian, Y.; Luo, J.L.; Lin, C.J.; Klimas, S. Understanding the interaction of thiosulfate with Alloy 800 in aqueous chloride solutions using SECM. J. Electroanal. Chem. 2015, 744, 77–84. [Google Scholar] [CrossRef]
- Xia, D.H.; Zhu, R.K.; Behnamian, Y.; Shen, C.; Luo, J.L.; Lu, Y.C.; Klimas, S. pH effect on sulfur-induced passivity degradation of alloy 800 in simulated crevice chemistries. J. Electrochem. Soc. 2014, 161, C201. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Singh, P.M. Electrochemical behaviour of duplex stainless steels in caustic environment. Corros. Sci. 2011, 53, 71–81. [Google Scholar] [CrossRef]
- Stansbury, E.E.; Buchanan, R.A. Fundamentals of Electrochemical Corrosion; ASM International: Almere, The Netherlands, 2000. [Google Scholar]
- Xiao, Y.; Tang, J.; Wang, Y.; Lin, B.; Nie, Z.; Li, Y.; Normand, B.; Wang, H. Corrosion behavior of 2205 duplex stainless steel in NaCl solutions containing sulfide ions. Corros. Sci. 2022, 200, 110240. [Google Scholar] [CrossRef]
- Araneda, A.A.B.; Kappes, M.A.; Rodríguez, M.A.; Carranza, R.M. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions. Corros. Sci. 2022, 198, 110121. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, T.; Zhu, R.; Chen, Z.; Lu, X. Pitting initiation on 304 stainless steel in a chloride-contaminated pore solution under alternating temperature conditions. Corros. Rev. 2022, 40. [Google Scholar] [CrossRef]
- Giebel, B. Austenitic, Duplex, and Lean Duplex Stainless Steel Critical Pitting Temperature in Simulated Concrete Environment. Bachelor’s Thesis, The University of Akron, Akron, OH, USA, 2022. [Google Scholar]
- Li, B.; Zhang, W. Electrochemical and corrosion behavior of 2205 duplex stainless steel in simulated concrete pore solution. Int. J. Electrochem. Sci. 2017, 12, 8432–8446. [Google Scholar] [CrossRef]
- Luo, H.; Su, H.; Dong, C.; Li, X. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Appl. Surf. Sci. 2017, 400, 38–48. [Google Scholar] [CrossRef]
- Gastaldi, M.; Bertolini, L. Effect of temperature on the corrosion behaviour of low-nickel duplex stainless steel bars in concrete. Cem. Concr. Res. 2014, 56, 52–60. [Google Scholar] [CrossRef]
- Blanco, G.; Bautista, A.; Takenouti, H. EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions. Cem. Concr. Compos. 2006, 28, 212–219. [Google Scholar] [CrossRef]
- Moser, R.D.; Singh, P.M.; Kahn, L.F.; Kurtis, K.E. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions. Corros. Sci. 2012, 57, 241–253. [Google Scholar] [CrossRef]
- Elsener, B.; Addari, D.; Coray, S.; Rossi, A. Stainless steel reinforcing bars–reason for their high pitting corrosion resistance. Mater. Corros. 2011, 62, 111–119. [Google Scholar] [CrossRef]
- Dong, C.; Luo, H.; Xiao, K.; Sun, T.; Liu, Q.; Li, X. Effect of temperature and Cl− concentration on pitting of 2205 duplex stainless steel. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2011, 26, 641–647. [Google Scholar] [CrossRef]
- ASTM G5-94; Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic. American Society for Testing and Materials International (ASTM): West Conshohocken, PA, USA, 2004; 94, pp. 1–12. [CrossRef]
- Kelly, R.G.; Scully, J.R.; Shoesmith, D.; Buchheit, R.G. Electrochemical Techniques in Corrosion Science and Engineering; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and application of the Kruskal-Wallis test. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Zurich, Switzerland, 2014; Volume 611, pp. 115–120. [Google Scholar]
- Dinno, A.; Dinno, M.A. Package ‘Dunn. Test’; The Comprehensive R Archive Network (CRAN) Repository: Vienna, Austria, 2017; Volume 10, pp. 1–7. [Google Scholar]
- Esmailzadeh, S.; Aliofkhazraei, M.; Sarlak, H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review. Prot. Met. Phys. Chem. Surf. 2018, 54, 976–989. [Google Scholar] [CrossRef]
- Ezuber, H.; Alshater, A.; Nisar, S.O.; Gonsalvez, A.; Aslam, S. Effect of surface finish on the pitting corrosion behavior of sensitized AISI 304 austenitic stainless steel alloys in 3.5% NaCl solutions. Surf. Eng. Appl. Electrochem. 2018, 54, 73–80. [Google Scholar] [CrossRef]
- Mesquita, T.J.; Chauveau, E.; Mantel, M.; Kinsman, N.; Roche, V.; Nogueira, R.P. Lean duplex stainless steels—The role of molybdenum in pitting corrosion of concrete reinforcement studied with industrial and laboratory castings. Mater. Chem. Phys. 2012, 132, 967–972. [Google Scholar] [CrossRef]
- Elsener, B.; Addari, D.; Coray, S.; Rossi, A. Nickel-free manganese bearing stainless steel in alkaline media—Electrochemistry and surface chemistry. Electrochim. Acta 2018, 56, 4489–4497. [Google Scholar] [CrossRef]
- Bertolini, L.; Bolzoni, F.; Pastore, T.; Pedeferri, P. Behaviour of stainless steel in simulated concrete pore solution. Br. Corros. J. 1996, 31, 218–222. [Google Scholar] [CrossRef]
- Nürnberger, U. Stainless steel reinforcement—A survey. Überblick, Nichtrostende Betonstähle–Ein, and Armatures en Acier Inoxydable–Un Aperçu. Otto-Graf-J. 2005, 16, 111. [Google Scholar]
- Korb, L.J.; Olson, D.L. ASM Metals Handbook; Corrosion Houston; ASM International: Almere, The Netherlands, 1987; Volume 13. [Google Scholar]
- Klapper, H.S.; Stevens, J.; Wiese, G. Pitting corrosion resistance of CrMn austenitic stainless steel in simulated drilling conditions—Role of pH, temperature, and chloride concentration. Corrosion 2013, 69, 1095–1102. [Google Scholar] [CrossRef]
- Blackwood, D.J.; Gould, L.J.; Naish, C.C.; Porter, F.M.; Rance, A.P.; Sharland, S.M.; Smart, N.R.; Thomas, M.I.; Yates, T. The localised corrosion of carbon steel and stainless steel in simulated repository environments. AEAT/ERRA 2002, 318. [Google Scholar]
- McDonald, D.B.; Sherman, M.R.; Pfeifer, D.W.; Virmani, Y.P. Stainless steel reinforcing as corrosion protection. Concr. Int. 1995, 17, 65–70. [Google Scholar]
- Yau, T.L.; Webster, R.T. Corrosion of zirconium and hafnium. In Metals Handbook, 9th ed.; ASM International: Almere, The Netherlands, 1987; Volume 13. [Google Scholar]
- King, F.; Padovani, C. Review of the corrosion performance of selected canister materials for disposal of UK HLW and/or spent fuel. Corros. Eng. Sci. Technol. 2011, 46, 82–90. [Google Scholar] [CrossRef]
- Hua, F.; Rebak, R.B.; Gordon, G.M.; Mon, K. Degradation in Modes of Alloy 22 in Yucca Mountain Repository Conditions. Paper Presented at the CORROSION, San Diego, CA, USA, 12–16 March 2006. [Google Scholar]
- Dinno, A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J. 2015, 15, 292–300. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Yu, Y.; Shironita, S.; Souma, K.; Umeda, M. Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution. Heliyon 2018, 4, e00958. [Google Scholar] [CrossRef] [Green Version]
- Fauvet, P. Corrosion issues in nuclear fuel reprocessing plants. In Nuclear Corrosion Science and Engineering; Woodhead Publishing: Sawston, UK, 2012; pp. 679–728. [Google Scholar]
- Outokumpu. The Effects of Alloying Elements; Outokumpu: Helsinki, Finland, 2017. [Google Scholar]
- Mann, P.S. Introductory Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ugoni, A. On the subject of hypothesis testing. COMSIG Rev. 1993, 2, 45. [Google Scholar] [PubMed]
- Fujisawa, R.; Kurashige, T.; Inagaki, Y.; Senoo, M. Gas generation behavior of transuranic waste under disposal conditions. MRS Online Proc. Libr. (OPL) 1999, 556, 1199. [Google Scholar] [CrossRef]
Common Denomination | UNS | Cr | Ni | Mo | PREN |
---|---|---|---|---|---|
316L | S31603 | 16–18 | 10–14 | 2–3 | 24 |
Alloy 825 | N08825 | 19.5–23.5 | 38–46 | 2.5–3.5 | 28 |
904 L | N08904 | 19–23 | 23–28 | 4–5 | 32 |
254SMO | S31254 | 19.5–20.5 | 17.5–18.5 | 6–6.5 | 42 |
Al-6XN | N08367 | 20–22 | 23.5–25.5 | 6–7 | 43 |
Alloy 31 | N08031 | 26–28 | 30–32 | 6–7 | 48 |
LDX2304 | S32304 | 21.5–24.5 | 3–5.5 | 0.05–0.6 | 22 |
DX2205 | S31803 | 21–23 | 4.5–6.5 | 2.5–3.5 | 31 |
SDX2507 | S32750 | 24–26 | 6–8 | 3–5 | 38 |
SDX100 | S32760 | 24–26 | 6–8 | 3–4 | 37 |
C-276 | N10276 | 15.5–16.5 | Ca. 57 | 15–17 | - |
C-4 | N06455 | 16 | Ca. 65 | 16 | - |
C-22 | N06022 | 20–22.5 | Ca. 56 | 12.5–14.5 | - |
C-2000 | N06200 | 22–24 | Ca. 67 | 15–17 | - |
Zr702 | R60702 | - | - | - | - |
Type of Pore Solution | pH | Temperature | Chloride | Type of Aeration |
---|---|---|---|---|
Sat. Ca(OH)2 | 12.5 | 60 °C | 35400 ppm | 1 L/min O2 |
NaOH/KOH mixt. | 13.5 |
Compared Materials | p-Value of Dunn Test (p < 0.025) |
---|---|
254SMO–Hastelloy C-276 | 0.009 |
254SMO–Hastelloy C-4 | 0.0008 |
254SMO–Alloy 825 | 0.004 |
254SMO–Zr702 | 0.007 |
254SMO–SDX100 | 0.001 |
Hastelloy C-22–Hastelloy C-276 | 0.002 |
Hastelloy C-22–904L | 0.01 |
Hastelloy C-22–Alloy 825 | 0.0008 |
Hastelloy C-22–Hastelloy C-4 | 0.0001 |
Hastelloy C-22–SDX2507 | 0.02 |
Hastelloy C-22–Alloy 31 | 0.015 |
Hastelloy C-22–Zr702 | 0.0014 |
Hastelloy C-22–SDX100 | 0.0002 |
316L–Hastelloy C-4 | 0.005 |
316L–Alloy 825 | 0.017 |
316L–SDX100 | 0.005 |
LDX2304–Hastelloy C-4 | 0.016 |
LDX2304–Alloy 825 | 0.004 |
LDX2304–SDX100 | 0.005 |
Hastelloy C-2000–Hastelloy C-4 | 0.007 |
Hastelloy C-2000–SDX100 | 0.009 |
Compared Materials | p-Value of Dunn Test (p < 0.025) |
---|---|
SDX2507–SDX100 | 0.001 |
254SMO–SDX100 | 0.006 |
316L–SDX100 | 0.02 |
Alloy 825–SDX100 | 0.006 |
Hastelloy C-22–SDX100 | 0.0002 |
LDX2304–SDX100 | 0.007 |
SDX2507–Zr702 | 0.004 |
254SMO–Zr702 | 0.02 |
Alloy 825–Zr702 | 0.02 |
Hastelloy C-22–Zr702 | 0.0006 |
LDX2304–Zr702 | 0.02 |
Hastelloy C-22–Duplex 2205 | 0.02 |
Hastelloy C-22–Al6XN | 0.02 |
Hastelloy C-22–Alloy 31 | 0.01 |
Hastelloy C-22–Hastelloy C-4 | 0.02 |
Hastelloy C-22–Hastelloy C-276 | 0.004 |
Parameter | p-Value Spearman | Spearman Correlation Coefficient |
---|---|---|
Chromium | 0.85 | 0.02 |
Molybdenum | 0.28 | 0.12 |
Nickel | 0.13 | 0.17 |
pH | 0.07 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verhoeven, B.; Bogaerts, W.; Van Aken, P.; Gaggiano, R.; Baeyens, J.; Rossi, B.; Dewil, R. Pitting and General Corrosion Susceptibilities of Materials for High Level Radioactive Waste (HLW) Disposal. Materials 2022, 15, 6464. https://doi.org/10.3390/ma15186464
Verhoeven B, Bogaerts W, Van Aken P, Gaggiano R, Baeyens J, Rossi B, Dewil R. Pitting and General Corrosion Susceptibilities of Materials for High Level Radioactive Waste (HLW) Disposal. Materials. 2022; 15(18):6464. https://doi.org/10.3390/ma15186464
Chicago/Turabian StyleVerhoeven, Brent, Walter Bogaerts, Pieter Van Aken, Roberto Gaggiano, Jan Baeyens, Barbara Rossi, and Raf Dewil. 2022. "Pitting and General Corrosion Susceptibilities of Materials for High Level Radioactive Waste (HLW) Disposal" Materials 15, no. 18: 6464. https://doi.org/10.3390/ma15186464
APA StyleVerhoeven, B., Bogaerts, W., Van Aken, P., Gaggiano, R., Baeyens, J., Rossi, B., & Dewil, R. (2022). Pitting and General Corrosion Susceptibilities of Materials for High Level Radioactive Waste (HLW) Disposal. Materials, 15(18), 6464. https://doi.org/10.3390/ma15186464