Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce(III)
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Chemicals
2.2. Synthesis of Magnetic PMMA-PGMA-PEI
2.3. Characterization
2.4. Bath Adsorption Experiments of Ce(III)
3. Results and Discussion
3.1. FT-IR
3.2. XRD Analysis
3.3. Morphology Analysis
3.4. Thermogravimetric Analysis
3.5. Adsorption Behaviour of Magnetic PMMA-PGMA-PEI
3.5.1. Effect of GMA Concentration
3.5.2. Effect of Absorbed Dose
3.5.3. Effect of pH
3.5.4. Effect of Dosage
3.5.5. Initial Concentration and Adsorption Isotherm
3.5.6. Contact Time and Adsorption Kinetics
3.5.7. Adsorption Thermodynamics
3.6. Comparative Analysis of Ce(III) Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, T.B.D.; Silva, M.G.C.D.; Vieira, M.G.A. Recovery of rare-earth metals from aqueous solutions by bio/adsorption using non-conventional materials: A review with recent studies and promising approaches in column applications. J. Rare Earths 2020, 38, 339–355. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.B.; Zhu, Y.F.; Wang, A.Q. Evaluation of Ce(III) and Gd(III) adsorption from aqueous solution using CTS-g-(AA-co-SS)/ISC hybrid hydrogel adsorbent. J. Rare Earths 2017, 35, 697–708. [Google Scholar] [CrossRef]
- Pereao, O.; Laatikainen, K.; Bode-Aluko, C.; Kochnev, I.; Fatoba, O.; Nechaev, A.N.; Petrik, L. Adsorption of Ce3+ and Nd3+ by diglycolic acid functionalised electrospun polystyrene nanofiber from aqueous solution. Sep. Purif. Technol. 2019, 233, 116059. [Google Scholar] [CrossRef]
- Barros, Ó.; Costa, L.; Costa, F.; Lago, A.; Rocha, V.; Vipotnik, Z.; Silva, B.; Tavares, T. Recovery of rare earth elements from wastewater towards a circular economy. Molecules 2019, 24, 1005. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Zhang, S.M.; Zhao, K.Y.; Wang, Z.W.; Xu, S.X.; Liang, Z.P.; Wu, K. Adsorption of La3+ and Ce3+ by poly-γ-glutamic acid crosslinked with polyvinyl alcohol. J. Rare Earths 2015, 33, 884–891. [Google Scholar] [CrossRef]
- Ghobadi, M.; Gharabaghi, M.; Abdollahi, H.; Kisomi, A.S. A simple and Low-cost Route to Recycle Rare Earth Elements (La, Ce) from Aqueous Solution by Magnetic Manoparticles of COxMn1-xFe2O4 (x = 0.2 and 0.8): Synthesis, Isotherms, Kinetics, Thermodynamics and Desorption. New J. Chem. 2017, 41, 11906–11914. [Google Scholar] [CrossRef]
- Hou, L.X.; Jiang, F.; Wang, S. Synthesis and application of an amino phosphonic acid chelating resin for adsorption of Cerium(Ⅲ). J. Anal. Chem. 2008, 63, 337–341. [Google Scholar] [CrossRef]
- Zhou, Q.; Fu, Y.X.; Zhang, X.; Luo, T.T.; Luo, W.J. Light induced growth of polyelectrolyte brushes on kaolinite surface with superior performance for capturing valuable rare-earth Ce3+ from wastewater. Mater. Sci. Eng. B 2018, 227, 89–99. [Google Scholar] [CrossRef]
- Zhao, L.; Azhar, M.R.; Li, X.J.; Duan, X.G.; Sun, H.Q.; Wang, S.B.; Fang, X.C. Adsorption of Cerium(Ⅲ) by HKUST-1 metal-organic framework from aqueous solution. J. Colloid Interface Sci. 2019, 542, 421–428. [Google Scholar] [CrossRef]
- Hao, Y.; Cui, Y.; Peng, J.; Zhao, N.; Li, S.J.; Zhai, M.L. Preparation of graphene oxide/cellulose composites in ionic liquid for Ce(Ⅲ) removal. Carbohydr. Polym. 2019, 208, 269–275. [Google Scholar] [CrossRef]
- Kumari, V.; Badru, R.; Singh, S.; Kaushal, S.; Singh, P.P. Synthesis and electrochemical behaviour of GO doped ZrP nanocomposite membranes. J. Environ. Chem. Eng. 2020, 8, 103690. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Maksoud, M.I.A.A.; Elgarahy, A.M.; Farrell, C.; Muhtaseb, A.H.A.; Rooney, D.W.; Osman, A.I. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 2020, 403, 213096. [Google Scholar] [CrossRef]
- Beni, A.A.; Esmaeili, A. Biosorption, An efficient method for removing heavy metals from industrial effluents: A review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Syeda, H.I.; Sultan, I.; Razavi, K.S.; Yap, P.S. Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. J. Water Process Eng. 2022, 46, 102446. [Google Scholar] [CrossRef]
- Chen, T.; Yan, C.; Wang, Y.X.; Tang, C.H.; Zhou, S.; Zhao, Y.; Ma, R.; Duan, P. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal. Environ. Technol. 2015, 36, 2168–2176. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Wang, W.B.; Zheng, Y.A.; Wang, F.; Wang, A.Q. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template. Carbohydr. Polym. 2016, 140, 51–58. [Google Scholar] [CrossRef]
- Lee, Y.R.; Yu, K.; Ravi, S.; Ahn, W.S. Selective adsorption of rare earth elements over functionalized Cr-MIL-101. ACS Appl. Mater. Interfaces 2018, 10, 23918–23927. [Google Scholar] [CrossRef]
- Behdani, F.N.; Rafsanjani, A.T.; Torab-Mostaedi, M.; Mohammadpour, S.M.A.K. Adsorption ability of oxidized multiwalled carbon nanotubes towards aqueous Ce(Ⅲ) and Sm(Ⅲ). Korean J. Chem. Eng. 2013, 30, 448–455. [Google Scholar] [CrossRef]
- Iftekhar, S.; Srivastava, V.; Ramasamy, D.L.; Naseer, W.A.; Sillanpää, M. A novel approach for synthesis of exfoliated biopolymeric-LDH hybrid nanocomposites via in-stiu coprecipitation with gum Arabic: Application towards REEs recovery. Chem. Eng. J. 2018, 347, 398–406. [Google Scholar] [CrossRef]
- Bao, S.Y.; Wang, Y.J.; Wei, Z.S.; Yang, W.W.; Yu, Y.S. Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance. J. Hazard. Mater. 2022, 424, 127370. [Google Scholar] [CrossRef]
- Iftekhar, S.; Srivastava, V.; Sillanpää, M. Synthesis and Application of LDH Intercalated Cellulose Nanocomposite for Separation of Rare Earth Elements (REEs). Chem. Eng. J. 2017, 309, 130–139. [Google Scholar] [CrossRef]
- Liu, T.C.; Chen, J. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 2021, 276, 119263. [Google Scholar] [CrossRef]
- Diacon, A.; Rusen, E.; Rizea, F.; Ghebaur, A.; Berger, D.; Somoghi, R.; Matei, A.; Palade, P.; Tutunaru, O. One-pot strategy for obtaining magnetic PMMA particles through ATRP using Fe(CO)5 as co-initiator. Eur. Polym. J. 2021, 152, 110446. [Google Scholar] [CrossRef]
- Lin, C.; Luo, W.J.; Chen, J.D.; Zhou, Q. Rice husk Grafted PMMA by ATRP in aqueous phase and its adsorption for Ce3+. Chem. Phys. Lett. 2017, 690, 68–73. [Google Scholar] [CrossRef]
- Ghobadi, M.; Gharabaghi, M.; Abdollahi, H.; Boroumand, Z.; Moradian, M. MnFe2O4-graphene oxide magnetic nanoparticles as a high-performance adsorbent for rare earth elements: Synthesis, isotherms, kinetics, thermodynamics and desorption. J. Hazard. Mater. 2018, 351, 308–316. [Google Scholar] [CrossRef]
- Li, J.; Gong, A.; Li, F.K.; Qiu, L.N.; Zhang, W.W.; Gao, G.; Liu, Y.; Li, J.D. Synthesis and characterization of magnetic mesoporous Fe3O4@mSiO2-DODGA nanoparticles for adsorption of 16 rare earth elements. RSC Adv. 2018, 8, 39149–39161. [Google Scholar] [CrossRef]
- Nkinahamira, F.; Alsbaiee, A.; Wang, Y.W.; Yang, X.Y.; Chen, T.Y.; Cao, M.X.; Feng, M.L.; Sun, Q.; Yu, C.P. Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite of β-cyclodextrin and silica doped with PC88A. Sep. Purif. Technol. 2021, 266, 118589. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, Y.; Sang, Y.N.; Tang, M.; Hu, G.W.; Han, X.B.; Gao, J.; Ma, R. Facile synthesis of magnetic CS-g-SPSS microspheres via electron beam radiation for efficient removal of methylene blue. J. Saudi Chem. Soc. 2021, 25, 101299. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, J.Y.; Li, T.T.; Liu, G.; Wang, Y.Y.; Jiang, Y.; Wang, Z.X.; Zhang, F.F.; Li, Y.S.; Liu, Y. Controlled preparation of a MCC-g-AM/EDA/PA loaded Fe(III) adsorbent by the pre-radiation grafting method and its application for the adsorption removal of phosphate. RSC Adv. 2021, 11, 6173–6181. [Google Scholar] [CrossRef] [PubMed]
- Du, W.J.; Fan, J.X.; Ma, R.; Yang, G.; Liu, J.Q.; Zhang, S.F.; Chen, T. Radiation-initiated chitosan-based double network hydrogel: Synthesis, characterization, and adsorption of methylene blue. J. Appl. Polym. Sci. 2021, 138, 51531. [Google Scholar] [CrossRef]
- Yin, W.Y.; Liu, L.Y.; Zhang, H.Y.; Tang, S.; Chi, R. A facile solvent-free and one-step route to prepare amino-phosphonic acid functionalized hollow mesoporous silica nanospheres for efficient Gd(III) removal. J. Clean. Prod. 2020, 243, 118688.1–118688.11. [Google Scholar] [CrossRef]
- Singh, S.; Kaushal, S.; Kaur, J.; Kaur, G.; Mittal, S.K.; Singh, P.P. Cafu MOF as an efficient adsorbent for simultaneous removal of imidacloprid pesticide and cadmium ions from wastewater. Chemosphere 2021, 272, 129648. [Google Scholar] [CrossRef]
- Kaushal, S.; Kaur, N.; Kaur, M.; Singh, P.P. Dual-Responsive Pectin/Graphene Oxide (Pc/Go) nano-composite as an efficient adsorbent for Cr(III) ions and photocatalyst for degradation of organic dyes in waste water. J. Photochem. Photobiol. A 2020, 403, 112841. [Google Scholar] [CrossRef]
- Galhoum, A.A.; Eisa, W.H.; Ibrahim, E.T.E.S.; Tolba, A.A.; Shalaby, Z.M.; Mohamady, S.I.; Muhammad, S.S.; Hussien, S.S.; Akashi, T.; Guibal, E. A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite Application to uranium sorption from ore leachate. Environ. Pollut. 2020, 264, 114797. [Google Scholar] [CrossRef]
- Yuan, D.Z.; Xiong, X.; Chen, L.; Lv, Y.; Wang, Y.; Yuan, L.G.; Liao, S.J.; Zhang, Q.H. Removal of uranium from aqueous solution by phosphate functionalized superparamagnetic polymer microspheres Fe3O4/P(GMA-AA-MMA). J. Radioanal. Nucl. Chem. 2016, 309, 729–741. [Google Scholar] [CrossRef]
- Su, S.Z.; Liu, Q.; Liu, J.Y.; Zhang, H.S.; Li, R.M.; Jing, X.Y.; Wang, J. Polyethyleneimine- functionalized Luffa cylindrica for efficient uranium extraction. J. Colloid Interface Sci. 2018, 530, 538–546. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, T.; Sun, S.F.; Zhao, L. Preparation of Magnetic Hybrid Microspheres with Well-Defined Yolk-Shell Structure. Adv. Mater. Sci. Eng. 2016, 2016, 2658621. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Guo, J.Z.; Wu, C.; Chen, L.; Li, B. Enhanced removal of Cr(VI) by cation functionalized bamboo hydrochar. Bioresour. Technol. 2022, 347, 126703–126709. [Google Scholar] [CrossRef]
- Chen, T.; Sang, Y.L.; Zhou, Y.X.; Ji, L.D.; Han, X.B.; Hu, P.; Miao, P.P.; Gao, J.; Zhao, Y. Facile and Controllable Preparation of poly(St-co-MMA)/FA Microspheres Used as Ultra-Lightweight Proppants. Materials 2021, 14, 7390. [Google Scholar] [CrossRef]
- Smith, Y.R.; Bhattacharyya, D.; Willhard, T.; Misra, M. Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chem. Eng. J. 2016, 296, 102–111. [Google Scholar] [CrossRef] [Green Version]
Isothermal Model | Parameters | Different Temperature (K) | ||
---|---|---|---|---|
298.15 | 308.15 | 318.15 | ||
Langmuir | Qm (mg/g) | 179.53 | 183.49 | 186.57 |
KL (L/mg) | 0.1396 | 0.1729 | 0.2171 | |
R2 | 0.9969 | 0.9970 | 0.9974 | |
Freundlich | KF (mg1−1/n·L1/n·g−1) | 66.52 | 66.95 | 73.43 |
n | 5.4651 | 5.2318 | 5.6029 | |
R2 | 0.9038 | 0.9107 | 0.8426 |
Adsorption Kinetics Models | Coefficients | Ce(III) |
---|---|---|
Pseudo-first order | qe,exp (mg/g) | 142.69 |
qe,cal (mg/g) | 185.63 | |
k1 (L/g) | 0.00861 | |
R2 | 0.9744 | |
Pseudo-second order | qe,cal (mg/g) | 148.63 |
k2 (×10−3) (g/mg min) | 0.0476 | |
R2 | 0.9988 |
Concentration (mg/L) | T(K) | ln(Qe/Ce) | Thermodynamic Parameter | |||
---|---|---|---|---|---|---|
ΔH (kJ·moL−1) | ΔS (J·moL−1·K−1) | ΔG (kJ·moL−1) | R2 | |||
150 | 298.15 | 1.69 | 13.08 | 59.96 | −4.20 | 0.9999 |
308.15 | 1.87 | −4.79 | ||||
318.15 | 2.03 | −5.36 | ||||
200 | 298.15 | 0.94 | 8.38 | 35.82 | −2.34 | 0.8864 |
308.15 | 1.01 | −2.58 | ||||
318.15 | 1.16 | −3.06 | ||||
250 | 298.15 | 0.50 | 7.14 | 28.1 | −1.24 | 0.9960 |
308.15 | 0.59 | −1.51 | ||||
318.15 | 0.68 | −1.80 | ||||
300 | 298.15 | 0.21 | 5.18 | 19.15 | −0.53 | 0.9949 |
308.15 | 0.29 | −0.73 | ||||
318.15 | 0.34 | −0.91 |
Adsorbent | Adsorption Capacity Qmax (mg/g) | pH | Equilibrium Time (min) | References |
---|---|---|---|---|
Magnetic PMMA-PGMA-PEI | 189.81 | 6 | 360 | This work |
CTS-g-(AA-co-SS)/ISC hydrogel | 174.05 | 4 | 15 | [2] |
Magnetic Nanoparticles of CoxMn1−xFe2O4 | 602 | 7 | 60 | [6] |
Graphene oxide/cellulose composites in ionic liquid | 109.1 | 6 | 40 | [10] |
Activated carbon-based amino phosphonic acid chelating resin | 94.34 | 6 | 60 | [16] |
Oxidized multiwalled carbon nanotubes | 92.59 | 5 | 120 | [19] |
Biopolymeric-LDH hybrid nanocomposites | 116.82 | 4 | 90 | [20] |
LDH-intercalated cellulose nanocomposite | 96.25 | 7 | 10 | [22] |
Carbon black derived from recycled tires | 5.04 | 7 | 200 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liang, T.; Miao, P.; Chen, T.; Han, X.; Hu, G.; Gao, J. Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce(III). Materials 2022, 15, 6553. https://doi.org/10.3390/ma15196553
Zhao Y, Liang T, Miao P, Chen T, Han X, Hu G, Gao J. Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce(III). Materials. 2022; 15(19):6553. https://doi.org/10.3390/ma15196553
Chicago/Turabian StyleZhao, Yuan, Tian Liang, Pengpai Miao, Tao Chen, Xiaobing Han, Guowen Hu, and Jie Gao. 2022. "Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce(III)" Materials 15, no. 19: 6553. https://doi.org/10.3390/ma15196553
APA StyleZhao, Y., Liang, T., Miao, P., Chen, T., Han, X., Hu, G., & Gao, J. (2022). Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce(III). Materials, 15(19), 6553. https://doi.org/10.3390/ma15196553