A Novel BCC-Structure Zr-Nb-Ti Medium-Entropy Alloys (MEAs) with Excellent Structure and Irradiation Resistance
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Samples Preparation
2.2. Heavy Ion Irradiation Procedures
2.3. Depth-Sensing Nanoindentation Methods
2.4. Characterization and Properties Procedure
3. Results and Discussion
3.1. Microstructure and Mechanical Behavior of the Unirradiated Zr-Nb-Ti MEAs
3.2. XRD Analysis of the Irradiated MEAs
3.3. The Nanoindentation Result of the Irradiated MEAs
3.4. Irradiation Defects of the MEAs
4. Conclusions
- (1)
- The tensile tests showed that the MEAs have a good combination of strength and toughness. At room temperature, the yield strength of these three alloys, Zr40Nb35Ti25, Zr50Nb35Ti15, and Zr60Nb35Ti5, is 943, 903, and 1285 MPa, and the fracture strain is 17.5%, 14%, and 11%, respectively. At 400 °C, the fracture strain increases to 28%, 25%, and 20.5%, respectively. The fracture morphology shows that the fracture mode is the ductile fracture.
- (2)
- The nanoindentation test showed the Zr-Nb-Ti MEAs have a little irradiation hardening that increased with the irradiation fluence.
- (3)
- After irradiation, contrary to traditional alloys, the XRD diffraction peaks of Zr-Nb-Ti MEAs were shifted to the right, indicating a decrease in the lattice constant. No visible phase transformation or decomposition of Zr-Nb-Ti MEAs was observed.
- (4)
- Only dislocation loops and dislocation lines were observed in the peak damage region. This suggests the irradiation resistance of the MEAs is better than that of traditional alloys.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Stork, D.; Zinkle, S.J. Introduction to the special issue on the technical status of materials for a fusion reactor. Nucl. Fusion 2017, 57, 092001. [Google Scholar] [CrossRef]
- Charit, I. Accident Tolerant Nuclear Fuels and Cladding Materials. Jom 2017, 70, 173–175. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, H.; Satoh, Y.; Murakami, K.; Kano, S.; Zhao, Z.; Shen, J.; Abe, H. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 2017, 316, 131–150. [Google Scholar] [CrossRef]
- Terrani, K.A.; Zinkle, S.J.; Snead, L.L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 2014, 448, 420–435. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Terrani, K.A.; Snead, L.L. Motivation for utilizing new high-performance advanced materials in nuclear energy systems. Curr. Opin. Solid State Mater. Sci. 2016, 20, 401–410. [Google Scholar] [CrossRef]
- Motta, A.T.; Chen, L.-Q. Hydride Formation in Zirconium Alloys. Jom 2012, 64, 1403–1408. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L. Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 2014, 448, 374–379. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropyalloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Rackwitz, J.; Yu, Q.; Yang, Y.; Laplanche, G.; George, E.P.; Minor, A.M.; Ritchie, R.O. Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy. Acta Mater. 2020, 200, 351–365. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Duval, T.; Hung, U.D.; Yeh, J.W.; Shih, H.C. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, K.; Xue, H.; Lu, C.; Olsen, R.J.; Beland, L.K.; Ullah, M.W.; Zhao, S.; Bei, H.; Aidhy, D.S.; et al. Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. J. Mater. Res. 2016, 31, 2363–2375. [Google Scholar] [CrossRef]
- Zhang, Y.; Stocks, G.M.; Jin, K.; Lu, C.; Bei, H.; Sales, B.C.; Wang, L.; Beland, L.K.; Stoller, R.E.; Samolyuk, G.D.; et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 2015, 6, 8736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tunes, M.A.; Crespillo, M.L.; Zhang, F.; Boldman, W.L.; Rack, P.D.; Jiang, L.; Xu, C.; Greaves, G.; Donnelly, S.E.; et al. Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy. Nanotechnology 2019, 30, 294004. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, S.; Weber, W.J.; Nordlund, K.; Granberg, F.; Djurabekova, F. Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 2017, 21, 221–237. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Lin, S.-K.C.S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Weber, W.J. High Entropy Alloys: Irradiation. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Egami, T.; Ojha, M.; Khorgolkhuu, O.; Nicholson, D.M.; Stocks, G.M. Local Electronic Effects and Irradiation Resistance in High-Entropy Alloys. Jom 2015, 67, 2345–2349. [Google Scholar] [CrossRef]
- Egami, T.; Guo, W.; Rack, P.D.; Nagase, T. Irradiation Resistance of Multicomponent Alloys. Metall. Mater. Trans. A 2013, 45, 180–183. [Google Scholar] [CrossRef]
- Lu, C.; Niu, L.; Chen, N.; Jin, K.; Yang, T.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Shi, S.; et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 2016, 7, 13564. [Google Scholar] [CrossRef]
- Aidhy, D.S.; Lu, C.; Jin, K.; Bei, H.; Zhang, Y.; Wang, L.; Weber, W.J. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 2015, 99, 69–76. [Google Scholar] [CrossRef]
- Olsen, R.J.; Jin, K.; Lu, C.; Beland, L.K.; Wang, L.; Bei, H.; Specht, E.D.; Larson, B.C. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy. J. Nucl. Mater. 2016, 469, 153–161. [Google Scholar] [CrossRef]
- Yang, L.; Ge, H.; Zhang, J.; Xiong, T.; Jin, Q.; Zhou, Y.; Shao, X.; Zhang, B.; Zhu, Z.; Zheng, S.; et al. High He-ion irradiation resistance of CrMnFeCoNi high-entropy alloy revealed by comparison study with Ni and 304SS. J. Mater. Sci. Technol. 2019, 35, 300–305. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, E.-H.; Xiang, C. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding. J. Mater. Sci. Technol. 2021, 84, 230–238. [Google Scholar] [CrossRef]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Oliver, W.C. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Lim, G.; Parrish, W.; Ortiz, C.; Bellotto, M.; Hart, M. Grazing incidence synchrotron x-ray diffraction method for analyzing thin films. J. Mater. Res. 1987, 2, 471–477. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Sun, S.; Qiu, N.; Zhang, K.; He, P.; Ma, Y.; Gou, F.; Wang, Y. Segregation of Al1.5CrFeNi high entropy alloys induced by vacancy-type defects. Scr. Mater. 2019, 161, 40–43. [Google Scholar] [CrossRef]
- Hosemann, P.; Frazer, D.; Fratoni, M.; Bolind, A.; Ashby, M.F. Materials selection for nuclear applications: Challenges and opportunities. Scr. Mater. 2018, 143, 181–187. [Google Scholar] [CrossRef]
- Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 2009, 385, 217–222. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, H.; Gao, X.; Ren, C.; Gao, J.; Zhang, H.; Zheng, S.; Jin, Q.; Zhao, Y.; Lu, C.; et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 2019, 35, 369–373. [Google Scholar] [CrossRef]
- Odette, G.R.; Yamamoto, T.; Williams, T.J.; Nanstad, R.K.; English, C.A. On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models. J. Nucl. Mater. 2019, 526, 151863. [Google Scholar] [CrossRef]
- Hosemann, P.; Kiener, D.; Wang, Y.; Maloy, S.A. Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 2012, 425, 136–139. [Google Scholar] [CrossRef]
- Jin, K.; Lu, C.; Wang, L.M.; Qu, J.; Weber, W.J.; Zhang, Y.; Bei, H. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 2016, 119, 65–70. [Google Scholar] [CrossRef]
- Kumar, N.A.P.K.; Li, C.; Leonard, K.J.; Bei, H.; Zinkle, S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016, 113, 230–244. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Chen, D.S.; Han, W.T.; Kimura, A. Irradiation hardening in pure tungsten before and after recrystallization. Fusion Eng. Des. 2015, 98–99, 2103–2107. [Google Scholar] [CrossRef]
Sample No. | HEAs | Zr | Nb | Ti |
---|---|---|---|---|
1# | Zr40Nb35Ti25 | 45.06 | 40.16 | 14.78 |
2# | Zr50Nb35Ti15 | 53.46 | 38.12 | 8.42 |
3# | Zr60Nb35Ti5 | 61.05 | 36.28 | 2.67 |
Samples | Temperature (°C) | Irradiation Fluence (ions/cm2) | Peak Damage (dpa) | Peak Dose Rate (dpa/s) |
---|---|---|---|---|
1#/2#/3# | 300 | 8 × 1015 | 15 | ~6.5 × 10−4 |
2.5 × 1016 | 47 | |||
500 | 8 × 1015 | 15 | ||
2.5 × 1016 | 47 |
Alloys | ΔHmix (KJ/mol) | ΔSmix (J/mol·K) | Ω | δ (%) | VEC | Δχ | Tm (K) |
---|---|---|---|---|---|---|---|
Zr40Nb35Ti25 | 2.94 | 8.98 | 7.009 | 4.18 | 4.35 | 0.122 | 2294.74 |
Zr50Nb35Ti25 | 3.22 | 8.302 | 5.98 | 4.23 | 4.35 | 0.127 | 2317.8 |
Zr60Nb35Ti5 | 3.5 | 6.848 | 4.57 | 4.11 | 4.35 | 0.129 | 2336.5 |
Alloys | Temperature (°C) | Yield Strength (δy, MPa) | Ultimate Tensile (δu, MPa) | Elongation after Fracture (εef, %) |
---|---|---|---|---|
Zr40Nb35Ti25 (1#) | Room | 945 | 1010 | 17.5 |
Zr50Nb35Ti15 (2#) | 903 | 915 | 14 | |
Zr60Nb35Ti5 (3#) | 1028 | 1050 | 11 | |
Zr40Nb35Ti25 (1#) | 400 | 350 | 423 | 28 |
Zr50Nb35Ti15 (2#) | 355 | 408 | 25 | |
Zr60Nb35Ti5 (3#) | 360 | 390 | 20.5 |
Alloys | Zr40Nb35Ti25(GPa) | Zr50Nb35Ti15(GPa) | Zr60Nb35Ti5(GPa) | Hardening Rate (%) | ||
---|---|---|---|---|---|---|
Zr40Nb35Ti25 | Zr50Nb35Ti15 | Zr60Nb35Ti5 | ||||
Unirradiated | 5.17 | 5.15 | 5.22 | —— | —— | —— |
8 × 1015/300 °C | 5.56 | 5.53 | 5.62 | 7.54 | 7.38 | 7.66 |
2.5 × 1016/300 °C | 5.48 | 5.84 | 6.42 | 6.01 | 13.40 | 22.99 |
8 × 1015/500 °C | 5.66 | 4.95 | 5.9 | 9.48 | −3.88 | 13.03 |
2.5× 1016/500 °C | 5.43 | —— | 7.5 | 5.03 | —— | 42.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Quan, Z.; Shen, T.; Jin, P.; Li, J.; Hu, S.; Liu, D. A Novel BCC-Structure Zr-Nb-Ti Medium-Entropy Alloys (MEAs) with Excellent Structure and Irradiation Resistance. Materials 2022, 15, 6565. https://doi.org/10.3390/ma15196565
Su Z, Quan Z, Shen T, Jin P, Li J, Hu S, Liu D. A Novel BCC-Structure Zr-Nb-Ti Medium-Entropy Alloys (MEAs) with Excellent Structure and Irradiation Resistance. Materials. 2022; 15(19):6565. https://doi.org/10.3390/ma15196565
Chicago/Turabian StyleSu, Zhenqian, Zhaodong Quan, Tielong Shen, Peng Jin, Jing Li, Shiwen Hu, and Dexue Liu. 2022. "A Novel BCC-Structure Zr-Nb-Ti Medium-Entropy Alloys (MEAs) with Excellent Structure and Irradiation Resistance" Materials 15, no. 19: 6565. https://doi.org/10.3390/ma15196565
APA StyleSu, Z., Quan, Z., Shen, T., Jin, P., Li, J., Hu, S., & Liu, D. (2022). A Novel BCC-Structure Zr-Nb-Ti Medium-Entropy Alloys (MEAs) with Excellent Structure and Irradiation Resistance. Materials, 15(19), 6565. https://doi.org/10.3390/ma15196565