Sol–Gel-Derived Ni3Al Coating on Nickel Alloy for Oxidation Resistance in Supercritical Water Environments
Abstract
:1. Introduction
2. Experiments
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, C.W.; Hui, R.; Qu, W.; Sing, Y. Progress in corrosion resistant materials for supercritical water reactors. Corros. Sci. 2009, 51, 2508–2523. [Google Scholar] [CrossRef]
- Khatkhatay, F.; Jiao, L.; Jian, J.; Zhang, W.R.; Jiao, Z.; Gan, J.; Zhang, H.; Zhang, X.; Wang, H. Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water. J. Nucl. Mater. 2014, 451, 346–351. [Google Scholar] [CrossRef]
- Chen, Y.; Sridharan, K.; Allen, T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water. Corros. Sci. 2006, 48, 2843–2854. [Google Scholar] [CrossRef]
- Tang, X.; Wang, S.; Xu, D. Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen. Ind. Eng. Chem. Res. 2013, 52, 18241–18250. [Google Scholar] [CrossRef]
- Guo, S.; Xu, D.; Liang, Y.; Macdonald, D.D. Corrosion Characteristics of Typical Ni–Cr Alloys and Ni–Cr–Mo Alloys in Supercritical Water: A Review. Ind. Eng. Chem. Res. 2020, 59, 18727–18739. [Google Scholar] [CrossRef]
- Mittion, D.B.; Yoon, J.H.; Cline, J.A.; Kim, H.S.; Eliaz, N.; Latanision, R.M. Corrosion behavior of nickel-based alloys in supercritical water oxidation systems. Ind. Eng. Chem. Res. 2000, 39, 4689–4696. [Google Scholar] [CrossRef]
- Tang, X.Y.; Wang, S.Z.; Qian, L.L.; Ren, M.M. Corrosion properties of candidate materials in supercritical water oxidation process. J. Adv. Oxid. Technol. 2016, 19, 141–157. [Google Scholar] [CrossRef]
- Xu, D.H.; Guo, S.W.; Ma, Z.J.; Li, Z.J.; Kuang, W.J.; Gong, Y.M. Corrosion characteristic comparisons of ZrO2-, TiO2-coated and uncoated 316 stainless steel samples in supercritical water oxidation of municipal sludge. J. Supercrit. Fluids 2019, 155, 104663. [Google Scholar] [CrossRef]
- Nagae, M.; Yoshio, T.; Oda, K. Corrosion Behaviour of Structural Ceramics in Supercritical Water. Adv. Sci. Technol.-Res. 2006, 45, 173–177. [Google Scholar]
- Schacht, M.; Boukis, N.; Dinjus, E. Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures. J. Mater. Sci. 2000, 35, 6251–6258. [Google Scholar] [CrossRef]
- Garcia, E.; Lee, H.; Sampath, S. Phase and microstructure evolution in plasma sprayed Yb2Si2O7 coatings. J. Eur. Ceram. Soc. 2019, 39, 1477–1486. [Google Scholar] [CrossRef]
- Dezfuli, S.M.; Sabzi, M. Deposition of ceramic nanocomposite coatings by electroplating process: A review of layer-deposition mechanisms and effective parameters on the formation of the coating. Ceram. Int. 2019, 45, 21835–21842. [Google Scholar] [CrossRef]
- Tailor, S.; Vashishtha, N.; Modi, A.; Modi, S.C. High-performance Al2O3 coating by hybrid-LVOF (Low-Velocity Oxyfuel) process. J. Therm. Spray Technol. 2020, 29, 1134–1143. [Google Scholar] [CrossRef]
- Guo, S.; Xu, D.; Liang, Y.; Gong, Y.; Yang, J. Corrosion characterization of ZrO2 and TiO2 ceramic coatings via air plasma spraying on 316 stainless steel in oxygenated sub-and supercritical water. J. Supercrit. Fluids 2019, 157, 104716. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Gao, F.; Yang, J.Q.; Zhu, Y.T.; Fang, C.Q.; Wang, S.Z.; Zhao, G.Y. Comparative study on corrosion characteristics of Al2O3/316L and TiO2/316L stainless steel in supercritical water. Int. J. Hydrogen Energy 2017, 42, 19836–19842. [Google Scholar] [CrossRef]
- Toma, F.L.; Stahr, C.C.; Berger, L.M.; Saaro, S.; Herrmann, M.; Deska, D.; Michael, G. Corrosion resistance of APS- and HVOF- sprayed coating in the Al2O3-TiO2 system. J. Therm. Spray Technol. 2010, 19, 137–147. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.J.; Liang, C.H.; Feng, Y.J.; Jin, W.; Cao, J.L.; Wang, X.Y.; Feng, K.M.; Kleyn, A.W.; Liu, N. Preparation and properties of improved Al2O3 based MOD coatings as tritium permeation barrier. Fusion Eng. Des. 2019, 143, 233–239. [Google Scholar] [CrossRef]
- Feng, J.; Dan, M.; Jin, F.Y.; Chen, M.Y.; Shen, L.R.; Tong, H.H.; Zhang, G.H. Preparation and properties of alumina coatings as tritium permeation barrier by plasma electrolytic oxidation. Rare Metal Mat. Eng. 2016, 45, 315–320. [Google Scholar]
- Xiang, X.; Wang, X.L.; Zhang, G.K.; Tang, T.; Lai, X.C. Preparation technique and alloying effect of aluminize coatings as tritium permeation barriers: A review. Int. J. Hydrogen Energy 2015, 40, 3697–3707. [Google Scholar] [CrossRef]
- Partlow, D.P.; Gurkovich, S.R.; Radford, K.C.; Denes, L.J. Switchable vanadium oxide films by a sol-gel process. J. Appl. Phys. 1991, 70, 443–452. [Google Scholar] [CrossRef]
- Ozer, N. Electrochemical properties of sol-gel deposited vanadium pentoxide films. Thin Solid Films 1997, 305, 80–87. [Google Scholar] [CrossRef]
- Yuan, N.Y.; Li, J.H.; Lin, C.L. Valence reduction process from sol-gel V2O5 to VO2 thin films. Appl. Surf. Sci. 2002, 191, 176–180. [Google Scholar]
- Yasakau, K.A.; Carneiro, J.; Zheludkevich, M.L.; Ferreira, M.G.S. Influence of sol-gel process parameters on the protection properties of sol–gel coatings applied on AA2024. Surf. Coat. Technol. 2014, 246, 6–16. [Google Scholar] [CrossRef]
- Figueira, R.B. Hybrid sol-gel coatings for corrosion mitigation: A critical review. Polymers 2020, 12, 689. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.R. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Thai, T.T.; Druart, M.E.; Paint, Y.; Trinh, A.T.; Olivier, M.G. Influence of the sol-gel mesoporosity on the corrosion protection given by an epoxy primer applied on aluminum alloy 2024-T3. Prog. Org. Coat. 2018, 121, 53–63. [Google Scholar] [CrossRef]
- Pezzato, L.; Rigon, M.; Martucci, A.; Brunelli, K.; Dabala, M. Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys. Surf. Coat. Technol. 2019, 366, 114–123. [Google Scholar] [CrossRef]
- Bahlawane, N.; Watanabe, T. New sol-gel route for the preparation of pure α-alumina at 950 °C. J. Am. Ceram. Soc. 2000, 83, 2324–2326. [Google Scholar] [CrossRef]
- Bhogal, S.; Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Alam, M.; Stadler, F.J. Ag2O–Al2O3–ZrO2 trimetallic nanocatalyst for high performance photodegradation of nicosulfuron herbicide. Top. Catal. 2020, 63, 1272–1285. [Google Scholar] [CrossRef]
- Wang, X.Z.; Jiang, Q.Q.; Zhang, Y.C.; Yuan, N.N. High efficient and environment friendly plasma-enhanced synthesis of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 with excellent electrochemical performance. Front. Chem. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Q.; Liu, S.Y.; Luo, B.C.; Yi, E.Y.; Tian, E.K.; Li, G.W.; Li, L.T.; Wu, G.H. Thermal mismatch strain induced disorder of Y2Mo3O12 and its effect on thermal expansion of Y2Mo3O12/Al composites. Phys. Chem. Chem. Phys. 2017, 19, 11778–11785. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, W.J.; Qin, M.; Li, D.J.; Liu, Y.L.; Ai, S.; Wang, T.J. Effect of geometric parameter on thermal stress generation in fabrication process of double-ceramic-layers thermal barrier coating system. J. Eur. Ceram. Soc. 2018, 38, 3962–3973. [Google Scholar] [CrossRef]
- Sivaprahasam, D.; Sujitha, T.; Gowtham, U.; Jayachandran, B.; Gopalan, R. Microstructure and heat transfer characteristics of active brazed Ceramic–Metal joints. Ceram. Int. 2021, 47, 16133–16140. [Google Scholar] [CrossRef]
- Ren, L.; Cheng, Y.H.; Wang, S.; Meng, X.L.; Qin, Q.; Yang, J.Y. Oxidation behavior of the supercritical water on the ternary Ni-W-P coating. Chem. Eng. J. 2019, 370, 1388–1406. [Google Scholar] [CrossRef]
- Mandapaka, K.K.; Cahyadi, R.S.; Yalisove, S.; Kuang, W.J.; Sickafus, K.; Oatel, K.; Was, G.S. Corrosion behavior of ceramic-coated ZIRLO™ exposed to supercritical water. J. Nucl. Mater. 2018, 498, 495–504. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhang, Z.; Wang, D.; Guo, H.; Shi, Q.; Lu, T. Sol–Gel-Derived Ni3Al Coating on Nickel Alloy for Oxidation Resistance in Supercritical Water Environments. Materials 2022, 15, 6566. https://doi.org/10.3390/ma15196566
Pan Y, Zhang Z, Wang D, Guo H, Shi Q, Lu T. Sol–Gel-Derived Ni3Al Coating on Nickel Alloy for Oxidation Resistance in Supercritical Water Environments. Materials. 2022; 15(19):6566. https://doi.org/10.3390/ma15196566
Chicago/Turabian StylePan, Yuelong, Zhidong Zhang, Daoyuan Wang, Hao Guo, Qiwu Shi, and Tiecheng Lu. 2022. "Sol–Gel-Derived Ni3Al Coating on Nickel Alloy for Oxidation Resistance in Supercritical Water Environments" Materials 15, no. 19: 6566. https://doi.org/10.3390/ma15196566
APA StylePan, Y., Zhang, Z., Wang, D., Guo, H., Shi, Q., & Lu, T. (2022). Sol–Gel-Derived Ni3Al Coating on Nickel Alloy for Oxidation Resistance in Supercritical Water Environments. Materials, 15(19), 6566. https://doi.org/10.3390/ma15196566