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Abstract: This paper reports a novel, one-dimensional dense array of asymmetrical metal-oxide-
semiconductor field-effect-transistor (MOSFET) THz detector, which has been fabricated in Global-
Foundries 55-nm CMOS technology. Compared with other technologies, the Si-based complementary
metal-oxide-semiconductor (CMOS) dominates in industrial applications, owing to its easier inte-
gration and lower cost. However, as the frequency increases, the return loss between the antenna
and detector will increase. The proposed THz detector has a short-period grating structure formed
by MOSFET fingers in the array, which can serve as an effective antenna to couple incident THz
radiation into the FET channels. It not only solved the problem of return loss effectively, but also
greatly reduced the detector area. Meanwhile, since the THz signal is rectified at both the source
and drain electrodes to generate two current signals with equal amplitude but opposite directions,
the source drain voltage is not provided to reduce the power consumption. This leads to a poor
performance of the THz detector. Therefore, by using an asymmetric structure for the gate fingers
position to replace the source drain voltage, the performance of the detector in the case of zero power
consumption can be effectively improved. Compared with the symmetrical MOSFET THz detector,
Rv is increased by 183.3% and NEP is decreased by 67.7%.

Keywords: terahertz detector; CMOS; asymmetric MOSFET; grating structure

1. Introduction

THz radiation (0.1–10 THz), which lies in the electromagnetic spectrum between
microwave and infrared, shows various potential applications for imaging, security, spec-
troscopy technology and many others owing to its unique properties [1]. Since the theoreti-
cal consideration of plasma waves in a two-dimensional (2D) electron channel was proposed
in [2], THz detectors based on the plasma theory have been extensively developed [3–5]. In
order to achieve high-performance THz detectors, some applications have already been
implemented using dedicated semiconductor technologies such as SiGe, GaAs, InP and
InGaAs [6–9] or new materials such as photoelectric crystals [10] and two-dimensional (2D)
materials [11]. Compared with the above technologies, the Si-based complementary metal-
oxide-semiconductor (CMOS) technology dominates in industrial applications [12–15] due
to its excellent advantages of low cost, low power consumption and large-scale integration
of circuits by using readout electronics and on-chip signal processors.

Among the published THz detectors, bolometers [16], Schottky barrier diodes (SBD) [8]
and antenna-coupled metal-oxide-semiconductor field-effect-transistor (MOSFET) detec-
tors [17], are used commonly. However, bolometer detectors exhibit a slow response speed.
SBD detectors are difficult to integrate. Antenna-coupled MOSFET detectors show poor
performance at high frequencies, since the return loss between the antenna and the detector
will increase as frequency increases, due to the existence of antenna. In order to solve
the above problems, the impedance matching structures have been used to reduce the
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return loss [18,19], hence the new antenna structures [20,21] or asymmetric MOSFET struc-
tures [22,23] have been used to improve the performance of the THz detector. Although
these approaches can solve some problems, the impedance matching is very difficult to
realize in high-frequency, and the new structure antennas are likely to further increase the
detector area.

To solve the above problems, a room temperature 2.58 THz detector is proposed and
demonstrated in GlobalFoundries 55-nm CMOS technology for the first time in this paper. It
is composed of a short-channel asymmetrical MOSFET array, and the mechanism is plasma
detection. The fingers in a separate short-channel FET array form a grating structure,
serving as an effective antenna to couple the THz radiation into the FET channels [24].
This not only solves the high-frequency impedance matching problem, but also greatly
reduces the area of the THz detector, since the fingers function as the antenna. In addition,
the asymmetrical position of the gate fingers in the FETs can also break the shielding by
changing the electrical balance in the channel [25]. The experimental results have shown
that the performance of asymmetric detector is much better than symmetric detector. Hence,
the short-channel asymmetric MOSFET array THz detector demonstrated a high Rv, low
noise equivalent power (NEP) and high response speed.

2. Materials and Methods

The diagram of the MOSFET array THz detector is shown in Figure 1a. Individual
MOSFETs are densely arranged in the array to form a grating structure by using the fingers.
The grating structure that acts as an effective matched antenna can couple the external
THz radiation into MOSFET channels to excite plasmons, which can induce the response
current in the channel. Therefore, the detector operating at a non-resonant mode can
detect the THz radiation power by measuring the voltage at the drain or source terminal.
Although MOSFET is not a two-dimensional device, the electric field provided by the gate
accumulates a very thin layer of carriers (channel) below the gate oxygen layer because
of the 0 V source-drain voltage. Due to the limitation of the electric field in the vertical
direction (gate voltage), the movement of carriers in the channel can only move on the
surface of the active region. Therefore, when analyzing the plasma in the MOSFET channel,
it can be simplified into a two-dimensional model. Based on the two-dimensional electron
channel, the plasma formula can be described with the two-dimensional electron flow [26].
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τ
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where E(x,t) is the in-plane electric field depending on the time t and coordinate x in the
2D electron system, τ is the electron momentum relaxation time, e and m* are the electron
charge and the electron effective mass, respectively, j(x,t) = −ev(x,t)n(x,t) is the density of
the induced electric current, n(x,t) and j(x,t) are the hydrodynamic electron density and
velocity in the 2D electron channel.

As shown in Figure 1b, each MOSFET is coupled electromagnetically in the array,
but they are uncoupled electronically since the MOSFETs are isolated with each other.
Therefore, the response current I generated by each MOSFET is independent in the array.
The THz radiation is uniform and the radiation area is large enough to ensure that each
MOSFET in the array can receive the same amount of THz radiation. Meanwhile, each
MOSFET in the array has the same gate bias and the common source and drain. The
response currents generated by every MOSFET added together to produce the total output
current Itotal. In principle, the response current I generated by each MOSFET is identical.
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The generated I in each MOSFET channel is given by the Fourier transform [27]:

δj0 = 2σ0
eγ

m∗ ∑
q

q
∣∣Eq

∣∣2
(ω0 − qv0)[(ω0 − qv0)

2 + γ2]
(3)

where σ0 = e2N0τ/m* is the conducting property of the plasmons in the channel, γ = 1/τ,
Eq is the Fourier harmonic of the total self-consistent in-plane electric field of frequency ω0
with wave vector q = 2πn/l, n = 0, ±1, ±2, . . . , and l is the grating period.

Except for the shielding by gate bias, THz radiation rectified at the drain or source
electrodes are crucially dependent on how the THz signal is fed to the channel. The two
possibilities feature an opposite sign of the rectified current. This competition will reduce
the performance of the detector [28]. So, the THz detector demands a design for which
only one of the two mechanisms is dominant. This can be achieved by an asymmetrical
structure or biasing conditions.

According to Equation (3), a symmetrical unit cell without DC electron drift in the 2D
electron channel causes |Eq| and |E−q| to be equal. The Fourier-harmonics of the electric
field, which have the wave vectors qth of opposite signs, have equal amplitudes and hence
the total output current is zero. Therefore, the strong asymmetrical position of the gate
fingers can lead to different |Eq| and |E−q| to improve Rv of the THz detector. Rv also
can be further improved by changing the drain-source bias (Vds) because the difference
between |Eq| and |E−q| also depends on the local electron velocity v0, which is equal to
−eτVds/m*. Meanwhile, the gate bias (Vgs) can increase the local electron density N0 to
improve the Rv.

In addition to Rv, noise is another key performance indicator for the THz detector. The
MOSFET channel material is resistive, so the major noise comes from the thermal noise.
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The theoretical estimation of the room temperature Johnson-Nyquist voltage noise floor is
expressed as (4kBTRtotal)1/2, where kB is the Boltzmann constant, T is the temperature, and
Rtotal is the measured resistance [29]. At the same temperature, the noise is only dependent
on the resistance between the source and drain. The resistance of the channel is related
to the gate width (W) and length (L). The higher value of W/L is the lower value which
the channel resistance presents. As the same W, the short channel MOSFET shows better
noise characteristics than long channel MOSFET. Compared with the HEMT technology,
the CMOS process has smaller L. The detector employing parallel MOSFETs to realize the
grating structure can achieve smaller L compared with grating-gate detector. Thus, the
short-channel asymmetrical MOSFET array THz detector also exhibits lower noise.

In order to further verify the absorption performance of the grating structure, Figure 2
shows that the absorption rates of the grating structure are controlled by changing the
length and width of the fingers. The absorption rates were simulated by the high frequency
structure simulator (HFSS). It can be seen from Figure 2 that changing the length and
width of the grating structure will affect its absorption capacity. The absorptivities of
grating structures with five different sizes was simulated (size parameters are shown in
the Figure 2). After comparing the simulation results, the optimized values for the length
and width fingers were L = 2 µm and W = 25 µm, respectively. It can be obtained from the
simulation results that the grating structure has a stronger absorption capacity at 2.58 THz.
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Figure 2. Simulated return loss of grating structure.

The schematic diagram for the proposed detector is shown in Figure 1a, which was
fabricated on top of Si wafer just using n-/p-well. The active regions of MOSFETs are
formed on silicon by doping. The polysilicon gates with a thickness of 94 nm and active
regions are separated by the gate oxygen layer. The active regions on both sides of the gates
are connected with the upper metal (thickness of 220 nm) through vias with a thickness of
216 nm, forming the source and drain electrodes. Finally, multiple MOSFETs are connected
in parallel to the top pad.

Figure 3a,b shows the die micrograph of the symmetrical and asymmetrical MOSFET
arrays that are fabricated in 55-nm CMOS technology, where the finger length Lg of each
MOSFET is 2 µm. This small size can effectively reduce the noise of the detector. Meanwhile,
in order to improve the response current, six MOSFETs were used in the array. For the
symmetrical detector, the slits L for the gate-source and gate-drain are 500 nm. The size of
this detector is used for performance comparison with the asymmetrical detector. For the
asymmetrical detector, the gate finger is placed in a position L1 = 300 nm from the source
finger and L2 = 700 nm from the drain finger, which provides the necessary asymmetry to
further improve Rv.
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3. Results and Discussion

The measurement setup is shown in Figure 4. The THz radiation is generated by a
quantum cascade laser (QCL) operating at 2.58 THz with a maximum power of 1.8 mW. The
focused beam with a diameter of ~100 µm was collimated and focused by two parabolic
optical mirrors. The THz source and the lock-in amplifier were simultaneously modulated
by a signal generator for synchronization. The THz detectors were mounted on an x–y–z
stage and positioned at the focus point of the THz beam. The received THz power was
measured by a terahertz probe (Ophir 3A-P-THz, Jerusalem, Israel). The output voltage
was measured through a lock-in amplifier, and the voltage is supplied by a power supply.
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The electrical transfer curves of the symmetrical and asymmetrical detectors are shown
in Figure 5. According to the results, it can be seen that the asymmetrical structure will not
degrade the basic switch characteristics of standard MOSFET. This is mainly because both
the gate electrode length/width and the distance between the source and drain electrodes
have not been changed, the output characteristics of MOSFET show insignificant change
and can be ignored. When the gate voltage (Vgs) of the asymmetrical MOSFET is greater
than the threshold voltage, there is a maximum value of slope (transconductance, gm) at
about Vgs = 0.45 V. Since the performance of the detectors is mainly affected by Vgs, a
larger source drain voltage (Vds) cannot significantly improve the performance. In addition,
excessive Vds will increase the power consumption of the detector. Therefore, a smaller
Vds was adopted in the output characteristics (<100 mV), so that the MOSFET operated in a
linear region. As shown in Figure 5, a linear relationship between the source drain current
(Ids) and the Vds is obtained, indicating that the MOSFETs have good performance.
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Figure 5. Output characteristic curves as a functions of the Vgs for various Vds: (a) symmetrical
detector and (b) asymmetrical detector.

The output voltage (∆U) for the asymmetry detector under the illumination of THz
radiation with various actual power (Pactual) (13.38, 53.50, 101.66, 148.47, 189.94 and
224.71 µW) is shown in Figure 6a. The performance of the symmetrical detector is not
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shown in Figure 6a, due to its response being too low, and there is no response when the
actual power is lower than 224.71 W. The ∆U for the symmetry detector is 1.53 µV with
the Pactual = 224.71 W. Much less than the ∆U for the asymmetric detector (4.18 µV). With
the increase in incident THz radiation power, ∆U of the THz detector changes linearly,
which meets the requirements of a THz power detector. The dotted fitting line in the
figure also implies excellent linearity between ∆U and the incident power.
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Then, the voltage Rv was measured and calculated by the following formula [20]:

Rv =
∆U × Sradiation
Ptotal × Sdetector

(4)

where ∆U is the amplitude of the response voltage, Ptotal is the total power of the THz
source, Sradiation is the radiation beam spot area and Sdetector is the area of the detector.

Here, the actual area of the detector is 1050 µm2, the area of the radiation beam spot is
7850 µm2, and the actual maximum received THz power on the detector is calculated as
Preceive = 224.71 µW. Figure 6b illustrates the Vgs-dependence Rv at 2.58 THz for symmetrical
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and asymmetrical detectors under Vds = 0 V and Preceive = 224.71 µW. With the increase in
Vgs, Rv of asymmetry and symmetry detectors increase firstly and then decrease, where
the maximum values are obtained at Vgs = 0.25 V and Vgs = 0.45 V, respectively. This
is consistent with the highest Rv when the transconductance is at a maximum. As the
maximum transconductance, it indicates that the same gate voltage change will lead to
the largest source drain current. As shown in Figure 1b, the grating structure acts to an
antenna to couple THz radiation to the MOSFET gates, which is equivalent to adding Ua to
the gates. Therefore, when the transconductance is maximum, the Rv is maximum. It is also
found that Rv of the asymmetrical detector is obviously higher than that of the symmetrical
detector (2.83 times). These characteristics are in good agreement with the detection theory
described above.

Figure 7 shows the relationship between the output voltage of the asymmetry detector
and the modulation frequency of the THz source. The responsivities at different modulation
frequencies implies the bandwidth and response speed of the detector. The results show
that when the modulation frequency is within 1 kHz, the output voltage of the asymmetry
detector is stable. When the modulation frequency is greater than 1 kHz, the output voltage
drops significantly. Meanwhile, the 3 dB bandwidth (output voltage drops by 50%) is
about 3 kHz. This indicates that the detector shows stable output and good performance
within 3 kHz bandwidth. As the modulation frequency increases to 10 kHz, the asymmetry
detector still has a good signal-to-noise ratio. This shows that the detector is able to achieve
a relative high response speed of 0.1 ms.
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Further, the NEP is evaluated from the experimental data of Rv and the noise spectral
density Sv, which is expressed as

NEP =
Sv

Rv
(5)

where Sv is the detected noise voltage of the detector measured by a dynamic signals
analyzer (Stanford Research Systems SR780, Stanford, CA, USA). The noise spectral density
of the asymmetry detector is shown in Figure 8a. The corner frequency of 1/f noise is about
2 kHz. Figure 8b shows the asymmetry detector Vgs-dependence of NEP at a modulation
frequency of 1 kHz. When Vgs = 0.45 V, NEP has a minimum value of 2.55 nW/Hz0.5.
However, due to the influence of 1/f noise, the noise is large at 1 kHz. While, at 10 kHz
modulation frequency, although Rv is low, the minimum NEP is about 1.29 nW/Hz0.5, since
the 1/f noise is avoided.
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4. Conclusions

In this paper, a novel asymmetrical MOSFET array plasma detector have been demon-
strated and shown to have a high Rv and an excellent NEP at 2.58 THz. The grating structure
formed by fingers in MOSFET array can be considered as an effective THz antenna. This
structure avoids the use of an antenna, thus solving the impedance matching problem
between the antenna and the detector at high frequencies. Moreover, this structure also
reduces the area of the detector. With the increase in frequency, the performance of plasma
THz detectors gradually deteriorate. The asymmetrical position of the gate fingers can
break the shielding by changing the electrical balance in the channel. This enables the
improvement in Rv of the THz detector on the premise of zero power consumption. The
experimental results show that at 2.58 THz, the maximum Rv and minimum NEP for the
symmetrical MOSFET THz array detector are 6.78 mV/W and 7.88 nW/Hz0.5, respectively,
while, for the asymmetrical detector, these two values are 18.9 mV/W and 2.55 nW/Hz0.5,
where Rv is increased by 183.3% and NEP is decreased by 67.7%. When compared with
the existing HEMT grating-gate detectors, the proposed MOSFET array detector employed
a shorter channel and parallel structure. The short channel MOSFET could reduce the
channel resistance, thereby reducing the thermal noise, and effectively optimizing the NEP
of the detector. The use of parallel structure would increase the output voltage of the
detector, which is believed to increase the application range of the detector. The detector
was fabricated using standard Si-based CMOS technology, which makes it easier to inte-
grate with other processing circuitry, including transimpedance amplifiers, voltage limiters,
clock and data recovery circuits. In sum, the detector proposed in this paper exhibit good
performance and low cost in design and fabrication, showing broad application prospects.
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