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Highlights:

What are the main findings?
• GO improves the anticorrosion properties of the zinc phosphate coatings in neutral media, and

disimproves them in acidified media.

What is the implication of the main finding?
• The acidity of the media should be taken into account when using GO-containing zinc-phosphate

coatings.

Abstract: Graphene oxide (GO) is an advanced additive improving the properties of various types
of coatings and intensifying the deposition process. In this work, GO is used as an additive to the
traditional phosphating solution of the widely used Russian low-carbon steel 08YU (DC04). The
anticorrosion properties of the obtained phosphate coatings were investigated in neutral (0.5 M NaCl)
and acidified (0.1 M Na2SO4 + 0.02 M H2SO4) aqueous solutions. Increasing the GO concentration
in the phosphating solution to 0.3 g/L was found to improve the anticorrosion properties of the
phosphate coatings in neutral NaCl solutions. At the same time, in acidified Na2SO4 solutions, the
corrosion rate of 08YU steel with phosphate coatings increased as a function of the GO concentration.
It is assumed that a possible reason for various corrosive behavior is the influence of the GO plates
distributed in the coating on the rate of the oxygen or hydrogen reduction reactions.

Keywords: low carbon steel; phosphate coating; graphene oxide; corrosion; depolarization

1. Introduction

Graphene oxide (GO) shows promise as an eco-friendly additive in different types
of coating to improve their protective properties against corrosion [1,2]. By using the
incorporation of GO to organic [3–6], metallic [7–10] and inorganic non-metallic coat-
ings [11], researchers have created composite coatings with higher levels of anticorrosion
properties. In this work, we have focused on well-known inorganic non-metallic coating,
i.e., phosphate coating on low carbon steel. Phosphating is a traditional surface treatment
for steel and galvanized frameworks [12,13]. Unfortunately, the phosphate coating alone is
not able to provide full protection of the steel against atmospheric corrosion. Sealing or
painting of the phosphate coating is necessary to obtain the required level of anticorrosion
protection [12,13]. At present, the search for new and effective accelerators of the phosphating
process, in order to decrease the process time and solution temperature, is a challenge [14–17].
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Xie et al. [11] showed that GO addition accelerates the phosphating process and improves
the anticorrosion properties of phosphate coating. It was suggested [11] that at the initial
stages of the phosphating process GO plates located on the metallic surface are favorable
places for nucleation of phosphate crystals. If the GO concentration is higher than the
optimal value, anodic reaction of the iron dissolution is restricted and coating growth rate
is decreased. However, it was found [11] that at any investigated GO concentration, the
modified coating has a higher level of anticorrosion properties comparing to the phosphate
coating obtained without GO addition.

In [11], Q235 steel with composition (wt.%) ≤0.22 C, ≤0.35 Si, ≤0.05 S, ≤0.05 P,
≤1.40 Mn, was used for investigation. Electrochemical tests were carried out only in
3.5% NaCl water solution imitated marine environment. In this paper, GO modified
phosphate coatings were obtained on the surface of samples made of widely used Russian
08YU (DC04) low carbon steel, with nominal composition (wt.%): ≤0.07 C, ≤0.03 Si,
≤0.025 S, ≤0.020 P, ≤0.35 Mn. Therefore, 08YU steel has a lower concentration of C and
Mn compared to Q235 steel. Electrochemical measurements of 08YU steel samples with GO
modified phosphate coatings were conducted, both in 0.5 M NaCl solution and in 0.1 M
Na2SO4 + 0.02 M H2SO4 solutions. The solution containing NaCl was chosen to compare
results with [11]. The corrosion behavior of GO modified phosphate coatings in acidified
solution was studied since some steel constructions may suffer in acidic environments,
such as acid rain, mine water and other. It should be noted that the mechanism of low
carbon steel corrosion in NaCl and in Na2SO4 + H2SO4 solutions is different, due to the
difference of cathodic reaction, i.e., oxygen depolarization for NaCl solution and hydrogen
depolarization for Na2SO4 + H2SO4 solution, respectively. Corrosion data were calculated
from electrochemical measurements. It was found that increasing GO concentration in
phosphating solution leads to the improvement of anticorrosion properties of phosphate
coatings on 08YU steel in NaCl solutions. At the same time, the dependence of the corrosion
rate on GO concentration in phosphating solution has nonmonotonic character in acid Na2SO4
+ H2SO4 solutions. The possible reasons for this corrosion behavior have been discussed.

2. Experimental

Samples with the dimension of 50 × 25 × 0.8 mm were produced using commer-
cially available 08YU steel sheets provided by PAO Severstal [https://www.severstal.com].
Table 1 shows the nominal chemical composition of 08YU steel according GOST 9045-93, in
comparison with measured concentrations of chemical elements in the samples investigated.

Table 1. Nominal and measured chemical composition (wt.%) of 08YU steel samples.

Composition Fe C Si S P Mn Al

nominal base ≤0.070 ≤0.030 ≤0.025 ≤0.0200 ≤0.350 0.020–0.070

measured base 0.070 0.012 0.012 0.0096 0.298 0.025

The improved Hummer’s method [18] was used for preparing the GO. 1 g graphite
powder 325 mesh was mixed with 120 mL concentrate H2SO4 (98%) under agitation by
magnetic stirrer ECROS PE-6110 (ECROSHIM, Saint Petersburg, Russia) for 6 h. Then,
the solution was allowed to stand for 16 h. A measuring flask containing the solution
was immersed in an ice bath. 3 g KMnO4 was added into the flask and mixed by using
a magnetic stirrer for 6 h. Ice was added into the ice bath during mixing. After 16 h of
exposure, the solution was heated to 98 ◦C during 2 h. Next, water was added dropwise
until the solution changed color from black-green to brown. Then, the solution was diluted
by 600 mL of water and was allowed to stand for 48 h. 10 mL H2O2 (50%) was added until
the solution changed color from brown to khaki. The mixture was then filtered and washed
by 1M HCl solution two times, followed by ultrasonication for 90 min and centrifugation
at 16,000 rpm for 30 min. Finally, the solution was washed with water four times, followed
by ultrasonication for 90 min and centrifugation at 16,000 rpm for 30 min.

https://www.severstal.com
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GO characterization was performed by confocal Raman microspectrometer Renishaw
inVia Reflex (Renishaw, Gloucester, UK) using a 532 nm Nd:YAG laser (diode type excita-
tion). Figure 1 shows the Raman spectrum recorded for the GO after the preparation based
on Hummers’ method. Two strong peaks were observed at 1344 cm−1 and 1602 cm−1,
which are known to be related to the D band and G band of GO [19], respectively. This
confirms that the carbon sheets consist of GO. The observed GO Raman spectrum shows
the prominent G peak corresponding to the first-order scattering of the E2g mode. The
G band is broadened and shifted to 1602 cm−1, whereas the D band at 1344 cm−1 is less
prominent, indicating an increase in size of the in-plane sp2 domains, possibly due to the
slight reduction of GO. The D-peak at 1344 cm−1 is typically considered as an indicator for
defects and chemical functionalization [20,21]. The surface morphology and concentrations
of the chemical elements in the GO samples were obtained by Tescan Vega SBH3 (Tescan,
Brno, Czech Republic) Scanning Electron Microscope (SEM) equipped with an Oxford
Instruments AZtecEnergy energy-dispersive X-ray spectroscopy (EDS) system. The SEM
micrographs of the GO produced are shown in inset in Figure 1. The concentrations of the
chemical elements in the samples of GO obtained via EDS are shown in Table 2.
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Figure 1. Raman spectrum of as-made GO and SEM images of GO sample with the EDS maps
showing the distribution of C and O. Lines correspond to different control points.

Table 2. Measured chemical composition (%) of GO sample.

Composition C O Si P S Cl

Measurement #1 74.46 25.24 0.01 0.00 0.28 0.01

Measurement #2 73.14 26.47 0.04 0.01 0.32 0.02

The surface of 08YU steel samples was grounded using 600 grit SiC abrasive paper.
The degreasing of samples was conducted in 10.0 wt.% NaOH at 40 ◦C for 5 min. After
washing in cold, distilled water, the samples were immersed in phosphating solution at
40 ◦C for 20 min, with the composition shown in Table 3. After that, the samples were
washed by cold, distilled water, and dried by blowing air at room temperature. The surface
microstructure of the phosphate coating was investigated by SEM.

Table 3. Chemical composition of phosphating solution.

Component Zn(H2PO4)2 Zn(NO3)2 H3PO4 GO

Concentration, g/L 60 60 8 0; 0.3; 0.6; 1.2

The electrochemical behavior of the samples was investigated using the IPC Pro MF
potentiostat (Volta, Saint Petersburg, Russia) with FRA2 module in 0.5M NaCl and 0.1
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M Na2SO4 + 0.02 M H2SO4 solutions at (25 ± 2) ◦C. The samples’ working area was
1 cm2. A three-electrode system was employed in which the samples served as a working
electrode. Platinum and Ag/AgCl electrodes were used as the counter and reference
electrodes, respectively. Potentiodynamic polarization curves were measured from the
cathodic (−1000 mV) to the anodic (−100 mV) region with a scan rate of 0.3 mV/s. The
corrosion current density and corrosion potential were determined from Tafel fitting. The
corrosion rate was calculated according to ASTM G 102-89. The electrochemical impedance
spectroscopy (EIS) was carried out at open circuit potential (OCP) in the frequency range
from 0.1 Hz to 100 kHz, with the potential amplitude of 10 mV. The time waiting for the
stable OCP was set to be 600 s prior to EIS measurement in 0.5 M NaCl solution, and
300 s in 0.1 M Na2SO4 + 0.02 M H2SO4 solution. The Circuits Solver software developed by
Cronas (Version 3.3, 2020) was used to analyze the EIS results.

3. Results and Discussions

The SEM micrographs of the phosphate coatings produced in solutions with different
GO concentration are shown in Figure 2. It can be seen that the size of the phosphate
crystals, and crystals growth rate, depend on the GO concentration. The size of the
phosphate crystals decreases with the increasing concentration of GO.
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Figure 2. SEM images of 08YU steel with phosphate coatings obtained in solution with different
concentration of GO (g/L): 0 (a,b); 0.3 (c,d); 0.6 (e,f) and 1.2 (g,h).

As Figure 2a,b show, the metallic surface was not fully covered by phosphate crystals
after 20 min of phosphating process in the solution without GO. However, according to
Figure 2c–h, the addition of GO to the phosphating solution leads to the formation of
coating on all surface of the steel after 20 min of phosphating procedure. The phosphate
coatings obtained in the solution with concentrations of 0.3 and 1.2 g/L GO have a similar
surface morphology (Figure 2c,d,g,h). On the other hand, as Figure 2e,f show, the coating
produced in the solution with a concentration 0.6 g/L GO has some specific regions where
relatively large and long crystals are absent.

The cross-sections of the coatings are shown in Figure 3. Evidently, the coatings are
nonuniform. Their thickness ranges for different GO concentrations (g/L) are: 0 (from
5.37 to 12.74 µm, but with bare surface areas); 0.3 (6.4–12.22 µm); 0.6 (5.22–9.45 µm) and
1.2 (5.37–5.75 µm)
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Figure 3. SEM images of the cross-section structure of phosphate coatings obtained in solutions with
different GO concentration in the phosphating solution (g/L): 0 (a); 0.3 (b); 0.6 (c) and 1.2 (d).

The phase composition of the phosphate coatings was investigated on Rigaku Ultima
IV (Rigaku, Tokyo, Japan)using CuKα (λ = 1.5406 Å) radiation in a grazing beam, the
incident beam angle being 5◦.

The XRD patterns of coatings obtained with and without GO in the phosphating
bath are shown in Figure 4. Table 4 shows the quantitative composition of the phases
in the coatings. It can be seen that the phosphate coatings without the addition of GO
consist of Zn3(PO4)2·4H2O (hopeite, JCPD file No. 37-0465) and 24.6% Zn2Fe(PO4)2·4H2O
(phosphophyllite, JCPD file # 29-1427). In the studied samples of coatings with GO additives
from 0.3 to 1.2 g/L GO, the peak intensities of Zn2Fe (PO4)2·4H2O (phosphophyllite, JCPD
file No. 29-1427) are either weak or practically not observed. The data obtained show that
the GO addition changes the phase composition of the phosphate coating and affects the
preferred orientation of phosphate crystal growth.
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Figure 4. XRD patterns of phosphate coatings obtained from phosphating bath with different content
of GO (top down): without adding GO to the phosphating solution (black line); with the addition of
0.3 g/L GO (red line); with the addition of 0.6 g/L GO (blue line); and with the addition of 1.2 g/L
GO (green line).

Table 4. Phase composition of the phosphate coatings.

Concentration of GO in the
Phosphating Bath Zn3(PO4)2·4(H2O), wt.% Zn2Fe(PO4)2·4(H2O), wt.%

0 75.4 24.6

0.3; 0.6; 1.2 100 -
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The mechanism of traditional phosphating process without GO has been widely
investigated [22,23]. Firstly, the anodic dissolution of iron and cathodic evolution of
hydrogen occur according net reaction:

Fe + 2H+ → Fe2+ + H2↑ (1)

Cathodic hydrogen depolarization leads to increasing the pH and generation of PO4
3−

close to metal surface:

H3PO4 → H2PO4
− + H+ → HPO4

2− + 2H+ → PO4
3− + 3H+ (2)

The absence of the Zn2Fe (PO4)2·4H2O phase in the coatings produced in the phospat-
ing solution with the GO addition is clearly described in [22,23]. The GO shields the metal
surface, which leads to a decrease in the anodic dissolution of iron and the formation of
Zn2Fe (PO4)2·4H2O phase according to the reaction:

2Zn2+ + Fe2+ + 2PO4
3− + 4H2O→ Zn2Fe(PO4)2·4H2O↓ (3)

In this case, coating is formed without participation of iron ions:

3Zn2+ + 2PO4
3− + 4H2O→ Zn3(PO4)2·4H2O↓ (4)

Figure 5 shows potentiodynamic polarization curves of 08YU steel with phosphate coatings
produced in the phosphating solution with different GO concentration. The corresponding
corrosion parameters obtained from electrochemical data are given in Tables 5 and 6. As Table 5
shows, in 0.5 M NaCl near neutral solutions, the corrosion rate decreases by about 2 times
under the addition of 0.3–0.6 g/L GO to the phosphating solution. The obtained values of
the corrosion rate correlate well with the data of the authors [11].
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Table 5. Corrosion parameters determined from polarization curves in 0.5 M NaCl solution.

Concentration GO,
g/L

Corrosion Potential, V
(Ag/AgCl)

Corrosion Current Density,
mA/cm2

Corrosion Rate,
mm/year

Corrosion Rate,
mm/min

0 −0.383 7.85 × 10−3 0.105 1.99 × 10−7

0.3 −0.49 3.89 × 10−3 0.048 9.22 × 10−8

0.6 −0.427 4.44 × 10−3 0.053 1.01 × 10−7

1.2 −0.476 1.12 × 10−2 0.134 2.54 × 10−7
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Table 6. Corrosion parameters determined from polarization curves in 0.1 M Na2SO4 + 0.02 M H2SO4

solution.

Concentration GO,
g/L

Corrosion Potential, V
(Ag/AgCl)

Corrosion Current Density,
mA/cm2

Corrosion Rate,
mm/year

Corrosion Rate,
mm/min

0 −0.493 0.0201 0.233 4.43 × 10−7

0.3 −0.505 0.067 0.778 1.48 × 10−6

0.6 −0.499 0.090 1.046 1.99 × 10−6

1.2 −0.482 0.100 1.162 2.21 × 10−6

At the same time, at a GO concentration of 0.6 g/L and more, the corrosion rate in
this media increases. Furthermore, as Figure 2a,b show, on the surface of the 08YU steel
treated in solution without GO, there are some uncovered regions. As a result, the steel
corrosion rate in this case is high. On the other hand, the corrosion rate of 08YU steel
treated in solution with GO decreases because phosphate crystals and GO plates create a
barrier to the penetration of oxygen dissolved in water to the steel surface to participate in
the cathodic reaction:

O2 + 2H2O + 4e− = 4OH−

Another situation was observed in the corrosive solution containing sulfuric acid
(see Table 6 and Figure 5b). Actually, as Figure 5b shows, the corrosion rate of the 08YU
steel with phosphate coating obtained in solutions with different GO concentration has the
opposite behavior.

According to Table 6, the dependence of the corrosion rate on the GO concentration for
the acidified solution studied is significantly different. Figure 5b shows that corrosion of
steel 08YU in acidic media occurs with hydrogen depolarization according to the reaction:

2H+ + 2e− = H2

In this case, there are no diffusion restrictions on the hydrogen ions movement. The
hydrogen ion easily penetrates to the metal surface to participate in the cathodic reaction.
However, the GO plates, in the case of their contact with a metal surface and with each
other, can act as additional effective cathodes [24,25] and accelerate the corrosion rate. This
is confirmed by a 3.34 times increase in the corrosion rate with the addition of 0.3 g/L GO.
With a further increase in the GO content from 0.3 to 1.2 g/L, the corrosion rate increases
by more than 1.5 times (see Table 6).

The EIS measurement is adopted to further characterize the electrochemical corrosion
behavior of phosphate coating. All plots shown in Figures 6a and 7a have a similar shape.
It is a sector of the circle (curve on the graph) for neutral (Figure 6a) and semicircle for
acidic solutions (Figure 7a), respectively, but with different diameters. To simulate the
experimentally obtained impedance curves, two equivalent circuits were used, which cor-
respond to the behavior of steel with a protective coating in a neutral solution (Figure 6d)
and an acidic solution (Figure 7d) [26,27]. The selection of values for the elements of equiv-
alent circuits was carried out using the ‘EIS Spectrum Analyzer Software’ [28]. Equivalent
circuits are presented in the tabs of Figures 6a and 7a. The diagrams and nominal values of
the components in the simulation accurately describe the hodograph curves and Nequist
diagrams. The calculation error does not exceed 10%. The values of the elements of the
scheme for coated corrosion for a neutral medium are presented in Table 7, for an acidic
one they are given in Table 8.
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Figure 6. Results of measurements of electrochemical impedance for samples with different con-
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Figure 7. Results of measurements of electrochemical impedance for samples with different concentra-
tions of GO in a solution of 0.1 M Na2SO4 + 0.02 M H2SO4 at OCP; (a) Nyquist curves and equivalent
scheme for corrosion of steel with a protective coating in a solution of 0.1 M Na2SO4 + 0.02 M H2SO4;
(b) Bode diagrams; and (c) frequency dependence of the phase angle of the electrochemical impedance.
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Table 7. The values of the elements for coated corrosion scheme for a neutral solution.

Element
Concentration GO, g/L

0.0 0.3 0.6 1.2

EOCP (Ag/AgCl), mV −506 −413 −411 −397

Re, Ω·cm2 3.8 4.0 3.1 3.0

Rt, Ω·cm2 510.7 2983.7 1756.1 711.1

CPEdl, Y0, (Ω−1·cm−2·sn) 1.65 × 10−3 2.2 × 10−4 3.4 × 10−4 8.5 × 10−4

n 0.46 0.48 0.5 0.45

W, Ω·s−0.5 69.8 60.0 60.1 68.8

Table 8. The values of the elements for coated corrosion scheme for an acid solution.

Element
Concentration GO, g/L

0.0 0.3 0.6 1.2

EOCP (Ag/AgCl), mV −551 −506 −502 −510

Re, Ω·cm2 7.67 7.15 7 7

Rt, Ω·cm2 4361.8 219.7 320.5 399.9

CPEdl, Y0, (Ω−1·cm−2·sn) 4.75 × 10−5 1.02 × 10−4 1.07 × 10−4 1 × 10−4

n 0.78 0.74 0.71 0.68

R0, Ω·cm2 4891 583 572 599.6

L, H 9.8 × 10−6 25 25 24.56

According to the authors of [11], the flattened capacitive sector of a circle and a semi-
circle indicates frequency dispersion due to phosphate defects covering [17,29]. However,
as our EIS data show, this statement is valid only for the corrosion process in neutral media.
As GO is added into the phosphating bath, the diameter of the circle sector increases until
getting to the largest size for GO 0.3 g/L, after which it decreases as the content of GO
further increases. It is known that the larger the semicircle’s size, the higher the polarization
resistance [30]. This is in accordance with Bode impedance plots, as shown in Figure 6b.
The impedance value |Z| exhibits the same changing tendency compared to Nyquist
plots. |Z| increases as GO is added, indicating an increase in the corrosion resistance of
phosphate coating in a neutral solution.

The phase angle (−θ) at high frequencies is reported to be useful to evaluate coating
integrity as exposed to corrosive electrolytes [31–33]. It is known that the phase angle at
10 kHz indicates the change in coating integrity during exposure to a corrosive electrolyte.
For an intact coating without defects, the phase angle is about –90◦, whereas for steel
without a protective coating, the phase angle tends to zero [31,34]. As shown in Figure 6c, a
higher phase angle in the high frequency range up to 10 kHz, as well as the best corrosion
resistance characteristics, were obtained on a sample with an addition of 0.3 g/L GO. The
results obtained in [11] also confirm that for the samples with the GO addition, as compared
to those without GO, the phosphate coating improves and the phase angle increases. In
fact, the coating is denser with fewer defects.

The equivalent circuit (Figure 6a) is a modified Randall circuit containing R0, which is
the uncompensated resistance of the electrolyte solution, and Rt, which is the polarization
resistance. Here, instead of an ideal double layer capacitor (Cdl), a constant phase element
(CPEdl) was used to accurately simulate the frequency distribution characteristic [35,36],
as well as a W—Warburg element, which corresponds to the diffusion resistance. CPE
has the impedance dispersion ratio Z = 1

Y0( f ω)n , where Y0 and n are the conductivity and
the empirical CPE index, respectively, j is the imaginary number, and ω is the angular
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frequency [37,38]. The resulting hodograph curves are composed of a capacitive loop at
high frequency, parallel to the capacitance of the double layer, followed by a gentle tail at
low frequency. The latter is assumed to represent the smoothed tail of the diffusion process
described by element W, as established by the authors [27].

As can be seen from Table 7, the Rt values increase with decreasing CPE in the samples
with the addition of GO. In this case, the maximum Rt value of 2983.7 Ohm·cm2 corresponds
to the sample with the addition of 0.3 g/L GO to the phosphating solution, which shows
the minimum CR value. According to the authors of [11], this is due to the fact that the
corrosion behavior of steel with a phosphate coating is a diffusion control process and
the addition of GO does not change the mechanism of protection against corrosion of the
phosphate coating. Thus, the higher Rt values of samples with GO indicate better corrosion
resistance than the sample without the GO addition.

However, according to the semicircle EIS data in a solution of 0.1 M Na2SO4 + 0.02 M
H2SO4 on samples with the addition of GO to the phosphating bath, the diameter of the
semicircle decreases with an increase in GO content (Figure 7a). This indicates not only
the possibility of a decrease in the number of defects and, as a consequence, an increase in
corrosion resistance in neutral media, but on the effect of GO additives on the course of
electrochemical stages of the corrosion process in acid solutions.

Moreover, the shape of the hodograph curves obtained in an acidic medium has a
significant difference in comparison with the curves in a neutral solution of 0.5 M NaCl.
According to the authors [39,40] who have published several papers on the corrosion
of pure iron exposed to H2SO4/Na2SO4 solutions with dissolved H2S, this bend of the
hodograph at low frequencies corresponds to an inductive loop. These authors also
measured impedance diagrams at different anodic potentials to facilitate anodic response
versus cathodic contribution [39,40].

At higher anode potentials, an induction loop appeared at a low frequency. This
prompted the authors [39,40] to use a different equivalent circuit that claims to represent
anodic dissolution. In our case, we also used this scheme, which is presented on the tab
of Figure 7a, since it provided the best match of the simulation results in the program EIS
Spectrum Analyzer. Here, R0, Rt—is the charge transfer resistance caused by the presence
of a protective coating; Re is the resistance of the electrolyte; the CPEdl element corresponds
to the capacitance of the electric double layer, which occurs on the rough surface of the
steel in the electrolyte solution; L is the inductance element.

Analysis of the cathodic and anodic polarization curves (Figure 5b) clearly shows that
the addition of GO to the phosphating solution affects the anodic and cathodic reactions.
Indeed, GO increases the anodic dissolution of the steel and also accelerates the cathodic
hydrogen evolution reaction.

Furthermore, in Figure 7a we see that the diameter of the semicircle decreases with
increasing GO content. The smaller the size of the semicircle, the lower the polariza-
tion resistance [30]. This corresponds in part to the Bode impedance plot shown in
Figure 7b. Impedance value |Z|, when compared with the Nyquist plots, demonstrates a
non-monotonic trend for samples without and with the GO addition in the low frequency
range from 10−2 to 102 Hz. |Z| decreases as GO is added. Similar dependences of the
Nyquist curves on mild steel immersed in acid media with the addition of the corrosion
inhibitors were obtained by the authors [41,42]. These authors associate the increase in
inhibition with a drop in the local dielectric constant and/or an increase in thickness Cdl.
In our case, by analogy, the addition of GO leads to an increase in the dielectric constant,
which, as mentioned above, probably facilitates the cathodic process of electrochemical
corrosion in 0.1 M Na2SO4 + 0.02 M H2SO4.

As can be seen from Table 8, the Rt values decrease with increasing GO concentration,
with the CPE having the lowest value for the sample without the GO addition. This
regression can be the result of an increase in the local dielectric constant and/or a decrease
in the thickness of the electric double layer, which probably leads to the disinhibition of the
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cathodic process. The results obtained cast doubt on the earlier conclusions [11] that GO
additives do not affect the corrosion mechanism and that only diffusion control is realized.

4. Conclusions

In this work, we investigated the use of GO obtained by the modified Hummer’s
method as an additive in the process of phosphating of steel to improve its corrosion
properties. The results show that GO sheets can assist the phosphating process and improve
the morphology of the phosphate coating, providing better corrosion resistance. It has been
found that GO sheets can be absorbed on the substrate surface and then act as sediment
layers at the initial stage of the phosphating process. This can inhibit the release of metal
ions and thus contribute to a change in the phase composition of the phosphate crystals.

It was found that the addition of GO to the phosphating solution makes it possible to
improve the anticorrosion properties of phosphate coatings on 08YU steel only in a neutral
environment. The optimal GO concentration for this case was found to be 0.3 g/L. On
the other hand, in acidified media the GO addition may accelerate corrosion associated
with the release of the cathodic electrochemical process; therefore, GO additives in the
latter case are not recommended. The possible reason for different corrosion behavior of
obtained samples in near neutral and acidified media is the effect of GO plates distributed
in the coating on the rate of cathodic reaction of oxygen or hydrogen depolarization. The
mechanism of the effect of GO on the rate of electrochemical corrosion is worth being
further investigated and will be discussed elsewhere.
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