Electrolytic Recovery of Metal Cobalt from Waste Catalyst Pickling Solution
Abstract
:1. Introduction
2. Experimental Section
2.1. Electrolyte Preparation and Analysis
2.2. Electrolyzer Design for the Extraction Reaction
2.3. Current Efficiency
- η: current efficiency (%);
- mass of cobalt deposited on the cathode (g);
- : number of electrons transferred;
- : molecular weight (58.9 g mol−1 for cobalt);
- t: electrolysis time (s);
- i: current (A).
3. Results and Discussion
3.1. Influence of Electrolyte pH on Current Efficiency
3.2. Influence of Current Density on the Electrolysis Efficiency
3.3. pH Variation during the Electrolysis Process
3.4. Influence of Sodium Ions on the Reduction of Cobalt Electrolysis
3.5. Effect of Cobalt Concentration on the Electrolysis Reduction of Cobalt
3.6. Purity of Coated Cobalt
4. Conclusions
- The acid–base value of the electrolyte significantly affects the current efficiency, and it should be maintained between pH 4 and 5.
- The operating current density affects the quality and current efficiency of the cobalt coating, and it should be operated below 30 mA cm−2 for optimal results.
- Sodium and manganese salts with low cobalt concentration and high current density result in blue hydroxide deposition. To avoid such hydroxide deposition, the process should be free from excess sodium salt.
- Diaphragm electrolyzers are indeed efficient for good coating quality and current efficiency; however, product requirements can also be satisfied without diaphragms. To reduce investment costs and simplify equipment, diaphragm-less electrolyzers are recommended for further use.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worrell, E.; Reuter, M.A. Recycling: A key factor for resource efficiency. In Handbook of Recycling; Worrell, E., Reuter, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–8. [Google Scholar] [CrossRef]
- Crundwell, F.; Moats, M.; Ramachandran, V.; Robinson, T.; Davenport, W.G. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, 1st ed.; Elsevier: London, UK, 2011. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2020; U.S. Geological Survey: Reston, VA, USA, 2020; p. 204.
- Schulz, K.J.; DeYoung, J.H.; Seal, R.R.; Bradley, D.C. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply; Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Meshram, P.; Pandey, B.D. Advanced review on extraction of nickel from primary and secondary sources. Miner. Process. Extr. Metall. Rev. 2019, 40, 157–193. [Google Scholar] [CrossRef]
- Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. Development of a recycling process for Li-ion batteries. J. Power Sources 2012, 207, 173–182. [Google Scholar] [CrossRef]
- Atkinson, S. Wear-resistant sintered material aims to reduce the use of cobalt in vehicle engine applications. Seal. Technol. 2020, 2020, 4–5. [Google Scholar] [CrossRef]
- Meshram, P.; Mishra, A.; Sahu, R. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids–A review. Chemosphere 2020, 242, 125291. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.C.-Y.; Sui, P.-C.; Zhang, J. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J. Energy Storage 2021, 35, 102217. [Google Scholar] [CrossRef]
- Zhu, J.; Mathews, I.; Ren, D.; Li, W.; Cogswell, D.; Xing, B.; Sedlatschek, T.; Kantareddy, S.N.R.; Yi, M.; Gao, T. End-of-life or second-life options for retired electric vehicle batteries. Cell Rep. Phys. Sci. 2021, 2, 100537. [Google Scholar] [CrossRef]
- Tisserant, A.; Pauliuk, S. Matching global cobalt demand under different scenarios for co-production and mining attractiveness. J. Econ. Struct. 2016, 5, s40008–s40016. [Google Scholar] [CrossRef] [Green Version]
- Brückner, L.; Frank, J.; Elwert, T. Industrial recycling of lithium-ion batteries—A critical review of metallurgical process routes. Metals 2020, 10, 1107. [Google Scholar] [CrossRef]
- Elshkaki, A.; Reck, B.K.; Graedel, T. Anthropogenic nickel supply, demand, and associated energy and water use. Resour. Conserv. Recycl. 2017, 125, 300–307. [Google Scholar] [CrossRef]
- Hanisch, C.; Diekmann, J.; Stieger, A.; Haselrieder, W.; Kwade, A. Recycling of lithium-ion batteries. In Handbook of Clean Energy Systems; Cabeza, L.F., Sioshansi, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 5, pp. 2865–2888. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Dreisinger, D.B.; Espinosa, D.C.R.; Tenório, J.A.S. Pre-reducing process kinetics to recover metals from nickel leach waste using chelating resins. Int. J. Chem. Eng. 2018, 2018, 9161323. [Google Scholar] [CrossRef]
- Junior, A.B.B.; de Albuquerque Vicente, A.; Espinosa, D.C.R.; Tenório, J.A.S. Recovery of metals by ion exchange process using chelating resin and sodium dithionite. J. Mater. Res. Technol. 2019, 8, 4464–4469. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Vicente, A.D.A.; Espinosa, D.C.R.; Tenório, J.A.S. Effect of iron oxidation state for copper recovery from nickel laterite leach solution using chelating resin. Sep. Sci. Technol. 2020, 55, 788–798. [Google Scholar] [CrossRef]
- Ferreira, D.A.; Prados, L.M.Z.; Majuste, D.; Mansur, M.B. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J. Power Sources 2009, 187, 238–246. [Google Scholar] [CrossRef]
- Torkaman, R.; Asadollahzadeh, M.; Torab-Mostaedi, M.; Maragheh, M.G. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Sep. Purif. Technol. 2017, 186, 318–325. [Google Scholar] [CrossRef]
- Haga, Y.; Saito, K.; Hatano, K. Waste Lithium-Ion Battery Recycling in JX Nippon Mining & Metals Corporation; TMS Annual Meeting & Exhibition; Springer: Berlin/Heidelberg, Germany, 2018; pp. 143–147. [Google Scholar] [CrossRef]
- Das, S.; Subbaiah, T. Electrowinning of cobalt I. Winning from pure cobalt sulphate bath. Hydrometallurgy 1984, 12, 317–333. [Google Scholar] [CrossRef]
- Dubrovsky, M.; Evans, J. An investigation of fluidized bed electrowinning of cobalt using 50 and 1000 amp cells. Metall. Mater. Trans. B 1982, 13, 293–301. [Google Scholar] [CrossRef]
- Garritsen, P.G.; MacVicar, D.J.; Young, D.P.; Sojda, J.G. Process for Electrowinning Nickel or Cobalt. U.S. Patent 288305A, 8 September 1981. [Google Scholar]
Batch Number | I | II | III | IV | V | Total Electrolyte |
---|---|---|---|---|---|---|
Volume (L) | 200 | 100 | 2 | 2 | 2 | 306 |
Co ions (ppm) | 34,760 | 31,520 | 23,690 | 19,380 | 15,190 | 33,400 |
Mn ions (ppm) | 39,360 | 35,840 | 20,380 | 7.56 | 31 | 37,570 |
Na ions (ppm) | 12,640 | 13,215 | 20,000 | 54 | 124 | 12,712 |
Ca ions (ppm) | 214 | 218 | 875 | 59 | 0 | 217 |
Mg ions (ppm) | 39.2 | 38.5 | 2188 | 6 | 19 | 52.7 |
Fe ions (ppm) | 88 | 51.7 | 3 | 0 | 0 | 74.4 |
Cu ions (ppm) | 1.8 | 1.6 | 1 | 0 | 3 | 1.7 |
Zn ions (ppm) | --- | --- | 26 | 250 | 6 | 1.8 |
Ni ions (ppm) | 34.4 | 31.7 | 137 | 108 | 44 | 34.7 |
Cr ions (ppm) | 10.4 | 8.8 | --- | --- | 20 | 9.8 |
Pb ions(ppm) | --- | --- | --- | --- | 1 | 0.006 |
Ion Concentration (g L−1) | Starting pH Value | Using Organic Diaphragm | Ending pH Value | Current Efficiency (%) | ||
---|---|---|---|---|---|---|
Co | Na | Mn | ||||
10.4 | 10.7 | 0.0 | 5.01 | yes | 2.33 | 54.28 |
10.5 | 10.7 | 7.8 | 4.98 | yes | 2.26 | 94.20 |
10.7 | 10.7 | 7.8 | 5.00 | no | 2.29 | 123.96 |
10.6 | 9.9 | 15.7 | 4.99 | yes | 2.23 | 83.69 |
10.8 | 10.0 | 15.8 | 5.01 | no | 2.25 | 82.95 |
10.2 | 10.3 | 27.5 | 4.94 | yes | 2.29 | 90.03 |
10.5 | 10.1 | 27.3 | 4.98 | no | 2.26 | 89.75 |
Input Conditions | Composition of Cobalt Electrolytic Purification Layer (%) | |||||
---|---|---|---|---|---|---|
Co | Na | Mn | Mg | Ni | Zn | |
Co = 21.2 g L−1, Na = 39.5 g L−1, 20 mA cm−2 | 99.61 | 0.39 | ||||
Co = 21.5 g L−1, Na = 39.5 g L−1, 40 mA cm−2 | 99.75 | 0.25 | ||||
Co = 20.2 g L−1, Na = 30.1 g L−1, 30 mA cm−2 | 99.73 | 0.27 | ||||
Co = 10.7 g L−1, Na = 24.3 g L−1, 30 mA cm−2 | 99.63 | 0.37 | ||||
Co = 20.6 g L−1, Na = 40.1 g L−1, Mn = 30.2 g L−1, 30 mA cm−2 | 98.42 | 0.08 | 1.50 | |||
Co = 21.4 g L−1, Na = 38.2 g L−1, Mg = 2.02 g L−1, 30 mA cm−2 | 99.84 | 0.12 | 0.05 | |||
Co = 20.2 g L−1, Na = 38.4 g L−1, Ni = 512 ppm, 30 mA cm−2 | 98.95 | 0.10 | 0.95 | |||
Co = 18.6 g L−1, Na = 40.6 g L−1, Zn = 410 ppm, 30 mA cm−2 | 93.90 | 0.44 | 5.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, Y.-S.; Kan, C.-H.; Devi, N.; Chen, Y.-S. Electrolytic Recovery of Metal Cobalt from Waste Catalyst Pickling Solution. Materials 2022, 15, 6629. https://doi.org/10.3390/ma15196629
Chou Y-S, Kan C-H, Devi N, Chen Y-S. Electrolytic Recovery of Metal Cobalt from Waste Catalyst Pickling Solution. Materials. 2022; 15(19):6629. https://doi.org/10.3390/ma15196629
Chicago/Turabian StyleChou, Yi-Sin, Chin-Hsiang Kan, Nitika Devi, and Yong-Song Chen. 2022. "Electrolytic Recovery of Metal Cobalt from Waste Catalyst Pickling Solution" Materials 15, no. 19: 6629. https://doi.org/10.3390/ma15196629
APA StyleChou, Y. -S., Kan, C. -H., Devi, N., & Chen, Y. -S. (2022). Electrolytic Recovery of Metal Cobalt from Waste Catalyst Pickling Solution. Materials, 15(19), 6629. https://doi.org/10.3390/ma15196629