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Abstract: The properties of viscoelastic solids subject to a magnetic field are modelled within two ther-
modynamically consistent approaches that are typical of models with a non-instantaneous response.
One is based on memory functionals: the reversible changes are described by the instantaneous
response, while the dissipativity is expressed by the dependence on histories. The other approach
involves objective rate equations. While memory functionals lead to the difficulty of determining
thermodynamically consistent free energy functionals, rate equations result in a simpler scheme. The
greater simplicity allows the discovery of, in particular, models of magneto-hyperelastic materials,
magneto-hypoelastic materials, and various forms of magneto-viscoelastic behaviour. The novelty
of the procedure is based on two features: a representation formula, originating from the entropy
inequality, and the use of the entropy production as a constitutive function. Relations with other
approaches in the literature are examined in detail.

Keywords: magneto-viscoelastic materials; magneto-viscoelasticity of strain rate type; memory
functionals; rate equations; thermodynamic consistency

1. Introduction

The response of magnetic materials to an applied magnetic field is generally not
instantaneous. In addition to showing a partial instantaneous response, the material
gradually approaches equilibrium in a finite time dependent on the deformation. Magneto-
viscoelastic materials are intended to be models that exhibit both instantaneous changes
of magneto-mechanical properties and a variable time response when acted upon by a
magnetic field. This subject is of interest for applications and requires both appropriate
balance equations and constitutive equations. Balance equations are treated, e.g., in [1,2],
while interesting constitutive equations are developed in, e.g., [3,4]. Updated lists of
references are given in [5–7]. Despite the various approaches and procedures developed in
the literature, the subject deserves further attention, hopefully to create simpler models.

Recently, we have developed a systematic approach to nonlinear materials with memory [8,9].
The crucial points are that the models are thermodynamically consistent; the entropy production
is a constitutive quantity that characterizes the dissipative properties; the entropy inequality
allows us eventually to derive a representation formula for the pertinent function; and the
nonlinear rate equations are derived with an objective time derivative.

In essence, magnetic viscoelasticity involves the interaction between mechanical and
magnetic fields within dissipative processes in materials with a non-instantaneous response.
This scheme is realized by letting the independent variables occur through their histories
or by considering rate-type constitutive equations. Further, in both cases, the thermal
properties are modelled, and the restrictions placed by objectivity and thermodynamic
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consistency are investigated in detail in order to be able to make a comparison between the
characteristics of the two approaches.

While balance equations are used as the standard in the literature (see, e.g., [6,10,11]), consti-
tutive equations are placed in quite new settings. The modelling through memory functionals
involves constitutive equations with a joint dependence on the present values and thermal, defor-
mation, and magnetic field histories so that, at time t, the response of the material is determined
by the present values of the temperature θ, the deformation gradient F, the magnetic field H, and
the temperature gradient∇θ,

θ(t), F(t), H(t),∇θ(t)

as well as the histories, up to time t,

Ft, Ht,∇θt.

Indeed, the scalar functions (internal energy, entropy, free energy) are required to be in-
variant under Euclidean transformations, and this implies that the dependence on F, H, and
∇θ occurs through their invariants. As a result of the thermodynamic requirements placed
by the second law inequality, explicit representations of the stress tensor, magnetization,
and heat flux are established.

Next, we elaborate on differential models expressed by rate-type equations, and,
hence, objective derivatives are required in the rate equations. Due to the occurrence of the
time derivative, objectivity indicates that the Lagrangian description is more convenient
as the starting step. A general scheme is allowed by letting an invariant stress T , the
Green–Saint Venant tensor E, and a magnetic field vector be the independent variables.
The generality is allowed by the joint dependence on T and E and by letting the entropy
production be a constitutive function, which is quite new in the literature. Furthermore,
to determine the restrictions placed by the second law, we apply a representation formula
for tensors and vectors given by Equation (4). Depending on the degree of arbitrariness
of the independent (magnetic) variable, the thermodynamic analysis proves that hyper-
magnetoelasticity, hypo-magnetoelasticity, and dissipative magneto-viscoelasticity are
fully characterized.

The relations with other approaches in the literature are given in Section 6. Here,
we indicate two features of the present work. First, the modelling through memory
functionals describes the instantaneous and non-instantaneous response to the deformation,
magnetic field, and temperature gradient. The thermodynamic consistency is made formal
in (8) and (9). Next, specific (linear) representations are established by taking the stress,
magnetization, and heat flux in the forms of (10), (11), and (14). Secondly, rate equations
are considered for the stress and magnetization in terms of the deformation and magnetic
field. Through the representation formula, we find the results (28) for the stress T . All
of the rates given by (28) are consistent with thermodynamics; for any free energy and
any entropy production, we find a physically admissible rate equation. In particular,
Equations (24) and (27) describe magneto-hyperelastic materials and magneto-hypoelastic
materials, respectively.

Notation. We consider a body occupying a time-dependent region Ω ⊂ E 3. The motion is described
by means of the function χ(X, t), providing the position vector x ∈ Ω = χ(R, t). The symbols
∇,∇R denote the gradient operator with respect to x ∈ Ω, X ∈ R. The function χ is assumed to
be differentiable; hence, we can define the deformation gradient as F = ∇R χ or, in suffix notation,
FiK = ∂XK χi. The invertibility of X → x = χ(X, t) is guaranteed by letting J := det F > 0. For
any tensor A, we define |A| as (A ·A)1/2.
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2. Balance Equations

Let v(x, t) be the velocity field on Ω× R. A superposed dot denotes the time differ-
entiation following the motion of the body, and hence, for any function f (x, t), we have
ḟ = ∂t f + v · ∇ f . We denote by L the velocity gradient, Lij = ∂xj vi, and recall that

Ḟ = LF.

The right Cauchy–Green tensor C and the Green–Saint Venant deformation tensor E
are defined by

C := FTF, E := 1
2 (C− 1),

where 1 is the second-order identity tensor. Moreover, D denotes the stretching tensor,
D = symL, and W the spin tensor, W = skwL.

Let ε be the internal energy density (per unit mass), T the symmetric Cauchy stress, q
the heat flux vector, ρ the mass density, r the external heat supply, and b the mechanical
body force per unit mass. Let m = M/ρ be the magnetization per unit mass and H the
magnetic intensity. The balance equations for mass and linear momentum are written in
the form (see, e.g., [11–13])

ρ̇ + ρ∇ · v = 0, ρv̇ = ∇ · T + ρb + fM,

where fM is the force per unit volume of magnetic character,

fM = µ0ρ(m · ∇)H− µ0ε0ρ[ṁ×× E + v×× (m · ∇)E];

in stationary conditions, we can take E = 0. Additionally, for later convenience, we let H
be the magnetic intensity at the frame locally at rest with the body. The balance of angular
momentum and energy can be written in the form

skw(T + µ0ρH⊗m) = 0,

ρε̇ = µ0ρH · ṁ + T · L−∇ · q + ρr

Let η be the entropy density and θ the absolute temperature. As for the statement of
the second law of thermodynamics, we let the inequality

ρη̇ +∇ · q
θ
− ρr

θ
= σ ≥ 0 (1)

hold for any process compatible with the balance equations. The scalar σ, or the entropy
production, is non-negative and is viewed as a constitutive function. Hence, the ther-
modynamic process consists of η, q, r, σ, and the other functions occurring in the balance
equations.

In terms of the magnetic Gibbs free energy

φ = ε− θη − µ0m ·H

the entropy inequality can be written in the form

− ρ(φ̇ + ηθ̇)− µ0M · Ḣ + T · L− 1
θ

q · ∇θ = θσ ≥ 0. (2)

Based on (2), next, we describe the magneto-viscoelasticity by the memory functionals
or rate equations and examine the thermodynamic consistency.
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Representation Formula

The thermodynamic analysis usually leads to relations of the form

Z ·K+ A ·F = f , (3)

where, to fix ideas, Z,K, A,F are second-order tensors and f is a scalar. If K and F are
arbitrary and independent, then it follows that Z = 0, A = 0 (and f = 0). If, instead, K
and F are not independent, then we can determine the relation between Z and A through
a representation formula [8,9].

Let N be a unit tensor, |N| = 1. Then

Z = (Z ·N)N + Z⊥, Z⊥ ·N = 0.

If it happens that Z ·N is known, say Z ·N = g, whereas Z⊥ is unknown, then Z⊥ can
be expressed by

Z⊥ = (I−N⊗N)G = G− (G ·N)N,

where I is the fourth-order unit tensor, and G is an arbitrary second-order tensor. Once
Z ·N = g is given, we can write the representation formula

Z = gN + (I−N⊗N)G.

Returning to (3), we let N = K/|K| to yield

Z =
f −A ·F
|K|2 K+ (I− K

|K| ⊗
K
|K )G. (4)

A strictly analogous relation holds if the tensors are replaced with vectors.

3. Constitutive Assumptions

The constitutive assumptions are suggested for several purposes. First, we allow
for interaction between the deformation and temperature fields with magnetization; this
indicates that θ, F, H,∇θ are among the independent variables. Moreover, the time delay in
response motivates the dependence on the histories Ft, Ht,∇θt. Hence, we let

Γ = (θ, F, H,∇θ, Ft, Ht,∇θt)

be the set of independent variables.
The internal energy (density) ε, the entropy η, and the Gibbs free energy φ are invariant

under a change of frame. The constitutive equations for ε, η, and φ are then required to
provide invariant values. Now, both F and H are not invariant. Under a change of frame

x∗ = c + Qx, QQT = 1,

F and H change as vectors,
F∗ = QF, H∗ = QH.

Instead,
E = 1

2 (F
TF− 1), HHH = FTH

are invariant in that

E∗ = F∗TF∗ − 1 = FTQTQF− 1 = FTF− 1 = E, HHH∗ = F∗TH∗ = FTQTQH = FTH = HHH.

Of course, H ·H is also invariant,

H∗ ·H∗ = QH ·QH = H ·QTQH = H ·H.
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Incidentally,
HHH ·HHH = FTH · FTH = H · (FFT)H.

Hence, the dependence on the pair HHH, E does not include that on F · F, H ·H. For
definiteness, we let Λ be the pair of functions

f (F) = 1
2 F · F, h(H) = 1

2 H ·H.

As for the dependence on ∇θ, we observe that

∂x∗θ = Q∂xθ or ∇∗θ = Q∇θ.

Hence, ∇θ is a vector while the referential gradient

∇Rθ = ∇θF,

is invariant.
Let θ, F, H, and ∇θ be differentiable as t ∈ R for any x ∈ Ω. Define the constant

continuation of θt0 , Ft0 , and Ht0 as

θ̃t(u) =
{ θ(t0), u ∈ [0, t− t0),

θt0(u− (t− t0)), u ∈ [t− t0, ∞),
θ̃(t) = θ̃t(0),

and the like for F and H while ∇θ = 0 on [t0, t].
While Γ is the set of independent variables, objectivity and modelling purposes indi-

cate that we let
φ = φ(θ, E,HHH,∇R θ, Λ, Et,HHHt,∇R θt, Λt).

With a small abuse of notation, the dependence on time is denoted with the same symbol

φ(t) = φ(Γ(t)).

We first show that the free energy functional φ(Γ) is required to satisfy a minimum
property. If θ, F, H, and, hence, Λ, are constant, and ∇θ = 0 in the interval [t0, t], then (2)
implies that

φ̇(τ) ≤ 0, τ ∈ (t0, t),

and hence,

φ(θ̃(t), Ẽ(t), H̃HH(t), Λ̃(t), 0, Ẽt, H̃HHt,∇R θ̃t, Λ̃t) ≤ φ(θ0, E0,HHH0, Λ0, 0, Et0 ,HHHt0 ,∇R θt0 , Λt0),

where we let θ0 = θ(t0), E0 = E(t0),HHH0 = HHH(t0), and Λ0 = Λ(t0). By the continuity of the
functional, as t− t0 → ∞ we have

φ(θ0, E0,HHH0, 0, Λ0, Ẽt, H̃HHt,∇R θ̃t, Λ̃t)→ φ(θ0, E0,HHH0, 0, Λ0, E†
0,HHH†

0, 0†, Λ†
0),

where E†
0, HHH†

0, 0†, and Λ†
0 are the constant histories with values of E0,HHH0, 0, and Λ0. Thus,

it follows that

φ(θ0, E0,HHH0, 0, Λ0, E†
0,HHH†

0, 0†, Λ†
0) ≤ φ(θ0, E0,HHH0, 0, Λ0, Et0

0 ,HHHt0
0 ,∇R θt0 , Λt0).

This is the content of the minimum property: among all histories Et,HHHt,∇R θt, and Λt

with the given present values of E0,HHH0, 0, and Λ0, none yields a smaller value of the free
energy than that corresponding to the constant histories E†

0, HHH†
0, 0† and Λ†

0.
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4. Thermodynamic Restrictions

We now compute the time derivative φ̇ and substitute in the entropy inequality
to obtain

− ρ(∂θφ + η)θ̇ − ρ∂Eφ · Ė− ρ∂HHHφ · ḢHH− ρ∂∇θφ · ∇̇θ − µ0M · Ḣ− ρ∂ f φF · Ḟ− ρ∂hφH · Ḣ

+ T · L− 1
θ

q · ∇θ − ρdφ(Γ|Ėt)− ρdφ(Γ|ḢHHt
)− ρdφ(Γ|∇̇θ

t
)− ρdφ(Γt| ḟ t)− ρdφ(Γt|ḣt) ≥ 0.

Here, we have made the dependence on Λ = ( f , h) and Λt = ( f t, ht) explicit. The
linearity and arbitrariness of ∇̇θ, θ̇ imply

∂∇θφ = 0, η = −∂θφ.

Observe that

Ė = FTDF, ḢHH = FTLTH + FTḢ, F · Ḟ = (FFT) · L. (5)

Since L = D + W, the occurrence of W in the inequality is through

(T + ρF∂HHHφ⊗H− ρ∂ f φFFT) ·W

and this quantity has to vanish. Now FFT ∈ Sym and then (FFT) ·W = 0 identically.
Hence, we have

(T + ρF∂HHHφ⊗H) ·W = 0

which implies
T + ρF∂HHHφ⊗H ∈ Sym. (6)

We now can write the remaining inequality in the form

(T− ρF∂EφFT + ρF∂HHHφ⊗H− ρ∂ f φFFT) ·D− (µ0M + ρF∂Hφ− ρ∂hφH) · Ḣ

−1
θ

q · ∇θ − ρdφ(Γ|Ėt)− ρdφ(Γ|ḢHHt
)− ρdφ(Γ|∇̇θ

t
)− ρdφ(Γt| ḟ t)− ρdφ(Γt|ḣt) ≥ 0. (7)

The linearity and arbitrariness of D, Ḣ imply

T = ρF∂EφFT − ρF∂HHHφ⊗H, µ0M = −ρF∂HHHφ + ρ∂hφ H. (8)

Inequality (7) then reduces to

− 1
θ

q · ∇θ − ρdφ(Γ|Ėt)− ρdφ(Γ|ḢHHt
)− ρdφ(Γ|∇̇θ

t
) ≥ 0. (9)

According to (6) and (8), it follows that

skwT = skw(µ0M⊗H)

which is just the requirement placed by the balance of angular momentum. It is worth
remarking that this requirement holds merely because of the dependence of φ on H through
HHH = FTH. Instead, the dependence of φ on h leaves skwT unchanged.

Further restrictions, placed by the reduced inequality (9), follow by considering some
particular cases. First, we assume the temperature is uniform at any time, ∇θt = 0.
Moreover, nonlinear constitutive equations for T and M are established by selecting the
partial derivatives

∂Eφ = G0(θ, |E|)E + g(θ)
∫ ∞

0
G′(u)E(t− u)du, G0,G′ ∈ Lin, (10)
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∂HHHφ = −A0(θ, |HHH|)HHH− a(θ)
∫ ∞

0
A′(u)HHH(t− u)du, A0, A′ ∈ Lin. (11)

Now, given G(θ, |E|), a fully symmetric fourth-order tensor-valued function, we have

∂E
1
2 E · GE = GE +

1
2|E|

[
E · (∂|E|G)E

]
E

and the like for a symmetric second-order tensor-valued function A(θ, |HHH|). Hence, letting
1 and I be the second- and fourth-order unit tensors, we define

G0 = G +
1

2|E|
[
E · (∂|E|G)E

]
I, A0 = A+

1
2|HHH|

[
HHH · (∂|HHH|A)HHH

]
1,

so that
G0E = ∂E

1
2 E · GE, A0HHH = ∂HHH

1
2 HHH ·A HHH.

Hence, the sought functional φ(θ, E,HHH, Et,HHHt) takes the form

φ = 1
2 E · GE + g(θ)E ·

∫ ∞

0
G′(u)E(t− u)du

− 1
2 HHH ·AHHH− a(θ)HHH ·

∫ ∞

0
A′(u)HHH(t− u)du + Φ(θ, Et,HHHt),

and the functional Φ is thus far undetermined. According to (9), the functional φ has to
satisfy the inequality

dφ(Γ|Ėt) + dφ(Γ|ḢHHt
) ≤ 0 (12)

and this is eventually the requirement of the unknown functional Φ.
For definiteness, we consider Φ in the form

Φ(θ, Et,HHHt) = φ0(θ) +
1
2 g(θ)

∫ ∞

0
Et(u) ·G′(u)Et(u) du− 1

2 a(θ)
∫ ∞

0
HHHt(u) ·A′(u)HHHt(u) du

and, hence, the functional φ can be written as φ = φm,

φm := φ0(θ) +
1
2 E · G∞E− 1

2 g(θ)
∫ ∞

0
[E(t)− E(t− u)] ·G′(u)[E(t)− E(t− u)]du

− 1
2HHH ·A∞ HHH+ 1

2 g(θ)
∫ ∞

0
[HHH(t)−HHH(t− u)] ·A′(u)[HHH(t)−HHH(t− u)]du.

It follows that

dφ(Γ|Ėt) = − 1
2 g(θ)

∫ ∞

0
[E(t)− E(t− u)] ·G′(u)Ė(t− u)]du

= 1
2 g(θ)

{[
(E(t)− E(t− u)) ·G′(u)(E(t)− E(t− u))

]∞
0

−
∫ ∞

0
(E(t)− E(t− u)) ·G′′(u)(E(t)− E(t− u))du

}
.

The assumption G′(∞) = 0 implies

dφ(Γ|Ėt) = − 1
2 g(θ)

∫ ∞

0
[E(t)− E(t− u)] ·G′′(u)[E(t)− E(t− u)]du.

Likewise, letting A′(∞) = 0, we find

dφ(Γ|ḢHHt
) = 1

2 a(θ)
∫ ∞

0
[HHH(t)−HHH(t− u)] ·A′′(u)[HHH(t)−HHH(t− u)]du.
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Hence, (12) holds if and only if

g(θ)G′′(u) ≥ 0, a(θ)A′′(u) ≤ 0

for all u ∈ [0, ∞).
The minimum property of φm at the constant histories E†,HHH† holds if and only if

g(θ)G′(u) ≤ 0, a(θ)A′(u) ≥ 0

for all u ∈ [0, ∞).
Hence, the functional φm is thermodynamically consistent if G′ and G′′, as well as A′

and A′′, have opposite types of definiteness.

Heat Conduction

Now we let ∇R θt 6= 0, and, for simplicity, we look for models where ∇R θ is indepen-
dent of F and H so that the reduced dissipation inequality splits into (12) and

ρθdφ(Γ|∇R θ̇t) +
1
θ

q · ∇θ ≥ 0.

Multiply this inequality by J = det F and observe that, using the referential heat flux
qR = JF−Tq, we can write

ρRθdφ(Γ|∇R θ̇t) + qR · ∇R θ ≤ 0. (13)

For definiteness, let qR be given by the constitutive functional

qR(θ(t),∇R θt) = α(θ)K0

∫ ∞

0
β(u)∇R θ(t− u)du, (14)

where K0 is a positive-definite second-order tensor, while α and β are so far undetermined;
we only assume β(∞) = 0.

We let φ = φm + φc with φc taken in the form

φc = α(θ)
∣∣K1/2

0

∫ ∞

0
β(u)∇R θ(t− u)du

∣∣2.

The minimum property of φ, and hence of φc, at ∇R θ ≡ 0 holds if and only if α > 0.
Now, inequality (13) results in

ρRθ
(

K0

∫ ∞

0
β(u)∇R θ(t− u)du

)
·
∫ ∞

0
β(u)∇R θ̇(t− u)du

+
(

K0

∫ ∞

0
β(u)∇R θ(t− u)du

)
· ∇R θ ≤ 0.

(15)

An integration by parts yields∫ ∞

0
β(u)∇R θ̇(t− u)du = −

∫ ∞

0
β(u)∂u∇R θ(t− u)du = −

[
β(u)∇R θ(t− u)

]∞
0

+
∫ ∞

0
β′(u)∇R θ(t− u)du = β(0)∇R θ(t) +

∫ ∞

0
β′(u)∇R θ(t− u)du.

Hence, inequality (15) can be written in the form

(ρRθβ(0) + 1)
(

K0

∫ ∞

0
β(u)∇R θ(t− u)du

)
· ∇R θ(t)

+ρRθ
(

K0

∫ ∞

0
β(u)∇R θ(t− u)du

)
·
( ∫ ∞

0
β′(u)∇R θ(t− u)du

)
≤ 0. (16)
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The linearity and arbitrariness of ∇R θ(t) imply that

β(0) = − 1
ρRθ

, β(u)β′(u) ≤ 0.

Since β(0) < 0 and (β2)′ ≤ 0, then β(u) ≤ 0 for all u ∈ [0, ∞). Hence,

α(θ)K0β(u) ≤ 0

and, consistently, the kernel of the functional qR is negative definite.
Observe that

β̂(u) =
β(u)
β(0)

≥ 0.

Hence, we can write qR in the form

qR = −α(θ)

ρRθ
K0

∫ ∞

0
β̂(u)∇R θ(t− u)du.

At the limit of short memory, we have

qR = −α(θ)

ρRθ
K0

( ∫ ∞

0
β̂(u)du

)
∇R θ.

In the spatial description, the constitutive equation reads

q = − α(θ)

JρRθ
FK0

∫ ∞

0
β(u)(∇θF)(t− u)du.

5. Rate Equations in the Eulerian Description

It is a crucial point of magnetoelasticity, as well as of magneto-viscoelasticity, that the
stress tensor need not be symmetric. Hence, the mechanical power T · L need not equal
T ·D, and, moreover,

T · L = J−1(FTRRFT) · L = J−1TRR · (FTDF) + J−1TRR · (FTWF).

Since Ė = FTDF, then

T · L = J−1TRR · Ė + J−1TRR · (FTWF).

We start with the Eulerian description and write the Clausius–Duhem inequality in
the form

− ρ(φ̇ + ηθ̇) + T · L− µ0M · Ḣ− 1
θ

q · ∇θ = θσ ≥ 0. (17)

Since we look for rate equations, objectivity indicates that the independent variables
are invariant so that their time derivatives are invariant too. Hence, we assume that

φ = φ(θ,T , E,HHH),

where T is a stress-like variable to be identified. Consequently, the Clausius–Duhem
inequality (17) can be written as

−ρ(∂θφ + η)θ̇ − ρ∂TTT φ · Ṫ − ρ∂Eφ · Ė− ρ∂HHHφ · ḢHH+ T · L− µ0M · Ḣ ≥ 0.

Since ḢHH = FTLTH + FTḢ, then we have

−ρ(∂θφ + η)θ̇ − ρ∂TTT φ · Ṫ − ρ∂Eφ · Ė + (T− ρF∂EφFT − ρH⊗ F∂HHHφ) · (F−TĖF−1)

+(T− ρH⊗ F∂HHHφ) ·W− (ρF∂HHHφ + µ0M) · Ḣ ≥ 0.
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Hence, it follows
η = −∂θφ, (18)

µ0M = −ρF∂HHHφ, (19)

skw(T + µ0H⊗M) = 0. (20)

Thus, we replace −ρF∂HHHφ with µ0M and write the remaining inequality in the form

−ρ∂TTT φ · Ṫ + (−ρ∂Eφ + J−1TRR + µ0F−1H⊗ F−1M) · Ė ≥ 0

This result indicates that we let

T := TRR + Jµ0F−1H⊗ F−1M (21)

so that we have
− ρR∂TTT φ · Ṫ + (T − ρR∂Eφ) · Ė = Jθσ. (22)

Observe that F−1H and F−1M are invariant vectors. To yield this

(F−1H)∗ = (QF)−1QH = F−1Q−1QH = F−1H

and the like for F−1M. Hence, T is an invariant tensor. Moreover, by letting MMM = JF−1M
we can write (19) in the form

µ0MMM = −∂HHHφ. (23)

If Ṫ and Ė are independent, then we obtain

∂TTT φ = 0, T = ρR∂Eφ (24)

and then σ = 0. The equations in (24) are said to characterize magneto-hyperelastic
materials. The results (23) and (24) allow us to write the incremental relations

µ0ṀMM = −ρR∂E∂HHHφ Ė− ρR∂HHH∂HHHφ ḢHH, (25)

Ṫ = ρR∂E∂Eφ Ė + ρR∂HHH∂Eφ ḢHH. (26)

If, again, σ = 0, but
∂TTT φ 6= 0, ∂Eφ 6= 0,

then we have
− ρR∂TTT φ · Ṫ + (T − ρR∂Eφ) · Ė = 0; (27)

Equation (27) is said to characterize magneto-hypoelastic materials. In general, we
can express Ṫ via the representation formula,

Ṫ = (Ṫ ·N)N + (I−N⊗N)G,

where G is any second-order tensor. Let N = ∂TTT φ/|∂TTT φ|. According to (27), we have

Ṫ =
(T − ρR∂Eφ) · Ė

ρR|∂TTT φ|2 ∂TTT φ + (I− ∂TTT φ

|∂TTT φ| ⊗
∂TTT φ

|∂TTT φ| )G

or
Ṫ =

1
ρR|∂TTT φ|2 [∂TTT φ⊗ (T − ρR∂Eφ)]Ė + (I− ∂TTT φ

|∂TTT φ| ⊗
∂TTT φ

|∂TTT φ| )G.

If σ 6= 0, then we have

−ρR∂TTT φ · Ṫ + (T − ρR∂Eφ), ·Ė = Jθσ



Materials 2022, 15, 6699 11 of 19

and the representation formula for Ṫ generalizes to

Ṫ =
(T − ρR∂Eφ) · Ė− Jθσ

ρR|∂TTT φ|2 ∂TTT φ + (I− ∂TTT φ

|∂TTT φ| ⊗
∂TTT φ

|∂TTT φ| )G. (28)

Definite forms of (28) are now established by having in mind fluid or solid behaviours.

5.1. Fluids

The interaction between deformation and magnetization can be modelled by letting
both φ and σ depend on T and HHH. For definiteness, we let

ρRφ = ρRφ0(θ) +
1
2 α|T |2 − 1

2 ξ|HHH|2, α, ξ > 0,

and
Jθσ = β|T |2 + γ|HHH|2, β, γ > 0.

Equations (18) and (19) hold. According to (19), the dependence of φ on HHH results in
the magnetization relation,

µ0MMM := µ0 JF−1M = ξHHH.

Since
∂Eφ = 0, ρR∂TTT φ = αT

then (28) can be written in the form

Ṫ =
T ⊗ T
α|T |2 Ė− β

α
T − γ|HHH|2

α|T |2 T + (I− T
|T | ⊗

T
|T | )G.

If, for definiteness, we let G = Ė/α, then it follows

Ṫ =
1
α

Ė− β

α
T − γ|HHH|2

α|T |2 T . (29)

In particular, the choice γ = γ0|T |2 yields

Ṫ = aĖ− bT , a = 1/α > 0, b = β/α + γ0|HHH|2/α > 0, (30)

that is a generalization of the Maxwell (fluid) model. Given T 0 = T (0), if |HHH| is considered
known, then the linear ODE (30) with non-constant coefficients can be solved on (0, T)
to obtain

T (t) = T 0 exp
[
−

t
∫
0

b(λ)dλ
]
+
∫ t

0
a(τ) exp

[
−

t
∫
τ

b(λ)dλ
]
Ė(τ)dτ. (31)

If Ẽ is a given past history on (−∞, 0], we assume

T 0 =
∫ 0

−∞
a(τ) exp

[
−

0
∫
τ

b(λ)dλ
]

˙̃E(τ)dτ.

By substituting T 0 in (31), we have

T (t) =
∫ t

−∞
a(τ) exp

[
−

t
∫
τ

b(λ)dλ
]
Ė(τ)dτ =

∫ ∞

0
a(t− s) exp

[
−

s
∫
0

b(ξ)dξ
]
Ė(t− s)ds,

where E(τ) = Ẽ(τ), τ ≤ 0.
We observe that the memory kernel of (31) has the form

G(τ, t− τ) := a(τ) exp
[
−

t
∫
τ

b(λ)dλ
]
= a(τ) exp

[
−

t−τ
∫
0

b(ξ)dξ
]
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which describes an aging effect as the G function changes over time due to the presence of
the a(τ) factor. We obtain a standard memory kernel

G(t− τ) = a0 exp
[
−

t
∫
τ

b(λ)dλ
]

if a = a0 is constant.
Things are different if σ is viewed as a viscous term in the form

Jθσ = ν|Ė|2 + ζ|ḢHH|2, ν, ζ > 0.

It follows that

Ṫ =
T ⊗ T
α|T |2 Ė− ν|Ė|2 + ζ|ḢHH|2

α|T |2 T + (I− T
|T | ⊗

T
|T | )G. (32)

If G = Ė/α, we have

Ṫ =
Ė
α
− ν|Ė|2 + ζ|ḢHH|2

α|T |2 T .

Observe that
ḢHH = ḞTH + FTḢ = FT(LTH + Ḣ)

Now,

LTH + Ḣ =
◦
H +DH,

where
◦
H is the corotational derivative,

◦
H= Ḣ−WH. Hence, we have

|ḢHH|2 = (
◦
H +DH) · FFT(

◦
H +DH).

Equation (32) can then be written in the form

Ṫ =
T ⊗ T
α|T |2 Ė− ν|Ė|2

α|T |2 T −
ζ(
◦
H +DH) · FFT(

◦
H +DH)

α|T |2 T +

(
I− T
|T | ⊗

T
|T |

)
G.

5.2. Solids

Solids are characterized by a stress dependence such that, asymptotically, T = G∞E.
Hence, we formally replace the T of the fluid model with T −G∞E. Define

ρRφ = ρRφ0(θ) +
1
2 EG∞E + 1

2 (T −G∞E) ·A(T −G∞E)− 1
2HHH · ΞHHH

and
Jθσ = (T −G∞E) · [(β +HHH · ΓHHH)−1A(T −G∞E)], β > 0,

where Ξ, Γ ∈ Sym+ and A,G∞ are positive-definite fourth-order tensors. Observe that

ρR∂HHHφ = −ΞHHH, ρR∂TTT φ = A(T −G∞E), ρR∂EφG∞E−GT
∞A(T −G∞E).

Moreover, according to (19), it follows that MMM := JF−1M = µ−1
0 ΞHHH.

We now apply the representation (28) by letting

N =
∂TTT φ

|∂TTT φ| =
A(T −G∞E)
|A(T −G∞E)| .
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Within (I−N⊗N)G, the representation formula yields

Ṫ ' [T −G∞E +GT
∞A(T −G∞E)]Ė− (T −G∞E) · [β +HHH · ΓHHH]−1A(T −G∞E)

|A(T −G∞E)| N

' A(T −G∞E) · [A−1 +G∞E)]Ė−A(T −G∞E) · [β +HHH · ΓHHH]−1(T −G∞E)
|A(T −G∞E)| N.

Hence, we have

Ṫ = (N⊗N)[A−1 +G∞]Ė− (N⊗N)[β +HHH · ΓHHH]−1(T −G∞E) + (I−N⊗N)G.

Choosing, e.g.,

G = [A−1 +G∞]Ė− [β +HHH · ΓHHH]−1(T −G∞E)

we find
Ṫ = [A−1 +G∞]Ė− [β +HHH · ΓHHH]−1(T −G∞E),

whence
Ṫ −G∞Ė + [β +HHH · ΓHHH]−1(T −G∞E) = A−1Ė. (33)

Equation (33) shows that T −G∞E evolves with a relaxation time

τ = β +HHH · ΓHHH.

Moreover, if Ė = 0, then, asymptotically, we have

T = G∞E,

as we expected for a solid model. We finally note that (33) takes the usual form

Ṫ = G0Ė− 1
τ
(T −G∞E) (34)

after letting G0 = A−1 +G∞.

5.3. A One-Dimensional Example

Restrict attention to one-dimensional models associated with strain, applied traction,
and magnetic field in the direction e such that

E = Ee⊗ e, T = Te⊗ e, HHH = He.

The symbol T for the component of T is consistent with the engineering stress consid-
ered in the literature to be the ratio of the axial force over the reference area. Moreover, let
G∞ = G∞I, G0 = G0I, and γ = e · Γe; Equation (34) can be written as

Ṫ = G0Ė− 1
τ
(T − G∞E), τ = β + γH2,

where G0,G∞, β, and γ > 0. Assume G∞ = G0
√

τ/4, β = 0.1, and γ = 1. Then, the traction
response T for a given sinusoidal strain E(t) = λ sin( π

20 t) is plotted in Figure 1 under different
values of the magnetic fields H. These results are in agreement with [6] Figures 4 and 5 as they
predict that the increase in the magnetic field changes the orientation of the loops and widens
the hysteresis due to greater energy dissipation.
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Figure 1. Cyclic responses in the (E, T)-plane under sinusoidal stretching with λ = 3, G0 = 4 and
H = 0.1 (dashed), H = 0.4 (solid), H = 0.7 (dotted).

6. Relation to Other Approaches

Magneto-viscoelasticity is a broad subject that accounts for the interaction between a
magnetic field and deformation while both elastic and dissipative effects are allowed. In
this framework, various approaches have been developed. The great majority of them can
be characterized according to the modelling of dissipation.

In [11,14–17], mechanical viscous effects are described by assuming the existence of
an intermediate configuration that is related to the current configuration by an elastic
deformation and to the initial configuration by a purely viscous deformation. Hence, the
deformation gradient is given a multiplicative decomposition

F = FeFv.

Instead, the magnetic induction is assumed in the form

B = Be + Bv.

The Cauchy–Green tensor C is considered in the form

C = FTF = FT
v FT

e FeFv = FT
v CeFv;

hence, both Ce and Cv are defined, but C 6= CeCv. As is often the case in non-equilibrium
processes, the distinction between Be and Bv is based on the observation that, upon the
sudden application of a constant magnetic induction, the magnetic field generated inside
the material starts from an initial non-equilibrium value and then evolves to approach
an equilibrium value. To model these effects, the existence of a dissipation mechanism is
assumed for the magnetic induction as well. The additive decomposition of B is further
motivated by the vector character B.

The entropy inequality in [11], Equation (15),

−ρΨ̇ + T ·D−M · Ḃ ≥ 0

is consistent with (2) in that
M · Ḃ = M · µ0(Ṁ + Ḣ)

and, hence, we have

−ρψ̇ + T ·D− µ0M · Ḣ ≥ 0, ρψ = ρΨ + 1
2 µ0M2.
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Next, a free energy Ω is considered to be a function of the invariant fields C, Cv,B,Bv;
we observe that FB of [11] is just the magnetic induction here denoted by B. A reduced
dissipation inequality then follows in the form

∂Cv Ω · Ċv + ∂Bv Ω · Ḃv ≤ 0. (35)

Though the approach is deeply different from ours, bearing in mind equation (12), it
seems natural to view the roles of Cv and Bv as the analogues of the dependence on the
histories of E and HHH.

6.1. Incremental Magnetoelastic Equations

A simpler model is established in [18] in terms of the Lagrangian counterparts of B
and H, i.e., BBB = JF−1B and HHH = FTH, denoted by Bl and Hl in [18]. Differently from
the present approach, Otténio et al. start with a “modified free energy function” Ω(F,BBB)
such that

TR = ∂FΩ, HHH = ∂BBBΩ; (36)

in components
TR

iK = ∂FiK Ω, HP = ∂BP Ω.

The magnetic field and the deformation are then supposed to undergo changes. In the
linear approximation, the changes ∆F, ∆BBB, and ∆TR, ∆HHH are related in the form

∆TR = A∆F + Γ ∆BBB, ∆HHH = Γ ∆F + K ∆BBB,

where
A = ∂F∂FΩ, Γ = ∂F∂BBBΩ, K = ∂BBB∂BBBΩ.

in components,

AiKjP = ∂FiK ∂FjP Ω, ΓiKP = ∂FiK ∂BP Ω = ΓPiK, KPQ = ∂BP ∂BQ Ω.

Now, we look at the increments as occurring smoothly in time (C1 functions), in the
linear approximation

∆TR = ṪR∆t,

and the like for the other terms, so that we can write

ṪR = A Ḟ + Γ ḂBB, ḢHH = Γ Ḟ + K ḂBB. (37)

Equations (37) are formally equal to the relations in (23) of [18] where ṪR, Ḟ,ḂBB, and
ḢHH are said to be infinitesimal increments. There is no abuse in regarding ṪR, Ḟ,ḂBB, and
ḢHH as time derivatives. With this view the formulas in (37) have some similarity with
Equations (25) and (26). Indeed, the similarity is easily clarified once we observe that the
starting assumption (12) of [18] can be derived here from the entropy inequality as the
elastic part of the constitutive equations.

6.2. Visco-Hyperelastic Constitutive Modelling

Mainly in connection with fluid-structure coupling problems, the stress tensor is often
expressed in terms of both the right and the left Cauchy–Green tensors FTF, FFT (see,
e.g., [19,20] and the references therein). The corresponding approaches lead to neither
memory functionals nor rate equations, yet application of the idea underlying the visco-
hyperelastic models within a simple version of the present setting is of interest.

For simplicity, we neglect the heat conduction (q = 0) and the dependence on the
temperature gradient (∇θ). Let θ, F, H, and D be the independent variables. Since the free
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energy φ is invariant, we assume the particular dependence φ = φ(θ, E,HHH, D). We then
prove the thermodynamic consistency of a stress tensor in the form

T = T̂(θ, F, H) + Td(D) (38)

where
Td ∈ Sym, Td(D)→ 0 as D→ 0.

Consider the entropy inequality (2). Upon computation of φ̇, we have

−ρ(∂θφ + η)θ̇ − ρ∂Eφ · Ė− ρ∂HHHφ · ḢHH− ρ∂Dφ · Ḋ + T̂ · L + Td ·D− µ0M · Ḣ = θσ ≥ 0.

The arbitrariness (and linearity) of θ̇ and Ḋ implies

η = −∂θφ, ∂Dφ = 0.

In view of (5), since L = D + W, we can write the inequality in the form

(T̂− ρF∂EφFT − ρH⊗ F∂HHHφ) ·D + Td ·D + (T̂ + ρF∂HHHφ⊗H) ·W
−(µ0M + ρF∂HHHφ) · Ḣ = θσ ≥ 0. (39)

The arbitrariness of W ∈ Skw and Ḣ implies

T̂ + ρF∂HHHφ⊗H ∈ Sym (40)

µ0M = −ρF∂HHHφ, (41)

where the relation in (41) is formally equal to (6). Similar to the arbitrariness of D in (39),
we conclude that the linear part is required to vanish, whence

sym[T̂− ρF∂EφFT − ρH⊗ F∂HHHφ] = 0, (42)

while the nonlinear part is non-negative, Td ·D ≥ 0. According to (40)–(42), we can write
the stress T̂ in the form

T̂ = ρF∂EφFT − µ0H⊗M, T̂ + µ0H⊗M ∈ Sym. (43)

If
Td = 2µD + λ(tr D)1

then
0 ≤ θσ = Td ·D = 2µD ·D + λ(tr D)2

whence we obtain the classical inequalities µ ≥ 0, 2µ + 3λ ≥ 0 of the viscosity coefficients.
Note that the tensor T̂ + µ0H⊗M of (43) is the Eulerian analogue of the tensor T

introduced in Section 4.

6.3. Rheological Equations and Relaxing Media

The use of E and HHH in the present models is motivated by the invariance character
so that Ė and ḢHH are also invariant and then objective. The Eulerian descriptions might
involve the left Cauchy–Green tensor FFT , rather than the right one FTF = 1 + 2E. In this
connection, we observe that, if φ depends on E through scalar invariants, then ∂Eφ in (43)
is replaced by one or more scalars, say g, and

F∂EφFT = gFFT ,

thus providing the dependence of T̂ on the left Cauchy–Green tensor FFT .
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The elastic properties of nonlinear materials are often modelled in terms of FFT , while
dissipativity is mainly described through the stretching tensor D. This is the case, e.g.,
in [21] where the Cauchy stress T is given the form

T = TE(FFT) + TV , (44)

where TV is governed by the rate equation

TV + λDTV = νD,

in which D denotes the objective derivative; ref. [21] considers the Oldroyd derivative,
5
TV= ṪV − LTV − TVLT , the Jaumann derivative

◦
TV= ṪV −WTV + TVW, and the Cotter–

Rivlin derivative
4
TV= ṪV + LTTV + TVL. Equation (44) is the analogue of (38).

It is worth remarking that in Oldroyd’s model of rheological equations for fluids, the
viscous stress TV is subject to Equation ([22], Equation (59))

TV + λ
5
TV= 2µD + 2µτ

5
D .

Viscoelastic fluid theories have also been established in terms of the left relative Cauchy–
Green tensor, defined by

Bt(τ) = Ft(τ)Ft(τ)
T , Ft(τ) = F(τ)F−1(t).

The constitutive equation is taken in the form [23]

T = ηB1 + βB2
1 + νB2,

where

B1(t) =
d

dτ
Bt(τ)|τ=t, B2(t) =

d2

dτ2 Bt(τ)|τ=t.

7. Conclusions

The interaction between the deformation and magnetic field leads to a broad spectrum
of phenomena. The most common scheme is merely that of stress and magnetization in-
duced by the deformation gradient and the magnetic field, as is described by the linearized
Equations (37) [18] or (25) and (26). However, the broad spectrum motivates an investi-
gation of magneto-viscoelasticity, where both the equilibrium and dissipative properties
of the interaction are modelled. This paper develops an extensive thermodynamically
consistent framework and establishes new models by letting the constitutive properties
involve memory functionals or rate equations.

The modelling through memory functionals involve both a dependence on the present
value and the history of deformation, magnetic field, and temperature gradient. We then
find that the relations for stress and magnetization are given by derivatives of the free energy
with respect to the present values of the strain and magnetic field. Instead, the history
dependence allows the description of the dissipative effects of the stress, magnetization, and
heat conduction. Some relevant examples of the functionals are determined; Equation (11)
is a linearized functional for the magnetization in terms of the history of the magnetic field.

Materials with a non-instantaneous response are often described through fractional-
order derivatives [24–26] in place of the memory functional. This involves an unbounded
kernel of the power-law form, which makes the thermodynamic consistency questionable.
However, we are unaware of genuine models with memory functionals for the magnetic
field through fractional-order derivatives.

The approach through rate equations turn out to be advantageous thanks as well to
some ideas and results established in [8], in which the entropy production is viewed as
a constitutive function, while a representation formula yields the general result (28) for
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solids and the analogue for fluids. The completeness of the scheme allows us to find the
stress rate in magneto-hypoelasticity, magneto-hyperelasticity, and (dissipative) magneto-
viscoelasticity. Equation (28) yields the rate Ṫ of the stress T in terms of the rate Ė; the
rate is characterized by the free energy φ(θ,T , E,HHH) and the entropy dissipation σ. The
example devised in Section 5.3 predicts that the increase in the magnetic field broadens the
hysteretic loops (see Figure 1). This is consistent with the view that the dissipation increases
proportionally to the friction caused by inter-particle magnetic attraction [27]. The dual
constitutive assumption φ = φ(θ, E,MMM,HHH) models the hysteresis effects in ferromagnetic
materials, parameterized by the temperature θ and the strain E, as well as with hysteresis
in ferroelectrics [28].

By comparing the two approaches, we can say that the dependence on histories proves
convenient for linear models (non-linearities involve multiple integrals and, hence, are techni-
cally quite difficult to manage). Rate-type models are more flexible and easily allow non-linear
models. However, both approaches have proved to be thermodynamically consistent.

The analysis in Section 6 of some of the approaches developed in the literature al-
lows us to find analogies to, and differences from, the present scheme. First, there are
approaches in which the strain is split into elastic and viscous parts; the present description
of deformation is decomposition-free. Secondly, as expected, the instantaneous response of
memory functionals or the non-dissipative version of the rate-type equations yields the
analogue of magnetoelastic models (incremental equations). Thirdly, with the restriction
to the instantaneous response of the magnetization, it is shown that a model holds true in
which the additive terms of the stress describe the dissipative effects of the deformation
within an Eulerian framework.
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