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Abstract: The work aimed to produce Ni-P-MoS2-Al2O3 on Al-7075 alloys with multiple attributes
through an electroless (EL) plating route. The effects of additives (MoS2 and Al2O3) in the EL bath on the
surface morphology, topography, hardness, composition (phase and elemental), roughness, wettability,
and coating thickness were evaluated. Results indicate a substantial enhancement in microhardness
of the EL-coated surfaces by 70% (maximum hardness = ~316 HV) using powders, and 30% (244 HV)
without powders. The maximum coating thickness and water contact angle obtained with powders were
6.16 µm and 100.46◦, respectively. The coefficient of friction for the samples prepared using powders was
0.12, and for the base material it was 0.18. The compositional analysis through EDS and XRD suggested
the incorporation of a hard and lubricious layer on the EL-coated surface owing to the presence of
different phases of Al, Mo, P, Zn, O, and S. Therefore, the resulting coating surfaces impart hardness,
self-lubrication, hydrophobicity, and wear resistance simultaneously.

Keywords: electroless plating; composite; wettability; microhardness; lubricant; coating

1. Introduction

Al and Al-based alloys, owing to their inherent light weight, toughness, and high
strength, have gained attention as important engineering materials for aerospace indus-
tries [1–3]. Of all the available alloys, Al-7075 occupies a vital place in the designing and
manufacturing of aerospace components [4–6]. However, they are prone to high-stress
corrosion cracking that fails in high-stress concentration regions, such as riveted zones in
airplanes [7,8]. Therefore, improving the performance of the Al-7075 surface in terms of me-
chanical, corrosion, and tribological properties is essential. These desirable properties can
be achieved at low deposition temperatures using the electroless (EL) Ni-P plating route,
which is compatible with heat-sensitive alloys [9]. Ni-P-based electroless (EL) deposition
is produced by auto-catalytic chemical reduction of Ni-cations obtained from the liquid
solution of metallic salt using reducing agents [10]. The reducing agent is usually sodium
hypophosphite (in this case: Ni-P) or sodium borohydride (in this case: Ni-B), depending
upon the substrate composition [11]. EL deposition can process both electrically conductive
and electrically non-conductive materials [12]. The alloy’s chemical content strongly affects
the substrate properties and controls the bath temperature, pH, and Ni concentration [13].

EL-Ni-P coatings find their applications in the coating of corrosion-resistant compo-
nents used in extreme environmental conditions in place of sacrificial layers [14–16]. In
the past, several reports have dealt with the tribo-mechanical and corrosive behavior of
Ni-P coatings by the EL method [17]. Recently, the distribution of P and a surface mor-
phological study of the coated surface have been addressed in detail [18]. Typically, the
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corrosion resistance of the EL-plated components depends on the degree of crystallinity,
P content, phase change, coating thickness, porosity on the surface, size, and orientation
of grains [19–21]. As per a study by Gutierrez et al., the corrosion resistance of the Ni-
P EL-coated component depends upon the P content, the extent of internal stress, and
the amorphous state [22]. The performance evaluation of Ni-P coated surfaces has been
conducted in the context of the factors mentioned above in several studies [8–10]. Vlaic
et al. demonstrated that amorphous coatings possess high corrosion resistance and low
hardness due to surface flaws and the absence of grain boundaries [23]. Aiming to achieve
multiple good attributes in a single component for diverse applications, composite coating
through the EL deposition route has come into existence [24–26]. The EL bath is modified
using powders such as metallic carbides, nitrides, oxides, solid lubricants, and PTFE, to
improve the surface properties [27,28]. Uysal developed a layer of Ni-P-TiO2-GO using
oxides of both graphene and Ti particles suspended in an EL bath, to which he attributed
improved wear and corrosion properties [29]. Hu et al. generated Ni-P-Al2O3 coatings over
Mg-alloys, thereby improving their corrosion resistance and hardness [30]. Taye et al. used
WS2 and Al2O3 in an EL bath to form a Ni-Al2O3-WS2 composite on an Al substrate [27].
They confirmed an upsurge in microhardness values of the Al substrate, and the maximum
coating thickness was obtained with 3 g/L Al2O3 and 1.4 g/L WS2, respectively [27]. In a
similar study by He et al., Ni-P-MoS2 was formed on a mild steel substrate, imparting a
lower coefficient of friction than the pure Ni-P coating [31].

Although several studies have been conducted on EL plating with/without powders
(as reinforcement), limited research has explored forming both hard and lubricating surfaces.
In the present study, aerospace-grade Al alloy (Al7075) was coated through the EL route,
imparting hard, self-lubricating, and hydrophobic properties. An extensive analysis was
performed of the surface morphology, topography, hardness, composition, roughness,
wettability, and coating thickness for various reinforcement ratios (MoS2 and Al2O3).

2. Materials and Methods
2.1. Material

Al-7075 alloys of dimensions 12 × 12 × 12 mm3, cut by a wire-cut electrical discharge
machine, were utilized to carry out the EL deposition. The detailed composition of the alloy
is presented in Table 1. To obtain a contaminant-free surface, the samples were polished
and cleaned in deionized water, and subsequently with acetone.

Table 1. Chemical composition of the substrate (Al7075) used for the EL-deposition/coating process.

Elements Mg Zn Fe Cu Mn Si Cr Ti Al

wt. % 2.50 5.50 0.50 1.60 0.40 0.40 0.15 0.20 88.95

2.2. Experimental Procedure

The experimental set-up (Figure 1a) constitutes a magnetic stirrer with a supporting
stand to hang the substrate. The samples were dipped into an EL bath and placed over
the stirrer. A thermometer-cum-pH sensor was affixed to the frame/stand to control the
necessary conditions.
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Figure 1. Schematic diagram illustrating the (a) experimental set-up and (b) the procedure for the 
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to achieve good coating adhesion because the oxide layer acts as a barrier between the 
coating and substrate. Thus, pretreatment in the form of double zincating (ZnO + aqueous 
NaOH) was performed on the Al substrate before the EL-deposition process [32]. The flow 
chart for the double-zincating process (desmutting, etching, and zincating) is shown in 
Figure 1b. A desmutting solution comprising 50:50 concentrations of HNO3 (69% purity) 
and deionized (DI) water, was prepared at room temperature (300 K). The etching solution 
was made by dispersing NaOH in DI water. The zincate layer comprised ZnO, NaOH 
pellets, and FeCl3 at the ratio shown in Table 2. Post-zincating, the samples were immersed 
straight away into the Ni-P EL bath with a certain composition, as shown in Table 3. 

Table 2. Chemical composition of the zincate bath used on the Al substrate before the EL-deposition 
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FeCl3 22.50 
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NaOH 56 

Table 3. Electroless bath content used for the deposition process. 
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Nifoss 2500: make-up 200 
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Throughout the experiments, the pH and temperature were maintained between 4 
and 4.8 and 70 and 80 °C, respectively. The temperature should not exceed 90 °C, as it 
would then be challenging to maintain the pH and may lead to total decomposition of the 
bath [7]. The magnetic stirring limit was fixed to 600 rpm, and the deposition process was 
accomplished in 30 min. A total of 10 experiments (with three repetitions) were performed 
at different concentrations of Al2O3 (2, 3, and 4 g/L; average particle size = 12 μm) and 
MoS2 (0.5, 1, 1.5, and 2 g/L; average particle size = 7 μm) in the EL bath. The scanning 
electron microscopy images and phase analysis of the powders are shown in Figure 2. The 
Al2O3 powders were present in the α-phase (corundum) of the hexagonal structure. The 
coated specimen was then taken out and cleaned with an ultrasonicated acetone-filled 
bath to remove any adhered particles on the surfaces. 

Figure 1. Schematic diagram illustrating the (a) experimental set-up and (b) the procedure for the
electroless deposition process.

As Al-based coatings are prone to oxidation when exposed to air/water, it is difficult
to achieve good coating adhesion because the oxide layer acts as a barrier between the
coating and substrate. Thus, pretreatment in the form of double zincating (ZnO + aqueous
NaOH) was performed on the Al substrate before the EL-deposition process [32]. The flow
chart for the double-zincating process (desmutting, etching, and zincating) is shown in
Figure 1b. A desmutting solution comprising 50:50 concentrations of HNO3 (69% purity)
and deionized (DI) water, was prepared at room temperature (300 K). The etching solution
was made by dispersing NaOH in DI water. The zincate layer comprised ZnO, NaOH
pellets, and FeCl3 at the ratio shown in Table 2. Post-zincating, the samples were immersed
straight away into the Ni-P EL bath with a certain composition, as shown in Table 3.

Table 2. Chemical composition of the zincate bath used on the Al substrate before the EL-deposition process.

Composition Concentration (g/L)

FeCl3 22.50
ZnO 60

NaOH 56

Table 3. Electroless bath content used for the deposition process.

Component Concentration (g/L)

Nifoss 2500: make-up 200
Nifoss 2500: base 60

DI water 740

Throughout the experiments, the pH and temperature were maintained between 4
and 4.8 and 70 and 80 ◦C, respectively. The temperature should not exceed 90 ◦C, as it
would then be challenging to maintain the pH and may lead to total decomposition of the
bath [7]. The magnetic stirring limit was fixed to 600 rpm, and the deposition process was
accomplished in 30 min. A total of 10 experiments (with three repetitions) were performed
at different concentrations of Al2O3 (2, 3, and 4 g/L; average particle size = 12 µm) and
MoS2 (0.5, 1, 1.5, and 2 g/L; average particle size = 7 µm) in the EL bath. The scanning
electron microscopy images and phase analysis of the powders are shown in Figure 2. The
Al2O3 powders were present in the α-phase (corundum) of the hexagonal structure. The
coated specimen was then taken out and cleaned with an ultrasonicated acetone-filled bath
to remove any adhered particles on the surfaces.
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Figure 2. Scanning electron microscopy images showing the powder particle size distributions of
(a) Al2O3 and (b) MoS2, and (c) their corresponding X-ray diffraction patterns.

2.3. Material Characterization

Detailed characterization was conducted to study the coated surfaces’ mechanical and
metallurgical properties. The coating thickness was measured with Field Emission Scanning
Electron Microscopy (FESEM, make: Supra 55; from Carl Zeiss, Oberkochen, Germany),
along the transverse direction of the coated samples, which were diamond polished along
the cross-section. An average of four readings were considered for further analysis. The
top surface morphology of each coated sample was also observed using FESEM. A Vickers
micro-hardness tester (model: Economet VH-1MD, Chennai Metco, Chennai, India) was
used to estimate the extent of the hardness of each composite coating at a constant load
of 200 gf with a 10 s dwell time. Measurements were taken at three different points,
and the mean values are used for further evaluation. The average surface roughness
parameter was estimated using a probe-type surface roughness tester (MITUTOYO-SJ-210,
Kanagawa, Japan, 0.3 mm cut-off length, 4 µm tip diameter, 4 mN measurement force) at
three different sites. An Atomic Force Microscope (AFM, model: Nanoscope V, Bruker
Corporation, Bremen, Germany) was used to examine the surface topography of the coated
surface. Readings (scan area: 50 µm × 50 µm) were taken under ambient atmospheric
conditions. A Berkovich-type diamond tip cantilever with 260 µN constant force was
used for the measurements. The energy dispersive spectrum (EDS) was used to detect the
elemental composition of each coating’s surface. X-ray diffraction analysis (XRD, Model:
D2 PHASER, Bruker Corporation, Bremen, Germany) was used to evaluate the phase
formation in the coated substrates. Micro-scratch tests (Universal tribometer, MFT 500,
Rtech Instruments, San Jose, CA, USA) were conducted at a constant load of 5 N for 15 s,
covering a unidirectional scratch length of 4 mm to study the friction characteristics of
the coatings.

3. Results and Discussion
3.1. Coating Thickness Measurement

The coating thickness measurements were taken at four different sites (Figure 3), and
the average was recorded, as shown in Table 4. The thicknesses of deposits for different
powder contents are shown in Figure 3a–g, where the substrate and coating can be easily
distinguished. Figure 3h depicts the variation of coating thickness with respect to the
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powder content in the EL bath. It can be observed in Figure 3h that when the MoS2 powder
increased from 0.5 to 1 g/L at a constant value of Al2O3, coating thickness decreased
drastically, but with further addition of MoS2 powder to the EL bath, i.e., at 1.5 and
2 g/L, coating thickness continued to increase. An exciting trend can also be observed in
Figure 3h, wherein for constant MoS2 content in the bath, the composite coating thickness
first increases and then decreases with an increase in the Al2O3 content in the bath. It can
also be observed that with 2 g/L of Al2O3 powder content, the thickness ranged between
4.20 and 4.49 µm, and on increasing the Al2O3 content to 3 g/L in the bath, the coating
thickness increased in the range of 4.75–6.16 µm. An abrupt decrease in coating thickness
was observed on further increasing the Al2O3 content to 4 g/L (Figure 3h). Figure 4c
shows the coating surface morphology with Al2O3 3 g/L and MoS2 0.5 g/L. There was
a homogeneous deposition of Al2O3 and MoS2 powder in the Ni matrix. This may have
been the reason behind the maximum coating thickness. Moreover, Al2O3′s abrasive nature
creates a hindrance during deposition. A larger Al2O3 (4 g/L) concentration may create
random movement in the EL bath, suppressing the deposition process [32]. Figure 4g
depicts the morphology of the surface coating with Al2O3 4 g/L and MoS2 1 g/L powder
content. It clearly displays the heterogeneity in the powder distribution, which may lead to
poor deposition and hence the lowest coating thickness.
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Figure 3. Composite coating thickness for (a) Ni-P coating without powder and 2 g/L Al2O3 with
(b) 0.5 g/L MoS2 or (c) 2 g/L MoS2 powder content; 3 g/L Al2O3 with (d) 0.5 g/L MoS2 or (e) 2 g/L
MoS2; 4 g/L Al2O3 with (f) 0.5 g/L MoS2 or (g) 2 g/L MoS2; and (h) variation of coating thickness
with different powder concentrations.

Table 4. Thickness, microhardness, and surface roughness of each electroless coating.

Experiment Nr.
Powder Concentration (g/L) Coating

Thickness (µm) Microhardness (HV)
Average Surface

Roughness (Ra) (µm)Al2O3 MoS2

1 0 0 8.23 244.10 0.45
2 2 0.5 4.49 296.85 0.64
3 2 1.0 1.22 256.62 0.66
4 2 1.5 2.02 241.69 0.59
5 2 2.0 4.20 222.95 0.55
6 3 0.5 6.16 305.09 0.78
7 3 1.0 1.63 266.55 0.85
8 3 1.5 2.84 254.94 0.80
9 3 2.0 4.75 227.73 0.73

10 4 0.5 3.91 315.83 0.69
11 4 1.0 1.11 277.55 0.75
12 4 1.5 1.65 268.64 0.73
13 4 2.0 3.89 254.08 0.69
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1g/L; and (h) Al2O3 4 g/L, MoS2 1.5 g/L powder content.

3.2. Microhardness

Figure 5f depicts the variation in the average microhardness of the composite coating
with powder concentrations. It can be observed that microhardness increased with the
upsurge in Al2O3 content in the EL bath at constant MoS2 (0.5 g/L). It was due to the
presence of Al2O3 particles, which enhanced the phase structure of coated surfaces, thereby
improving their micro-hardness values. However, for constant Al2O3 content, an increase
in MoS2 content led to a continuous decrease in hardness. MoS2 is a solid lubricating
material, softer than nickel, and its existence in the scene compelled a reduction in the
crystal size of the Ni-MoS2 coating. The rise in grain boundaries because of the change in
the crystal size may hinder dislocation mobility [33].
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Figure 5. Atomic force microscopy images of the coated surface with (a,b) 4 g/L Al2O3 and 2 g/L
MoS2 and (c,d) 3 g/L Al2O3 and 1 g/L MoS2 powder content; variation of (e) average surface
roughness; and (f) variation of micro-hardness with powder concentration.
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The maximum microhardness obtained for coatings was ~316 HV, whereas for the
Al alloy, the microhardness value was only ~180 HV. Hence, the microhardness of the
composite coatings increased by ~76% compared to the substrate, and the microhardness of
Ni-P coating increased only by 30% (~244 HV). The maximum value of microhardness was
obtained with 4 g/L Al2O3 and 0.5 g/L MoS2 powder content and the minimum value with
4 g/L Al2O3 and 2 g/L MoS2 powder content. This suggests that the Al2O3 concentration
plays a vital role in imparting hardness and MoS2 towards lowering micro-hardness.

3.3. Average Surface Roughness Parameter

Figure 5c shows the trend of average surface roughness (Ra) with varying powder
concentrations in the EL bath. Ra varied in the range of 0.45 to 0.85 µm, which is less
than the results published by He et al. [34], i.e., greater than 2 µm while using MoS2
alone. Figure 5c shows that for a particular concentration of Al2O3, Ra first increased and
then decreased with increasing MoS2 concentration. However, as the concentration of
Al2O3 increased from 2 to 3 g/L, Ra increased abruptly. This may have been due to the
agglomeration of Al2O3 particles on the coated surface and the generation of larger peaks,
thereby increasing the Ra values. Further addition of Al2O3 to the EL bath decreased the
Ra value, which may have been due to the filling of micro-gaps on the Ni-P layer, thereby
enhancing the surface quality [35]. The highest average surface roughness (0.85 µm) was
obtained with 3 g/L Al2O3- and 1 g/L MoS2-coated samples. A higher range of Ra values
was obtained with 3 g/L Al2O3, and the same for coating thickness. The entrapment of
powders in the micro-gaps on the coated surfaces resulted in a surprisingly high deposition
rate, thereby increasing the coating thickness. Thus, the coated samples’ morphology
(Figure 6c) showed overlapped cauliflower-like depositions.
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3.4. Topological Study through Atomic Force Microscopy

The topographical analysis was carried out for the samples with 4 g/L Al2O3 and
2 g/L MoS2 (Figure 5a,b) and 3 g/L Al2O3 and 1 g/L MoS2 (Figure 5c,d) powder content.
Figure 5 shows the 2D and 3D topography of the coatings. The variations in color in the
image indicate the heights of peaks and valleys. The dark brown areas indicate valleys,
and the whitish areas show peaks on the surface. Furthermore, with the increase in MoS2
concentration in the EL bath, i.e., from 1 g/L (Figure 5c) to 2 g/L (Figure 5a), the intensity
of peaks and valleys decreased. This may have been due to the lubricating effect of MoS2
that allows the formation of a smoother surface in the former case.
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3.5. Morphological Analysis

Surface morphology was examined through secondary electron (SE) and backscattered
electron (BSE) images captured through FESEM. Figure 6 depicts the SE images of the
surfaces. Figure 6a demonstrates the surface morphology of the coatings, wherein a
bubble-like structure indicates the presence of the Ni-P phase. Figure 6b–d show the
morphologies of the composite coated with 0.5 g/L MoS2 and 2 g/L Al2O3; 2 g/L MoS2
and 3 g/L Al2O3; or 2 g/L MoS2 and 4 g/L Al2O3 powder content. In Figure 6c, the
accumulation of Al2O3 can be seen as white patches. The cauliflower-like surfaces mark
the appearance of MoS2 particles. The coating surface has some micro-cracks and pores as
coating defects. The deposition process begins preferentially on scratches and imperfections
on the substrate’s surface [28]. With continuous exposure of powders in the EL bath to
the substrate, there is the formation of nodular structures as seen in the coatings, which
accounts for homogeneity, when prepared with 3 g/L Al2O3 and 0.5 g/L MoS2 (Figure 6c).
On the contrary, the heterogeneity may be due to the uneven distribution of powder
particles in the EL bath. This also indicates the presence of Al2O3-MoS2 co-deposition,
an Ni-P phase, and micropores. Thus, it can be concluded that there was successful
co-deposition of powder particles.

3.6. Compositional Analysis
3.6.1. Energy Dispersive Spectroscopy Analysis

Figure 7a shows the EDS plot of the EL-Ni-P coating, indicating the presence of Ni
and P elements. Further, the EDS plot of the sample with 2 g/L Al2O3 and 2 g/L MoS2
powder content is shown in Figure 7b, indicating the appearance of O, Al, S, Mo, Ni, P, and
Zn elements, thus confirming the formation of the composite coating.
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2 g/L Al2O3 and 2 g/L MoS2 powder content.

3.6.2. Elemental Mapping through Energy Dispersive Spectroscopy

To verify the results obtained from EDS, mapping of elemental composition was
conducted. Figure 8a illustrates the spectrum area derived for mapping. In Figure 8b,
orange represents the presence of Al; in Figure 8c, the green represents the presence of
Ni; purple represents Mo (Figure 8d); the red represents S (Figure 8e); yellow represents P
(Figure 8f); cyan represents oxygen (Figure 8g); and blue represents Zn (Figure 8h). The
result validates the successful deposition of the composite coating elements.
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3.6.3. X-ray Diffraction Analysis

XRD was employed to ascertain the phases formed in the coating material. The raw
data were fed to software (X’pert High Score Plus) to detect the phases and diffraction
peaks. Additionally, different crystalline phases of elements and compounds were also
identified. The comparative XRD plots of the Ni-P coating and composite coating with
3 g/L Al2O3 and 1 g/L MoS2 powder content are shown in Figure 9. Figure 9a reveals the
presence of different phases, including Al, P, Al-Ni, NiP2, MoS2, and Ni-Fe. The presence
of Ni, NiP2, Ni-Fe, and Al-Ni peaks confirms Ni ions’ transfer to the substrate. Figure 9b
shows the diffraction peaks of the composite coating constituting Al, Al-Ni, MoS2, and
Ni-Fe. The peaks of MoS2 demonstrate the improvement in the lubricity properties of the
samples [36,37].
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3.7. Wettability Studies

The wettability of the prepared coatings was compared with Al-7075 using water (dis-
tilled) contact angle (θc). It was measured using an in-house-built laboratory-scale set-up
(Figure 10a), constituting a needle-syringe arrangement (placed at 10 mm height from the
surface), a high-speed camera, and an incandescent light source. The tests were performed at
room temperature (300 K), and the camera captured images of the drops touching the sur-
face [38]. The images were subjected to Image-J software to estimate the water contact angles.
For further analysis, the average (of three readings) θc was considered for each sample taken
up for the study. If θc ≥ 90◦, the surface is hydrophobic; θc ≤ 90◦ for a hydrophilic surface.
Five samples with different powder contents were selected for estimating the wettability; we
plotted the values in Figure 10b. It is evident from the plot that θc for the substrate was ~60◦,
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but for coated samples varied between 78.7◦ and 102.4◦. Without the use of powders in the
EL bath, θc = 78.7◦. At a constant MoS2 concentration (0.5 g/L) in the EL bath, θc varied
between 96.3◦ (4 g/L Al2O3) and 102.4◦ (2 g/L Al2O3), which accounts for the formation
of hydrophobic surfaces. Similarly, at maximum MoS2 content (4 g/L), θc varied between
91◦ (2 g/L Al2O3) and 100◦ (4 g/L Al2O3). This indicates that the cauliflower-like shapes
formed over the coated surfaces (as discussed in Section 3.5) partially restricted the direct wa-
ter droplet contact with the composite layer. Due to the deposition phenomenon, hierarchical
structures were formed on the substrate due to sub-millimeter-sized surface roughness [31].
These allowed air-entrapment within the hierarchical surface roughness, thereby enhancing
the hydrophobicity. This property of the coated surfaces forbids contact between the corro-
sive fluids or water in the working environment with the substrate, thereby protecting the
component [39].
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3.8. Scratch Test

Scratch tests were performed on the coated samples to assess the wear characteristics
of the surfaces. Two differently coated samples, i.e., with powder (sample 10) and without
powder (sample 1), were taken up for the unidirectional micro-scratch tests, and the results
were compared with that of the substrate. Figure 10c shows the coefficient of friction (COF)
versus time graphs for different coated samples. The COF of the coated samples prepared
without the powders was 0.13, that for samples coated using powders was 0.12, and that
for the substrate was 0.18. The sample coated with 4g/L Al2O3 and 0.5 MoS2 (sample
10) possessed the least COF and maximum microhardness (315.83 HV). Wear resistance is
proportional to hardness, and it may be affirmed that the addition of powders enhances
the wear-resistant properties on the coated surfaces with respect to the uncoated specimen.

4. Conclusions

Ni-P-MoS2-Al2O3 composite coatings were produced on Al-7075 using an EL-deposition
process. The effects of different powder ratios (MoS2 and Al2O3) were studied, and the
following observations were made:

1. The coating thickness for monolithic Ni-P plating was 8.23 µm, and it varied between
1.11 µm (4 g/L Al2O3 and 1 g/L MoS2) and 6.16 µm (3 g/L Al2O3 and 0.5 g/L MoS2)
for powders mixed in the EL bath.
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2. The micro-hardness for Ni-P deposited surface was 244.10 HV (30% increment),
and that of the substrate was 179.68 HV. It significantly increased by up to 70% for
composite coated samples (222.95 to 315.83 HV).

3. EDS analysis affirmed Ni, P. Al, Mo, S, Zn, and O as elements on the coated substrate.
4. The XRD study indicated the presence of P and Al on the coated surfaces and some

intermetallic compounds, such as Ni-Fe, Al-Ni, NiP2, and MoS2.
5. The recorded water contact angle (θc) for the substrate was ~60◦, and for the coated

samples varied between 78.7◦ (without powders) and 102.4◦ (2 g/L Al2O3 and 0.5 g/L
MoS2). Without powders in the EL bath, the θc was 80.7◦.

The composite coatings impart exclusive properties, such as improved hardness,
hydrophobicity, and self-lubrication. Although the work presented a brief study by varying
the powder ratios, an extensive study on the P content, corrosion, and adhesion is intended
for the future.
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