Investigation and Optimisation of the Rheological Properties of Magnesium Potassium Phosphate Cement with Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design and Sample Preparation
2.3. Test Methods
2.3.1. Rheological Properties Test
2.3.2. Compressive Strength Test
2.4. Data Analysis
3. Results and Discussion
3.1. Model Adequacy Analysis
3.1.1. Analysis of Variance (ANOVA) of the Response Model of Initial Mini-Slump
3.1.2. Model Describing Mini-Slump Loss
3.1.3. Model Describing Yield Stress
3.1.4. Model Describing Plastic Viscosity
3.1.5. Summary and Further Improvement
3.2. Effect of Variables on the Response of the Model
3.2.1. Effect on Initial Mini-Slump
3.2.2. Effect on Mini-Slump Loss
3.2.3. Effect on Yield Stress
3.2.4. Effect on Plastic Viscosity
3.2.5. Discussion
3.3. Desirability Functions for Numerical Optimisation
3.4. Compressive Strength
4. Conclusions
- The RSM-CCD methodology was successfully adopted to investigate the rheological behaviour of MPC material and to optimise the mix proportion in terms of W/S, M/P and borax dosage, with initial mini slump, mini-slump loss, yield stress and plastic viscosity considered as responses.
- The W/S ratio was identified as the significant factor (95% confidence level) affecting the plastic viscosity and the initial mini slump. The increase in W/S led to the decrease in the plastic viscosity, whereas it increased the mini slump. Moreover, the influence on the yield stress could not be ignored, since it remained at a 90% confidence level.
- The yield stress and mini-slump loss were influenced by the M/P ratio. The increase in the M/P ratio was shown to increase the yield stress and mini-slump loss.
- Borax dosage clearly affected the yield stress and mini-slump loss of MPC. With the increase in borax dosage, the yield stress and mini-slump loss decreased.
- The numerical optimisation showed that the best predicted values for the four responses are 0.680 Pa (yield stress), 0.263 Pa·s (plastic viscosity), 161.858 mm (initial mini slump) and 11.282 (mini-slump loss), with the desirability of 0.867.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, J.H.; Qian, J.S.; You, C.; Fan, Y.R.; Zhen, W. Bond behavior and interfacial micro-characteristics of magnesium phosphate cement onto old concrete substrate. Constr. Build. Mater. 2018, 167, 166–176. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, B.; Wu, X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater. Struct. 2000, 33, 229–234. [Google Scholar] [CrossRef]
- Qiao, F.; Chau, C.K.; Li, Z. Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr. Build. Mater. 2010, 24, 695–700. [Google Scholar] [CrossRef]
- Sun, W.; Zheng, Y.; Zhou, L.; Song, J.; Bai, Y. A study of the bond behavior of FRP bars in MPC seawater concrete. Adv. Struct. Eng. 2020, 24, 1110–1123. [Google Scholar] [CrossRef]
- Ma, H.Y.; Xu, B.; Li, Z. Magnesium potassium phosphate cement paste: Degree of reaction, porosity and pore structure. Cem. Concr. Res. 2014, 65, 96–104. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Elkatatny, S.; Al-Majed, A.; Ramadan, M.A. The use of graphite to improve the stability of Saudi class G oil-well cement against the carbonation process. ACS. Omega 2022, 7, 5764–5773. [Google Scholar] [CrossRef]
- Seehra, S.S.; Gupta, S.; Kumar, S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements—Characterisation and durability aspects. Cem. Concr. Res. 1993, 23, 254–266. [Google Scholar] [CrossRef]
- Ma, H.Y.; Xu, B.; Liu, J.; Pei, H.; Li, Z. Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste. Mater. Des. 2014, 64, 497–502. [Google Scholar] [CrossRef]
- Lai, Z.Y.; Wang, H.T.; Hu, Y.; Yan, T.; Lu, Z.Y. Rapid Solidification of Highly Loaded High-Level Liquid Wastes with Magnesium Phosphate Cement. Ceram. Int. 2018, 45, 5050–5057. [Google Scholar] [CrossRef]
- Weng, Y.W.; Ruan, S.Q.; Li, M.Y.; Mo, L.W.; Unluer, C.; Tan, M.J.; Qian, S.Z. Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Constr. Build. Mater. 2019, 221, 595–603. [Google Scholar] [CrossRef]
- Abdelrazig, B.; Sharp, J.H.; El-Jazairi, B. The Chemical Composition of Mortars Made from Magnesia-Phosphate Cement. Cem. Concr. Res. 1988, 18, 415–425. [Google Scholar] [CrossRef]
- You, C.; Qian, J.S.; Qin, J.H.; Wang, H.; Wang, Q.; Ye, Z. Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC). Cem. Concr. Res. 2015, 78, 179–189. [Google Scholar] [CrossRef]
- Xu, B.W.; Lothenbach, B.; Leemann, A.; Winnefeld, F. Reaction mechanism of magnesium potassium phosphate cement with high magnesium-to-phosphate ratio. Cem. Concr. Res. 2018, 108, 140–151. [Google Scholar] [CrossRef]
- Xu, B.W.; Winnefeld, F.; Kaufmann, J.; Lothenbach, B. Influence of magnesium-to-phosphate ratio and water-to-cement ratio on hydration and properties of magnesium potassium phosphate cements. Cem. Concr. Res. 2019, 123, 105781. [Google Scholar] [CrossRef]
- Xu, B.W.; Ma, H.; Li, Z. Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio. Cem. Concr. Res. 2015, 68, 1–9. [Google Scholar] [CrossRef]
- Qin, Z.H.; Ma, C.; Zheng, Z.Q.; Long, G.C.; Chen, B. Effects of metakaolin on properties and microstructure of magnesium phosphate cement. Constr. Build. Mater. 2020, 234, 117353. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B. Factors that affect the properties of magnesium phosphate cement. Constr. Build. Mater. 2013, 47, 977–983. [Google Scholar] [CrossRef]
- Jia, X.W.; Li, J.M.; Wang, P.; Qian, J.S.; Tang, M.H. Preparation and mechanical properties of magnesium phosphate cement for rapid construction repair in ice and snow. Constr. Build. Mater. 2019, 229, 116927.1–116927.13. [Google Scholar] [CrossRef]
- Wang, D.Q.; Yue, Y.F.; Mi, T.W.; Yang, S.Y.; Bai, Y. Effect of magnesia-to-phosphate ratio on the passivation of mild steel in magnesium potassium phosphate cement. Corros. Sci. 2020, 174, 108848. [Google Scholar] [CrossRef]
- Banfill, P.F.G.; Teixeira, M.A.O.M.; Craik, R.J.M. Rheology and vibration of fresh concrete: Predicting the radius of action of poker vibrators from wave propagation. Cem. Concr. Res. 2011, 41, 932–941. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Paula, G.R.; Morelli, M.R. Effect of boric acid content on the properties of magnesium phosphate cement. Constr. Build. Mater. 2019, 214, 557–564. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Fang, Y.H.; Ma, Q.M.; Tan, H.B.; Wang, X.F. Effect of storage condition on basic performance of polycarboxylate superplasticiser system incorporated sodium gluconate. Constr. Build. Mater. 2019, 223, 852–862. [Google Scholar] [CrossRef]
- Ren, J. Superplasticiser for NaOH-Activated Slag: Competition and Instability between Superplasticiser and Alkali-Activator. Ph.D. Thesis, University College London (UCL), London, UK, 2016. [Google Scholar]
- Mohammed, S.J.M.; Luti, K.J.K. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater. Today-Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the Food Industry Processes. Food. Bioprocess. Tech. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Zl, A.; Dlab, C.; Xga, B. Multi-objective optimization of gap-graded cement paste blended with supplementary cementitious materials using response surface methodology. Constr. Build. Mater. 2020, 248, 118552. [Google Scholar] [CrossRef]
- Ghafari, E.; Costa, H.; Júlio, E. Statistical mixture design approach for eco-efficient UHPC. Cem. Concr. Compos. 2015, 55, 17–25. [Google Scholar] [CrossRef]
- Sonebi, M.; Abdalqader, A.; Fayyad, T.; Perrot, A.; Bai, Y. Optimisation of rheological parameters, induced bleeding, permeability and mechanical properties of supersulfated cement grouts. Constr. Build. Mater. 2020, 262, 120078. [Google Scholar] [CrossRef]
- Sonebi, M.; Lachemi, M.; Hossain, K. Optimisation of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture. Constr. Build. Mater. 2013, 38, 126–138. [Google Scholar] [CrossRef]
- Hou, D.; Chen, D.; Wang, X.; Wu, D.; Yu, R. RSM-based modelling and optimization of magnesium phosphate cement-based rapid-repair materials. Constr. Build. Mater. 2020, 263, 120190. [Google Scholar] [CrossRef]
- Yue, Y.F.; Hu, W.Y.; You, C.; Qian, J.H.; McCague, C.; Jin, F.; Al-Tabbaa, A.; Mo, L.W.; Deng, M.; Bai, Y. A Statistical Investigation of the Rheological Properties of Magnesium Phosphate Cement. In Proceedings of the International Workshop on Innovation in Low-Carbon Cement & Concrete Technology, London, UK, 21–24 September 2016. [Google Scholar]
- Lahalle, H.; Coumes, C.C.D.; Mercier, C.; Lambertin, D.; Gauffinet, S. Influence of the w/c ratio on the hydration process of a magnesium phosphate cement and on its retardation by boric acid. Cem. Concr. Res. 2018, 109, 159–174. [Google Scholar] [CrossRef]
- Robert, J.; Flatt. Dispersion forces in cement suspensions. Cem. Concr. Res. 2004, 34, 399–408. [Google Scholar] [CrossRef]
- Perrot, A.; Lecompte, T.; Khelifi, H.; Brumaud, C.; Hot, J.; Roussel, N. Yield stress and bleeding of fresh cement pastes. Cem. Concr. Res. 2012, 42, 937–944. [Google Scholar] [CrossRef]
- Rubio-Hernández, F.; Adarve-Castro, A.; Velázquez-Navarro, J.; Páez-Flor, N.; Delgado-García, R. Influence of water/cement ratio, and type and concentration of chemical additives on the static and dynamic yield stresses of Portland cement paste. Constr. Build. Mater. 2020, 235, 117744. [Google Scholar] [CrossRef]
- Struble, L.J.; Lei, W.G. Rheological changes associated with setting of cement paste. Adv. Cem. Based. Mater. 1995, 2, 224–230. [Google Scholar] [CrossRef]
- Lu, Z.; Hou, D.; Ma, H.; Fan, T.; Li, Z. Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste. Constr. Build. Mater. 2016, 119, 107–112. [Google Scholar] [CrossRef]
- Le Rouzic, M.; Chaussadent, T.; Platret, G.; Stefan, L. Mechanisms of k-struvite formation in magnesium phosphate cements. Cem. Concr. Res. 2017, 91, 117–122. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Spanjers, H.; Lier, J.B.V. Struvite crystallization under a marine/brackish aquaculture condition. Bioresour. Technol. 2016, 218, 1151–1156. [Google Scholar] [CrossRef]
- Moseke, C.; Saratsis, V.; Gbureck, U. Injectability and mechanical properties of magnesium phosphate cements. J. Mater. Sci. Mater. Med. 2011, 22, 2591–2598. [Google Scholar] [CrossRef]
- Feng, P.; Zhou, S.G.; Zhao, J. Effect of cattle manure ash on workability and mechanical properties of magnesium phosphate cement. Constr. Build. Mater. 2016, 129, 79–88. [Google Scholar] [CrossRef]
- Lahalle, H.; Céline, C.; Mesbah, A.; Lambertin, D.; Cannes, C.; Delpech, S.; Gauffinet, S. Investigation of magnesium phosphate cement hydration in diluted suspension and its retardation by boric acid. Cem. Concr. Res. 2016, 87, 77–86. [Google Scholar] [CrossRef]
Independent Variables | Symbols | Actual Values for the Coded Values | ||||
---|---|---|---|---|---|---|
−α (−1.682) | −1 | 0 | +1 | +α (+1.682) | ||
W/S ratio | X1 | 0.18 | 0.20 | 0.24 | 0.28 | 0.30 |
M/P ratio | X2 | 2 | 4.03 | 7 | 9.97 | 12 |
borax dosage | X3 | 0.13 | 0.14 | 0.16 | 0.17 | 0.18 |
Runs | W/S Ratio (X1) | M/P Ratio (X2) | Borax Dosage (X3) |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | −1 | 1 | −1 |
3 | 0 | 0 | 1.682 |
4 | 0 | 0 | 0 |
5 | 0 | 0 | 0 |
6 | −1 | −1 | −1 |
7 | −1.682 | 0 | 0 |
8 | 0 | 0 | −1.682 |
9 | 1.682 | 0 | 0 |
10 | 1 | 1 | −1 |
11 | 0 | 0 | 0 |
12 | 1 | −1 | 1 |
13 | −1 | 1 | 1 |
14 | −1 | −1 | 1 |
15 | 0 | −1.682 | 0 |
16 | 0 | 0 | 0 |
17 | 1 | 1 | 1 |
18 | 0 | 0 | 0 |
19 | 1 | −1 | −1 |
20 | 0 | 1.682 | 0 |
Runs | Variables in Coded Values | Responses | |||||
---|---|---|---|---|---|---|---|
W/S Ratio (X1) | M/P Ratio (X2) | Borax Dosage (X3) | Initial Mini Slump/mm(Y1) | Mini-Slump Loss (Y2) | Yield Stress/Pa (Y3) | Plastic Viscosity/Pa·s (Y4) | |
1 | 0 | 0 | 0 | 159 | 33 | 2.03 | 0.77 |
2 | −1 | 1 | −1 | 140 | 102 | 122.65 | −1.47 |
3 | 0 | 0 | 1.682 | 156 | 22 | 1.18 | 0.59 |
4 | 0 | 0 | 0 | 152 | 22 | 1.76 | 0.70 |
5 | 0 | 0 | 0 | 155 | 25 | 1.39 | 0.74 |
6 | −1 | −1 | −1 | 142 | 12 | 3.57 | 1.42 |
7 | −1.682 | 0 | 0 | 134 | 96 | 7.38 | 3.00 |
8 | 0 | 0 | −1.682 | 156 | 22 | 10.96 | 0.81 |
9 | 1.682 | 0 | 0 | 164 | 6 | 1.17 | 0.36 |
10 | 1 | 1 | −1 | 175 | 137 | 7.18 | 0.37 |
11 | 0 | 0 | 0 | 168 | 36 | 1.46 | 0.66 |
12 | 1 | −1 | 1 | 155 | 10 | 0.68 | 0.33 |
13 | −1 | 1 | 1 | 144 | 31 | 4.20 | 2.10 |
14 | −1 | −1 | 1 | 143 | 13 | 1.84 | 0.90 |
15 | 0 | −1.682 | 0 | 156 | 23 | 0.98 | 0.31 |
16 | 0 | 0 | 0 | 161 | 31 | 1.13 | 0.69 |
17 | 1 | 1 | 1 | 158 | 20 | 1.85 | 0.46 |
18 | 0 | 0 | 0 | 147 | 17 | 1.40 | 0.72 |
19 | 1 | −1 | −1 | 160 | 8 | 0.90 | 0.31 |
20 | 0 | 1.682 | 0 | 147 | 109 | 18.50 | 0.88 |
Test | Initial Mini Slump /mm | Mini-Slump Loss | Yield Stress /Pa | Plastic Viscosity /Pa·s |
---|---|---|---|---|
Mean (n = 6) | 157.00 | 27.33 | 1.53 | 0.71 |
Standard Derivation | 7.35 | 7.23 | 0.32 | 0.04 |
Standard Error | 3.00 | 2.95 | 0.13 | 0.02 |
Coefficient of Variation (%) | 4.68 | 26.45 | 20.78 | 5.44 |
Source | Responses | ||||
---|---|---|---|---|---|
Initial Mini-Slump (Y1) | |||||
Sum of Squares | DF | MS | F-Value | p-Value (Prob > F) | |
Model | 1248.51 | 3 | 416.17 | 9.67 | 0.0007 |
X1 | 1227.10 | 1 | 1227.10 | 28.53 | 0.0001 |
X2 | 0.25 | 1 | 0.25 | 0.01 | 0.9397 |
X3 | 21.16 | 1 | 21.16 | 0.49 | 0.4931 |
Residual | 688.29 | 16 | 43.02 | ||
Lack of fit | 418.29 | 11 | 38.03 | 0.70 | 0.7090 |
Pure Error | 270.00 | 5 | 54.00 | ||
Cor Total | 1936.80 | 19 | |||
R2 | 0.6446 | ||||
Adeq Precision | 10.8699 |
Source | Responses | ||||
---|---|---|---|---|---|
Mini-Slump Loss (Y2) | |||||
Sum of Squares | DF | MS | F-Value | p-Value (Prob > F) | |
Model | 19,992.14 | 6 | 3332.02 | 5.18 | 0.0063 |
X1 | 1321.90 | 1 | 1321.90 | 2.06 | 0.1753 |
X2 | 11,230.80 | 1 | 11,230.80 | 17.46 | 0.0011 |
X3 | 2506.07 | 1 | 2506.07 | 3.90 | 0.0700 |
X1X2 | 120.13 | 1 | 120.13 | 0.19 | 0.6727 |
X1X3 | 253.13 | 1 | 253.13 | 0.39 | 0.5413 |
X2X3 | 4560.13 | 1 | 4560.13 | 7.09 | 0.0195 |
Residual | 8361.61 | 13 | 643.20 | ||
Lack of fit | 8100.28 | 8 | 1012.54 | 19.37 | 0.0023 |
Pure Error | 261.33 | 5 | 52.27 | ||
Cor Total | 28,353.75 | 19 | |||
R2 | 0.7051 | ||||
Adeq Precision | 7.6423 |
Source | Responses | ||||
---|---|---|---|---|---|
Yield Stress (Y3) | |||||
Sum of Squares | DF | MS | F-Value | p-Value (Prob > F) | |
Model | 9716.05 | 6 | 1619.34 | 5.13 | 0.0066 |
X1 | 1277.66 | 1 | 1277.66 | 4.05 | 0.0655 |
X2 | 1836.17 | 1 | 1836.17 | 5.82 | 0.0314 |
X3 | 1480.18 | 1 | 1480.18 | 4.69 | 0.0496 |
X1X2 | 1624.22 | 1 | 1624.22 | 5.14 | 0.041 |
X1X3 | 1642.51 | 1 | 1642.51 | 5.2 | 0.0401 |
X2X3 | 1855.32 | 1 | 1855.32 | 5.88 | 0.0307 |
Residual | 4104.84 | 13 | 315.76 | ||
Lack of fit | 4104.33 | 8 | 513.04 | 5086.84 | <0.0001 |
Pure Error | 0.5 | 5 | 0.1 | ||
Cor Total | 13,820.88 | 19 | |||
R2 | 0.7030 | ||||
Adeq Precision | 9.6694 |
Source | Responses | ||||
---|---|---|---|---|---|
Plastic Viscosity (Y4) | |||||
Sum of Squares | DF | MS | F-Value | p-Value (Prob > F) | |
Model | 6.84 | 6 | 1.14 | 2.3 | 0.0979 |
X1 | 2.57 | 1 | 2.57 | 5.18 | 0.0404 |
X2 | 0.02 | 1 | 0.02 | 0.04 | 0.8384 |
X3 | 0.57 | 1 | 0.57 | 1.15 | 0.3030 |
X1X2 | 0.44 | 1 | 0.44 | 0.89 | 0.3623 |
X1X3 | 1.08 | 1 | 1.08 | 2.18 | 0.1636 |
X2X3 | 2.16 | 1 | 2.16 | 4.37 | 0.0569 |
Residual | 6.44 | 13 | 0.5 | ||
Lack of fit | 6.43 | 8 | 0.8 | 533.79 | <0.0001 |
Pure Error | 0.01 | 5 | 0.002 | ||
Cor Total | 13.28 | 19 | |||
R2 | 0.5151 | ||||
Adeq Precision | 6.1537 |
Initial Mini Slump | Mini-Slump Loss | Yield Stress | Plastic Viscosity | |||||
---|---|---|---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
Intercept | 153.60 | 38.75 | 9.61 | 0.73 | ||||
X1 | 9.48 | <0.0001 | −9.84 | 0.1753 | −9.67 | 0.0655 | −0.43 | 0.0404 |
X2 | 0.14 | 0.9397 | 28.68 | 0.0011 | 11.60 | 0.0314 | −0.04 | 0.8384 |
X3 | −1.24 | 0.4931 | −13.55 | 0.0700 | −10.41 | 0.0496 | 0.20 | 0.3030 |
X1X2 | 3.88 | 0.6727 | −14.25 | 0.0410 | 0.24 | 0.3623 | ||
X1X3 | −5.63 | 0.5413 | 14.33 | 0.0401 | −0.37 | 0.1636 | ||
X2X3 | −23.88 | 0.0195 | −15.23 | 0.0307 | 0.52 | 0.0569 |
Parameters | Importance | Weight | Goal | Predict Value |
---|---|---|---|---|
W/S Ratio (X1) | 3 | 1 | In range | 0.280 |
M/P Ratio (X2) | 3 | 1 | In range | 7.528 |
Borax Dosage (X3) | 3 | 1 | In range | 0.170 |
Yield Stress/Pa | 5 | 1 | Minimise | 0.680 |
Plastic Viscosity/Pa·s | 3 | 1 | In range | 0.263 |
Initial Mini Slump/mm | 5 | 1 | Maximise | 161.858 |
Mini-Slump Loss | 5 | 1 | Minimise | 11.282 |
Desirability | 0.867 |
Runs | 1 d Compressive Strength/MPa | 7 d Compressive Strength/MPa |
---|---|---|
1 | 23.7 | 34.6 |
2 | 33.8 | 34.4 |
3 | 19.1 | 39.0 |
4 | 21.8 | 32.2 |
5 | 23.3 | 33.2 |
6 | 22.4 | 33.8 |
7 | 27.5 | 43.1 |
8 | 29.2 | 32.3 |
9 | 13.7 | 15.8 |
10 | 9.2 | 10.6 |
11 | 21.0 | 30.8 |
12 | 18.5 | 22.8 |
13 | 21.7 | 22.9 |
14 | 21.5 | 31.9 |
15 | n.a. | n.a. |
16 | 21.7 | 32.8 |
17 | 11.1 | 11.6 |
18 | 19.9 | 27.2 |
19 | 10.2 | 14.1 |
20 | 7.2 | 8.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Ren, J.; Yang, K.; Wang, D.; Qian, J.; Bai, Y. Investigation and Optimisation of the Rheological Properties of Magnesium Potassium Phosphate Cement with Response Surface Methodology. Materials 2022, 15, 6815. https://doi.org/10.3390/ma15196815
Yue Y, Ren J, Yang K, Wang D, Qian J, Bai Y. Investigation and Optimisation of the Rheological Properties of Magnesium Potassium Phosphate Cement with Response Surface Methodology. Materials. 2022; 15(19):6815. https://doi.org/10.3390/ma15196815
Chicago/Turabian StyleYue, Yanfei, Jun Ren, Kai Yang, Danqian Wang, Jueshi Qian, and Yun Bai. 2022. "Investigation and Optimisation of the Rheological Properties of Magnesium Potassium Phosphate Cement with Response Surface Methodology" Materials 15, no. 19: 6815. https://doi.org/10.3390/ma15196815
APA StyleYue, Y., Ren, J., Yang, K., Wang, D., Qian, J., & Bai, Y. (2022). Investigation and Optimisation of the Rheological Properties of Magnesium Potassium Phosphate Cement with Response Surface Methodology. Materials, 15(19), 6815. https://doi.org/10.3390/ma15196815