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Abstract: Functionalization of titanium (Ti)-based alloy implant surfaces by deposition of calcium
phosphates (CaP) has been widely recognized. Substituted hydroxyapatites (HA) allow the coating
properties to be tailored based on the use of different Ca substitutes. The formation of antibacterial
CaP coatings with the incorporation of Zn or Cu by an RF magnetron sputtering is proposed. The
influence of RF magnetron targets elemental composition and structure in the case of Zn-HA and
Cu-HA, and the influence of substrate’s grain size, the substrate’s temperature during the deposition,
and post-deposition heat treatment (HT) on the resulting coatings are represented. Sintering the
targets at 1150 ◦C resulted in a noticeable structural change with an increase in cell volume and
lattice parameters for substituted HA. The deposition rate of Cu-HA and Zn-HA was notably higher
compared to stochiometric HA (10.5 and 10) nm/min vs. 9 ± 0.5 nm/min, respectively. At the
substrate temperature below 100 ◦C, all deposited coatings were found to be amorphous with an
atomic short-range order corresponding to the {300} plane of crystalline HA. All deposited coatings
were found to be hyper-stochiometric with Ca/P ratios varying from 1.9 to 2.5. An increase in
the substrate temperature to 200 ◦C resulted in the formation of equiaxed grain structure on both
coarse-grained (CG) and nanostructured (NS) Ti. The use of NS Ti notably increased the scratch
resistance of the deposited coatings from18 ± 1 N to 22 ± 2 N. Influence of HT in air or Ar atmosphere
is also discussed. Thus, the deposition of Zn- or Cu-containing CaP is a complex process that could
be fine-tuned using the obtained research results.

Keywords: antibacterial effect; biocompatibility; calcium phosphate; ion substitution; physical vapor
deposition; thin films

1. Introduction

New materials for regenerative medicine are in high demand due to the aging of the
ever-increasing population [1]. The most important parameter among others for newly
developed materials ready to be introduced into clinical practice is their biocompatibil-
ity [2]. Biocompatible materials can be divided into three groups: biotolerant, bioinert, and
bioactive [3]. Bioinert alloys, a striking representative of which are titanium (Ti)-based
alloys, are characterized by osteoconductive property, which means that these materials
are not included into the metabolic process, are not dissolved in the body, but their surface
can provide a physical and mechanical connection to body tissues, and their oxide film
promotes the adhesion of various proteins that trigger the osseointegration process [4]. On
the other hand, it is known that the wear of the metal surface of implants occurs during
their service life, e.g., the cobalt-chrome-molybdenum alloy wears at an average rate of
0.02–0.06 mm over 10 years. The metal chips or particles that appear during wear are
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phagocytized by macrophages, which produce IL-1, IL-6, TNF, PGE2, and other cytokines,
causing a cascade of immune reactions [5]. The same goes for Ti-based alloys, in the work by
Kovac et al. [6], where metal ions release after orthodontic appliances were studied, a risk of
the local inflammatory process was confirmed. At present, one of the main tasks of medical
materials science is to study the wear mechanisms and minimize the formation of metal
particles during the implant lifetime [7], including the application of protective coatings.

In this regard, the deposition of calcium phosphates (CaP) can prevent implant corro-
sion and the formation of wear debris while simultaneously providing the desired bioactiv-
ity. Such bioactive materials promote bone tissue regeneration and, due to the metabolism
of the bone matrix, upon dissolution are partially or completely replaced by bone tissue
over time. Various CaP are striking examples of the bioactive materials group [8]. One of
the properties of CaP, and especially hydroxyapatite (HA, Ca10(PO4)6(OH)2), is the ability
of ion substitution in the anionic and cationic sublattices of HA and the occurring variability
of structural characteristics and physicochemical properties of this material. Even though
HA is the most widely used material among all other CaP materials in clinical practice [9],
a more promising approach is to use the substituted HA which could be fine-tuned for a
specific clinical case due to the properties of the substituent ion [8]. Substitutions in the
apatite structure have been developed for a wide range of biomedical applications, such as
bone repair and tissue regenerations; bioactive and/or antibacterial coating for medical
devices, biomarkers, or carriers in drug/gene delivery systems; and biomagnetic agents
for cancer treatment [10]. These properties are due to the unique structural characteristics
of HA, the unit cell of which is represented in Figure 1 [11]. HA belongs to the class of
minerals whose composition has a general formula: M10(ZO4)6X2, where M is one-, two-,
three-valent cations (K+, Ca2+, Sr2+, Ba2+, Pb2+, Na+, Mn2+, Mg2+, Th3+, Ni2+, etc.); ZO4 is
one-, two-, three-valent cation. ); ZO4—mono-, bi- and trivalent anions (PO4

3−, SiO4
3−,

CO3
2−, AsO4

3−, SO4
2−,VO4

3− etc.); X—mono- and divalent anions (F−, Cl−, OH−, O2−,
CO3

2− etc.) [12].
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Currently, a large number of scientific groups is engaged in the manufacturing and
application of HA-based bio-coatings with partial substitution of Ca2+ cations for other
metal cations, such as Ag2+, Si2+, Sr2+, Cu2+, and Zn2+ in the structure, since such substitu-
tions significantly change the physicochemical and biological properties of HA. However,
Zn2+ and Cu2+ substitutions appear to be some of the most promising approaches for
overcoming the ever-existing problem of septic instability of implants and various in-
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fections [8]. It is established that these ions contribute to the processes of osteogenesis
(bone formation) [13]. Zn2+ promotes bone formation and regeneration by supporting the
activity of osteoclasts and reducing the activity of osteoblasts [14]. The influence of Cu2+ is
characterized by substantial biological activity [15]. This cation is also antibacterial and
promotes osteogenesis. However, it has been reported that Cu2+ is a more “active” cation
when compared to Zn2+ and has a higher potential for cytotoxicity at relatively high concen-
trations [16]. Cu-substituted HA (Cu-HA) was found to have good barrier characteristics
and provide corrosion protection for Ti substrates [17]. While it is possible to manufacture
Zn-substituted HA (Zn-HA) or Cu-HA by a “wet”-chemical method, it is also possible to
obtain it by solid-phase synthesis (mechanochemical synthesis), as described in [15]. For
example, it has been established that by using the Zn(H2PO4)2 2H2O reactant during the
synthesis, it is possible to substitute up to x ≤ 0.8 in the Ca10-xZnx(PO4)6(OH)2 structure
without the production of secondary phases, namely amorphous calcium phosphate (ACP)
or tricalcium phosphate (TCP, Ca3(PO4)2). Substituted HA having Cu+ and Cu2+ in the
lattice could also be produced by mechanochemical synthesis [18]. Thus, in the present
study, we focused on the manufacturing of Zn-HA and Cu-HA using mechanochemical
synthesis for subsequent use in coatings deposition.

There are a number of methods of CaP coating deposition. These methods include
plasma spraying [19], micro-arc oxidation or plasma electrolytic oxidation (PEO) [20,21],
laser ablation [22], and RF magnetron sputtering [23,24]. All of the above methods have
their advantages and disadvantages, but it is worth noting that today, more and more
research is focused on the formation of coatings by physical vapor deposition (PVD)
methods. An RF magnetron sputtering, a striking example of the PVD family of methods
for CaP deposition allows to greatly vary the functional properties of the coatings, precisely
control the chemical composition, and obtain coatings with a high degree of adhesion to
the substrate, which is certainly a key factor for their application in medicine. In a recent
report by Kozelskaya et al. [25], an RF magnetron sputtering of Mg- or Sr-substituted
HA and TCP targets for the functionalization of CaP PEO coatings resulted in multilevel
roughness. However, the structure of sintered targets and the deposition rate are not
reported. Similarly, a deposition rate in relation to stochiometric Zn-HA is not reported in
the work following the report [26], where the initial powder was obtained by wet chemical
precipitation. Even at a relatively high 10 mol.% of substitution in HA lattice, sintering of
the target did not result in the formation of byproducts or secondary phases. However, the
exact position of Zn ions in the HA lattice is hard to confirm. Contrary to that, sintering of
the Zn-HA powder, also obtained by wet chemical precipitation, with a Zn concentration of
7.8 at.% at 1150 ◦C resulted in the formation of multiphased target comprised of ZnO, CaO,
TCP, and HA phases as reported in [27]. Hence, the target sintering conditions, the method
of substituted HA manufacturing and substitution concentrations significantly affect the
resulting target material. Hence, a more thorough study in this regard is needed. In our
work, mechanochemical synthesis for obtaining HA, Zn-HA, and Cu-HA and subsequent
target formation was used.

Moreover, it is still debated which state of bioactive coatings should be used in clinical
practice: crystalline, amorphous, or nano-bio-composite, which is a mixture of both phases.
It has been demonstrated that the rate of HA osteointegration with bone depends not only
on the composition, but also on the rate of calcium and phosphate ions released from the
HA structure, which is the determining factor in the establishment of a strong implant-bone
integration [28]. It has been demonstrated in a number of studies that the dissolution
rate of the coatings decreases with a decrease in the fraction of ACP. If there is a need for
rapid release of bioavailable calcium phosphate, it is advisable to use ACP-based coatings.
However, in [29], it was shown that ACP causes high monocyte adhesion and increased
TNF-α secretion indicates increased undesirable local inflammatory activity. In this regard,
the use of ACP in vitro is not always accompanied by a positive result. On the other hand,
a recent in vivo study showed that Ti-based implants with controlled nanotopography
(hemispherical structural elements not exceeding 80 nm in size) result in less macrophage
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adhesion and low local inflammatory activity, which suggests that ACP is promising for
in vivo rather than in vitro conditions. Indeed, the high dissolution rate does not always
have a negative effect on bio-objects. Thin ACP coatings have been shown to significantly
enhance osteogenesis compared to crystalline HA. This effect is due to the rapid dissolution
of ACP and the release of ions that are both therapeutic agents and building blocks of
new bone tissue [30]. It was noticed that the topography and chemical composition of
the surface of amorphous ACP and substituted HA coatings significantly increase cell
adhesion without disturbing the vital activity of cells [31]. It was found [32] that ACP
deposited on the implant surface can be beneficial for local physiological activity and can
stimulate active bone growth. It is reported that the dissolution of ACP is a necessary
preliminary stage of bone tissue transformation and healing. In [33], it was found that
the deposition of biological HAs in vivo is observed only in the case of the HA coating
with a low degree of crystallinity. On the other hand, it is noted that HA coatings with
a high degree of crystallinity have the most favorable effect on osteoblast proliferation,
since they are almost insoluble in the culture medium and, therefore, represent a stable
surface to which cells can adhere under in vitro conditions. However, such experiments
usually do not take into account the influence of osteoclasts, cells that remove bone tissue
through a dissolution of its mineral component and hence the dissolution of CaP coatings.
It is known that experiments performed in vitro are not always successfully translated
and have predictable results under in vivo conditions [34]. For example, according to
recent data, no statistically accurate difference between the success rate of CaP coatings
with variable degrees of crystallinity (55% vs. 98%) obtained by plasma spraying has
been established [35]. The work also noted the risk of forming relatively thick (100 µm)
amorphous-crystalline coatings. The risk is related to the fact that while the amorphous
phase dissolves, the crystalline phase in the form of particles is released from the coating
volume and accumulates in the body tissues, which can cause an undesirable immune
reaction. Some published papers discuss computational studies regarding implant wear [4],
the formation of CaP in the liquid phase [36], and the structure and properties of defected
HA [37]. Thus, it is important to be able to fine-tune the formation of CaP coatings in terms
of their crystallinity and elemental composition for further application in specific clinical
cases with the aid of computational studies.

In the available literature, however, the structural characteristics of sintered targets
from substituted HA and their influence on the deposition rate are rarely discussed [25–27].
Even though the deposition rate is crucial for tailoring the needed properties of deposited
layers. Little attention is paid to the thin structure of deposited coatings, the predominant
majority of papers related to CaP deposition analyze its structure using X-ray diffraction
(XRD) or Fourier transform infrared (FTIR) analysis while transmission electron microscopy
(TEM) studies, which could be found elsewhere [24,27,38,39], are very limited, although
it could provide more insightful information. Post-deposition HT is routinely used for
the improvement of crystallinity [24,24,40]. However, a comparison of structure evolution
after HT in different ambient conditions such as air or Ar gas is rarely discussed. Lastly,
nanostructured Ti is becoming more widely used in clinics due to its high mechanical
properties [41,42]; however, the influence of substrates’ crystallinity state on the mechanical
properties and crystallinity of deposited coatings is rarely discussed.

In our study, we tried to explore the physicomechanical properties of CaP coatings after
sputtering Zn-HA and Cu-HA at the highest possible concentrations that mechanochemical
synthesis could provide minding the fact that the obtained targets should contain only
a single phase of HA even after sintering. In the present paper, we report the research
results of a comprehensive study that describes the influence of targets’ elemental and
phase composition in the case of Zn-HA and Cu-HA, the structural state of Ti substrates,
gas atmosphere during post-deposition heat treatment, and in situ heating on Zn or Cu
containing CaP coating’s structure and properties.
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2. Materials and Methods

The workflow of the current study is schematically represented in Figure 2. A detailed
description of each of these stages is given below in Sections 2.1 and 2.2.
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2.1. RF Magnetron Target Manufacturing

Targets for magnetron sputtering were fabricated from HA powders (Ca10(PO4)6(OH)2),
Cu-HA (Ca9.8Cu0.2(PO4)6(OH)2), and Zn-HA (Ca9.6Zn0.4(PO4)6(OH)2).

The starting materials for targets based on Zn-HA and Cu-HA were powders obtained
by mechanochemical synthesis (MC) in the Laboratory of Intercalation and Mechanochemi-
cal Reactions of the Institute of Solid State Chemistry and Mechanochemistry of the Siberian
Branch of the RAS, Novosibirsk [43]. In mechanochemical synthesis, chemical reactions are
initiated by the energy released during the collision of balls in a special planetary ball mill
under the action of friction forces. To obtain powders of stoichiometric HA and HA with
substitutions, a planetary ball mill with three steel drums, each with a volume of 2000 mL,
was used. The duration of the process was 25–30 min. The reactions by which the synthesis
took place are presented below:

6CaHPO4 + 4CaO = Ca10(PO4)6(OH)2·2H2O;

6CaHPO4 + 3.8CaO + 0.2CuO = Ca9.8Cu0.2(PO4)6(OH)2·2H2O
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5.2CaHPO4 + 4.4CaO + 0.4(Zn(H2PO4)2·2H2O) = Ca9.6Zn0.4(PO4)6(OH)2·3.2H2O

The targets from the obtained powders were formed by uniaxial pressing in steel
molds using a MIS-6000.4K hydraulic press (OOO IMASH, Armavir, Russia). A four-
stage pressing mode was chosen with maximum pressure in the mold at the last stage of
65–75 MPa. Sintering of the targets was conducted in an air atmosphere in an ITM 12.1200
electric furnace (OOO ITM, Tomsk, Russia). When choosing the modes of sintering of
pressed targets, we used the recommendations on the regularities of sintering given in
the review by S.M. Barinov and V.S. Komlev [44], and the results of earlier dilatometric
studies of shrinkage during annealing. The maximum sintering temperature was 1150 ◦C,
the heating cycle to the maximum temperature was 4 h, and the cooling cycle was more
than 30 h. The resulting ceramic targets made of HA, Cu-HA, and Zn-HA have a diameter
of 110 mm. After sintering targets were mounted on a magnetron sputtering device.

2.2. RF Magnetron Deposition on Titanium Substrates

The substrates for deposition in the present work were as received titanium grade 2
(Ti) produced in Russia (VSMPO-AVISMA, Verkhnyaya Salda, Russia) both in the coarse-
grained (CG) and nanostructured state (NS Ti) according to a protocol of severe plastic
deformation reported elsewhere [45], with dimensions of 10 mm × 10 mm × 1 mm.

Before the stage of coating deposition by the RF magnetron sputtering method, all
samples were mechanically processed using grinding papers of the following grades P400,
P600, P1000 (GOST 6456-82). Next, the samples were polished using diamond pastes with
an abrasive capacity of 14/10 and 5/3 (GOST 25593-83). After polishing, the surfaces of Ti
disks were subjected to ultrasonication in acetone, soapy water, and alcohol. After that, the
samples were dried at room temperature. During each deposition process, the silicon wafer
(100) (Si) 10 mm × 10 mm in size was also deposited for further ellipsometry studies.

In this work, an RF (13.56 MHz) magnetron installation was used for the formation
of CaP coatings. The unit is equipped with a 2.5 kW RF power supply (COMDEL CX-
2500S, Gloucester, MA, USA with an automatic matching network (COMDEL Match pro
CPMX-2500, Gloucester, MA, USA). CaP coatings were deposited in a vacuum chamber
where the pressure of working gas Ar was controlled by a gas flow meter and was set
to 20 sccm which resulted in 0.1 Pa during deposition. The geometry of the location of
the magnetrons relative to the substrate holder makes it possible to deposit coatings at
various distances from the target surface to the samples in the range from 40 to 120 mm. It
also resulted in different heating of the substrates during deposition. At the distance of
40 mm the substrate temperature reached 200 ◦C without an additional source of heating
according to chromel-alumel thermocouple, while at the throw distance of 60 mm and
more, the substrate temperature was not higher than 100 ◦C. The substrate holder was
under a floating potential and in the process of deposition of coatings on the samples is
located under the magnetron target. The samples were deposited in stationary mode, i.e.,
no rotation of the substrate holder was performed. The duration of the deposition process
varied in the range from 120 to 240 min, and the supplied RF power from 150 to 350 W in
order to study the kinetics of coatings growth. Before each deposition run, the target in use
was pre-sputtered by gradually ramping up the supplied RF power with a rate of 50 W per
5 min.

To study the effect of post-deposition HT on the structure and properties of CaP
coatings, a furnace with a quartz tube was used. The coatings were subjected to HT both in
air and in a protective Ar gas atmosphere. In the case of HT in a protective Ar atmosphere,
the samples with RF coatings were placed in a quartz tube. The volume of the tube was
evacuated to a residual pressure of 1 Pa using a rotary pump, followed by the protective Ar
gas to a pressure of 35 kPa. The duration of isothermal exposure at temperatures of 400 ◦C
and 700 ◦C was 3 h in a protective Ar atmosphere. The duration of isothermal holding
in air at a temperature of 700 ◦C was 1 h. The rate of heating and cooling did not exceed
15 ◦C/min.
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2.3. Materials Characterization

To study the structure of the obtained HA powders, targets after sintering, and result-
ing RF magnetron coating, an X-ray diffraction (XRD) method was chosen. To determine
the structural-phase state of powder material and sputtering targets, we used a DRON-7
diffractometer (Bourevestnik, St. Petersburg, Russia) in the range of angles 2θ = 10–100◦

with scanning step 0.02◦ in Co-Kα radiation at accelerating voltage 35 kV and cathode
current 22 mA. Step accuracy of DRON-7 is 0.0005◦. To determine the lattice parameters,
the size of coherent scattering regions (CSRs), and the magnitude of internal stresses,
the full-profile analysis Rietveld method was used. In all the cases, Rexp

2-factor was not
less than 0.96. Calculations of the lattice parameters and phase relations were performed
using the program of full-profile analysis Powder Cell 2.4 (Federal Institute for Mate-
rials Research and Testing, Berlin, Germany). XRD study was performed in standard
Bregg–Brentano geometry. Standard ICDD PDF 4+ (International Centre for Diffraction
Data, Newtown Square, PA, USA) cards were used for phase analysis: HA (00-009-0432),
Ca3(PO4)2 (00-032-0176), and Ti (00-044-1294).

To study an RF magnetron-deposited coating an X-ray diffractometer Shimadzu XRD
6000 (Shimadzu, Kyoto, Japan) with Cu-Kα-radiation in the range of angles 2θ = 5–90◦

with scanning step 0.04◦ at accelerating voltage 40 kV and cathode current 30 mA was
used. Shimadzu step accuracy is 0.0001◦. Cu-radiation was applied for studies of deposited
coatings, as it allows for reducing the background in XRD patterns and reveals more phases
due to the deeper penetration of the X-ray beam into the sample. The degree of crystallinity
of the coatings was evaluated using the method described in [46,47]. The crystallinity index
of CaP coatings was calculated using the following formula:

Crystallinity index =
Icoating

Itarget
∗ 100%, (1)

where Icoating is the sum of intensities of the main HA reflexes determined on the X-ray
profile of the coatings, namely (002), (210), (211), (112), (300), (202) planes, and Itarget is the
sum of intensities of the corresponding reflexes from the target. In this method, the degree
of crystallinity of the target is considered to be equal to 100%.

The coatings’ thickness was determined by ellipsometry on Si samples made of
monocrystalline polished silicon with dimensions of at least 5 mm × 5 mm. The mea-
surements were carried out on a spectral ellipsometric complex ELLIPS-1891 SAG (SPC
“Nanotechnology center”, Novosibirsk, Russia). At least six samples related to six deposi-
tion runs per sputtering target working at the same sputtering conditions were evaluated
and results are presented as mean ± SD. To study the adhesion of CaP coatings, a benchtop
measuring scratch macro tester Revetest RST (CSM Instruments, Needham Heights, MA,
USA) was used. In each measurement, the scratching track length was 7 mm, and the
load on the indenter with a radius of curvature of 20 µm varied from 10 to 30 N. At least
three measurements per sample were performed. The results are reported as mean ± SD.
A Zeiss Libra 200 Transmission Electron Microscope (Zeiss, Jena, Germany) and a JEOL
JEM-2100 (JEOL, Akishima, Japan) transmission electron microscope were used to study
the microstructure of the CaP coatings. The guaranteed resolution of Libra 200 is 0.12 nm
and of JEM2100 is 0.14 nm. Preparation of the samples for TEM was performed by ion
thinning at low angles and low energies, to minimize the effect on the structure of the
coatings, on the Jeol Ion Slicer EM-09100 IS (JEOL, Akishima, Japan).

3. Results
3.1. Targets for RF Magnetron Sputtering

Before the target synthesis step, the initial Zn-HA, Cu-HA, and HA powders after
mechanochemical synthesis were analyzed. XRD of Zn-HA and Cu-HA powders compared
to stoichiometric HA are shown in Figure 3. The XRD pattern contains reflections of the
crystalline phase of HA, without residual phases or byproducts of synthesis. The HA peaks,
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according to the ICDD database are shown by dotted lines. As can be seen, the positions of
some peaks are shifted, which may indicate changes in the lattice parameters of the HA
phase in all powders under study. At the same time, a significant broadening of the peaks
and redistribution of intensities are noticeable.
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The process of mechanochemical synthesis is a high-energy mechanical processing of
powder material, during which, in addition to mixing, particle deformation occurs, which
leads to an increase in internal stresses in the processed powder, as well as to significant
refinement of its structure and an increase in the amount of defect. Broadened peaks
with reduced intensity compared to the reference ICDD profile may indicate high internal
stresses and small values of coherent scattering regions (CSR) in the resulting powders. It
is known from the literature that HA has a hexagonal crystal lattice [48]. According to [12],
the lattice parameters of pure HA are: a = b = 9.422 Å, c = 6.881 Å, c/a = 7.158, V = 533.7 Å3.
The incorporation of Cu2+ or Zn2+ ions occurs by the mechanism of isomorphic substitution
with charge conservation. For example, substituent cations Cu2+ or Zn2+, as a rule, replace
Ca2+ in position (II) of the HA crystal lattice [12]. It is worth noting the difference in
ionic radii of ions, as the average ionic radius of Ca2+ is 0.100 ± 0.003 nm, while the ionic
radius of Cu2+ and Zn2+ is 0.075 ± 0.002 nm and 0.076 ± 0.002 nm, respectively [49].
It should be expected that a significant difference in ionic radii will affect the unit cell
volume of substituted HA. To determine the change in the unit cell parameters in the case
of substituted Cu-HA and Zn-HA, a full profile analysis was conducted. The results of
calculating the parameters of the structure of powders after mechanochemical synthesis
are presented in Table 1.

Table 1. Results of X-ray diffraction analysis of powders of HA, Cu-HA, and Zn-HA.

Powder a = b, Å c, Å V, Å3 CSR, nm

HA 9.4166 ± 0.0021 6.8775 ± 0.005 528.1 94 ± 21

Cu-HA 9.4201 ± 0.0611 6.7659 ± 0.2546 519.9 74 ± 13

Zn-HA 9.4311 ± 0.0074 6.6649 ± 0.425 513.4 76 ± 29

ICDD 9.422 6.881 533.7

As can be seen from the results presented in Table 1, the lattice parameter c for
substituted HA is significantly smaller than for stoichiometric HA. Many researchers have
noted a trend towards an increase in the lattice parameter a with a simultaneous decrease in
the lattice parameter c in cases of substitution of Zn in the composition of the HA structure
up to 5 mol.% [13,50]. This is also confirmed by our research. Along with this, the unit cell
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volume for Cu-HA and Zn-HA is 519.9 Å3 and 513.4 Å3, respectively, which is significantly
less than the cell volume of stoichiometric HA obtained in the course of mechanochemical
synthesis (528.1 Å3). The volume of the unit cell naturally decreases due to the significant
difference in the ionic radii of the Ca2+, Cu2+, and Zn2+ cations. Since after the synthesis of
Cu-HA and Zn-HA, byproducts of the reaction (CuO or ZnO) are not detected, and the
parameters of the crystal lattice of HA change significantly, it can be concluded that an
isomorphic substitution of the Ca2+ ion in position (II) on Cu2+ or Zn2+ in the crystal lattice
of HA occurred. At the same time, Cu2+ or Zn2+ ions inhibit the growth of HA crystallites,
which can be seen from the decrease in the CSR sizes.

Figure 4 shows the XRD-patterns of HA, Zn-HA, and Cu-HA targets. The composition
of these targets is represented by a single phase, Ca10(PO4)6(OH)2. The main peaks of HA
are observed. The calculated lattice parameters and unit cell volume for stoichiometric HA
correspond to the reference values (Table 2).

Materials 2022, 15, x FOR PEER REVIEW 9 of 28 
 

 

noted a trend towards an increase in the lattice parameter a with a simultaneous decrease 
in the lattice parameter c in cases of substitution of Zn in the composition of the HA struc-
ture up to 5 mol.% [13,50]. This is also confirmed by our research. Along with this, the 
unit cell volume for Cu-HA and Zn-HA is 519.9 Å3 and 513.4 Å3, respectively, which is 
significantly less than the cell volume of stoichiometric HA obtained in the course of 
mechanochemical synthesis (528.1 Å3). The volume of the unit cell naturally decreases due 
to the significant difference in the ionic radii of the Ca2+, Cu2+, and Zn2+ cations. Since after 
the synthesis of Cu-HA and Zn-HA, byproducts of the reaction (CuO or ZnO) are not 
detected, and the parameters of the crystal lattice of HA change significantly, it can be 
concluded that an isomorphic substitution of the Ca2+ ion in position (II) on Cu2+ or Zn2+ 
in the crystal lattice of HA occurred. At the same time, Cu2+ or Zn2+ ions inhibit the growth 
of HA crystallites, which can be seen from the decrease in the CSR sizes. 

Figure 4 shows the XRD-patterns of HA, Zn-HA, and Cu-HA targets. The composi-
tion of these targets is represented by a single phase, Ca10(PO4)6(OH)2. The main peaks of 
HA are observed. The calculated lattice parameters and unit cell volume for stoichiometric 
HA correspond to the reference values (Table 2). 

 
Figure 4. XRD patterns of HA, Cu-HA, and Zn-HA targets after sintering (red and gray lines repre-
sent HA etalon XRD-pattern according to PDF-card no. 00-009-0432). 

Table 2. Results of X-ray diffraction analysis and density measurements of HA, Cu-HA, and Zn-HA 
targets. 

Target a = b, Å c, Å V, Å3 𝝆𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆, 
g/cm3 

𝝆𝑿𝑹𝑫, 
g/cm3 

HA 9.4175 ± 0.0035 6.8767 ± 0.0082 528.1 2.64 ± 0.12 3.158 
Cu-HA 9.4169 ± 0.0912 6.8796 ± 0.0153 519.9 2.8 ± 0.08 3.172 
Zn-HA 9.4158 ± 0.0782 6.8911 ± 0.0096 513.4 2.83 ± 0.14 3.185 
ICDD 9.422 6.881 533.7 - 3.154 

It is worth noting the significant difference between the XRD-patterns obtained for 
the powder material and the targets after sintering. As can be seen, in the case of targets, 
the peaks are characterized by small broadenings and large intensities. This indicates a 
low level of residual stresses in the target material, low defectiveness, and large sizes of 
crystallites according to CSR sizes. This behavior may be due to the fact that during the 
target fabrication process, the powder material undergoes heat treatment, which leads to 
the relaxation of internal stresses and growth of the size of structural elements. XRD pat-
terns of Zn- or Cu-HA targets as compared to stoichiometric HA have a small change. 

Figure 4. XRD patterns of HA, Cu-HA, and Zn-HA targets after sintering (red and gray lines represent
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Table 2. Results of X-ray diffraction analysis and density measurements of HA, Cu-HA, and Zn-
HA targets.

Target a = b, Å c, Å V, Å3 ρrelative, g/cm3 ρXRD, g/cm3

HA 9.4175 ± 0.0035 6.8767 ± 0.0082 528.1 2.64 ± 0.12 3.158

Cu-HA 9.4169 ± 0.0912 6.8796 ± 0.0153 519.9 2.8 ± 0.08 3.172

Zn-HA 9.4158 ± 0.0782 6.8911 ± 0.0096 513.4 2.83 ± 0.14 3.185

ICDD 9.422 6.881 533.7 - 3.154

It is worth noting the significant difference between the XRD-patterns obtained for
the powder material and the targets after sintering. As can be seen, in the case of tar-
gets, the peaks are characterized by small broadenings and large intensities. This indi-
cates a low level of residual stresses in the target material, low defectiveness, and large
sizes of crystallites according to CSR sizes. This behavior may be due to the fact that
during the target fabrication process, the powder material undergoes heat treatment,
which leads to the relaxation of internal stresses and growth of the size of structural el-
ements. XRD patterns of Zn- or Cu-HA targets as compared to stoichiometric HA have
a small change. XRD patterns of Zn-HA and Cu-HA targets show a shift of HA phase
reflexes toward smaller angles, relative to the XRD pattern of the stoichiometric HA target.
These shifts indicate changes in lattice parameters and unit cell volume, which for Cu-HA
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were a = b = 9.4169 ± 0.0912 Å, c = 6.8796 ± 0.0153 Å, V = 528.4 Å3, and for Zn-HA were
a = b = 9.4158 ± 0.0782 Å, c = 6.8911 ± 0.0096 Å, V = 529.1 Å3. The unit cell volume and
lattice parameter c increased significantly during the synthesis of the target, indicating a
significant rearrangement of the crystal structure. These changes are also in agreement
with the previously published data for Zn-HA and Cu-HA powders after annealing at
1100 ◦C [18,43]. The results of the X-ray structural analysis of the targets are presented in
Table 2.

In the work of Bhattacharjee A. et al. [51], it is noted that at an annealing temperature
of 1100 ◦C the Zn-HA structure is transformed so that Zn2+ forms a linear O-Zn-O complex
in the hexagonal OH channel (2b Wyckoff site). This transformation was reflected in
an increase in the unit cell volume by 0.3%. A similar mechanism of O-Cu-O linear
complex formation is observed for Cu-HA after annealing at 1150 ◦C, as described in [52].
Taking into account the fact that the synthesis of targets was performed at temperatures
of 1000–1150 ◦C, and the unit cell volume of Cu-HA and Zn-HA significantly increased in
comparison with the initial state, a similar mechanism of changing the position of Cu2+

or Zn2+ cations in the HA structure can be assumed. It should be noted that Cu-HA and
Zn-HA targets are characterized by the highest values of X-ray density at close values of
lattice parameters, which can contribute to the sputtering rate. The increase in apparent
density of substituted HAs is also notable (Table 2).

Figure 5 shows photos of targets after several RF magnetron sputtering runs, which
resulted in the work-time mean of 180 h per target. The images clearly show the zone of
target erosion. It is also important to note that the target containing Cu2+ is brightly colored.
The color change of the target confirms the incorporation of Cu2+ into the HA structure, as
has already been shown by other researchers [53,54]. The incorporation of the Zn2+ cation
into the HA structure affects the color change insignificantly.
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Figure 5. Digital photos of targets with a visible zone of erosion after multiple sputtering runs.
Two areas of target erosion are highlighted in dotted lines for each photo.

The arrangement of the target relative to the substrate holder during RF magnetron
deposition is depicted in Figure 6a. From this image, the unbalanced nature of the magnetic
system is obvious. Therefore, the fact that the coatings obtained in our study underwent
ion and electron bombardment during their growth should be taken into account. It has
already been reported that the use of unbalanced magnetron systems can lead to improved
crystallinity or an increase in the adhesion of resulting coatings [55,56]. In Figure 6b a zone
of HA target erosion is presented. As was depicted in Figure 5, erosion zone is comprised
of two distinct areas that are highlighted in dotted lines and also visible in Figure 6b.

Due to the arrangement of the magnetic field in our magnetron setup, after multiple
deposition runs a complex zone of erosion consisting of two tracks was visible which is
represented in Figure 6b. Contrary to the more usual single erosion zone reported, for
example in the work [57], in our case, the use of the target material as well as coating
thickness homogeneity is significantly improved. However, the occurred zone of erosion
does not significantly change the elemental composition of the deposited film.
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Figure 6. An RF magnetron discharge and a substrate holder (a), zone of HA target erosion after
multiple deposition runs (b).

In the end of this subsection, it could be concluded that the substitution of Ca2+ by Zn2+

or Cu2+ in the HA structure after mechanochemical synthesis does not lead to the formation
of byproducts or secondary phases. When synthesizing targets from Cu-HA and Zn-HA
powders, the lattice parameters and unit cell volume of crystalline HA increase significantly.
The growth of unit cell volume during the synthesis of Cu-HA and Zn-HA targets can be
connected with the change of Zn2+ or Cu2+ substituent ions position from Ca2+ ion position
(II) in cationic sub-lattice to (OH)− group substitution in apatite structure. All obtained
targets are dense, pore-free, and suitable for the RF magnetron sputtering process.

3.2. Substituted HA Sputtering and Resulting ACP Coatings

To determine the most efficient mode of deposition of antibacterial and bioactive
coatings containing Cu or Zn, a series of experiments were performed. In order to establish
the influence of substituent ions in the HA structure on the deposition rate of CaP coatings,
experiments were performed on sputtering targets at a fixed time and distance between the
plane of the substrate holder and the target surface. The measurements were performed by
ellipsometry on a monocrystalline Si wafer. The ellipsometry measurements also provided
the information about the refractive index values n of the deposited coatings. The results are
shown in Figure 7. It was found that the growth rate of CaP coatings increases linearly with
increasing applied RF power. It was also found that HA targets having substituted ions
in their structure are sputtered more efficiently, which is reflected in the increased growth
rate of the coatings obtained from these targets relative to the HA target of stoichiometric
composition. It is known that the sublimation rate is proportional to the density of the
target material [58].
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As was shown earlier, the XRD and apparent density of the target material are sig-
nificantly higher for Cu-HA and Zn-HA compared to stoichiometric HA. Therefore, it is
assumed that in addition to the binding energy of atoms in substituted HA that is majorly
governing the sputtering yield, a significant role is played by target density, which results
in the modulation of the deposition rate. Figure 8 shows the thickness distribution of the
RF magnetron coatings obtained during the sputtering of the Cu-HA target for three hours.
The throw distance in this case was 70 mm.
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Figure 8. Thickness and refractive index distribution n of the CaP coating deposited from a Cu-HA
target on the surface of the substrate holder.

From the presented distribution, we can conclude that the area of uniform deposition
of CaP coatings is located in the diameter of 80 mm from the axis corresponding to the
projection of the central axis of the target to the surface of the substrate holder. The size of
the sputtering target (110 mm in diameter) allows to homogeneously deposit CaP coatings
on multiple samples in one deposition run or functionalize the surface of dental implants.
Moreover, the increased size of the target results in an increased area of RF discharge glow,
which in turn allows working at lower Ar pressures. The refractive index n is considered to
be an indicator of coating density because this parameter is linked to the material density
and the presence of defects in its structure. The denser the packing of structural units, the
greater the value of the refractive index according to [59,60]. Thus, we can conclude that the
coating having the higher density value is growing at the center of the substrate holder. The
coating density decreases slightly in the target erosion zone and further acquires a value
lower than that for the value characteristic of stoichiometric HA (n = 1.64).

In the case of Zn-HA and Cu-HA targets, it was found by TEM methods that the depo-
sition on Ti substrates in the CG state leads to the formation of an amorphous, dense, homo-
geneous coating with the Ca/P ratio above stoichiometric and equal to 1.7–2.0 (Figure 9).
The substrate temperature during the deposition process was recorded using a chromel-
alumel thermocouple and did not exceed 100 ◦C. Figure 9a shows a cross-sectional image of
the CaP coating on the Ti substrate. The bright-field TEM image clearly shows the interface
between the coating and the substrate. No diffusion of coating elements into the substrate
was observed. The coating is dense, without visible pores and defects. The selected area
electron diffraction (SAED) obtained from the coating area is characterized by two diffusive
halos with decreasing intensity, which is shown in Figure 9b. Figure 9c shows an averaged
intensity of the diffracted electron wave, from which the peaks of the diffuse halos were
determined. The center of the first diffusive halo is located at a distance of d = 2.71 Å, while
the second ring corresponds to d = 1.45 Å. The calculated values correspond to the values of
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diffraction maxima from the {300}HA and {304}HA planes according to ICDD database. The
appearance of the second halo was usually observed when imaging the thin regions of the
sample, where the transmission thickness did not exceed 50 nm. When SAED is obtained
from areas with a thickness of more than 50 nm, only the first, the brightest diffuse halo
is observed. Thus, it can be concluded that under the conditions when the temperature
of a CG Ti-substrate does not exceed 100 ◦C, and the coating is moderately bombarded
by energy particles from RF magnetron discharge during growth, which is controlled by
the distance from the target to the substrate plane, the ACP with the atomic near-order
structure of crystalline HA is formed.
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The Zn concentration that was analyzed using in-column EDX is low and is 0.4 ± 0.2 
wt.% (0.3 ± 0.1 at.%). The concentration of Cu was found to be 0.5 ± 0.2 wt.% (0.4 ± 0.2 
at.%). Hence, the concentration of Cu and Zn in the coatings does not exceed 0.5 wt.%, 
which is close to the content of these elements in the initial targets for sputtering coatings. 
It is reliably established that Cu and Zn are present in the respective coatings. However, 
the presented results of Cu and Zn element concentrations in the coatings cannot be con-
sidered quantitative (Table 3). Even though the content of Zn or Cu ions is small, an anti-
bacterial effect has been detected in our previous study [61]. 
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Figure 9. TEM image of the cross-section of the coating obtained by sputtering a Zn-HA target
(a) with SAED (b) obtained from the coating area and the peaks of the two main diffusive halos,
calculated from the SAED obtained from the amorphous layer (c).

The Zn concentration that was analyzed using in-column EDX is low and is 0.4 ± 0.2 wt.%
(0.3 ± 0.1 at.%). The concentration of Cu was found to be 0.5 ± 0.2 wt.% (0.4 ± 0.2 at.%).
Hence, the concentration of Cu and Zn in the coatings does not exceed 0.5 wt.%, which
is close to the content of these elements in the initial targets for sputtering coatings. It is
reliably established that Cu and Zn are present in the respective coatings. However, the
presented results of Cu and Zn element concentrations in the coatings cannot be considered
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quantitative (Table 3). Even though the content of Zn or Cu ions is small, an antibacterial
effect has been detected in our previous study [61].

Table 3. Ca/P ratio and Zn and Cu content in CaP coatings.

Target Material Ca/P Zn, wt.% Cu, wt.%

HA 1.9 - -

Cu-HA 2.5 - 0.3

Zn-HA 2.25 0.8 -

3.3. Formation of Calcium-Phosphate Coatings on a Titanium Substrate in the
Nanostructured State

Since Ti-based alloys have already been extensively studied, it will be important to
stress the difference in the microstructure of the materials used in the present work. The
commercially pure Ti substrates in the CG state are represented by a coarse-crystalline
structure, with an average grain size of 25–30 µm. The structure of the other substrates used
in the work is presented in the TEM images (Figure 10). The grain size of the crystalline
structure of the substrates varies from 90 to 800 nm. It is also worth noting that the stress
state and dislocation density in the case of nanostructured (NS) Ti is much higher than in
the case of substrates with a coarse-crystalline state. As it is known, the condensation of
the coating during the PVD process is comprised of a random collision of atoms migrating
over the surface; adhesion of adsorbed atoms on impurity or point defect or surface
imperfections; and attachment to microrelief elements that play the role of crystallization
centers. Thus, it is obvious that surface defects should significantly affect the condensation
of coatings and their structural state. In this regard, it is important to study the deposition
of CaP coatings on substrate with a different structural state.
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Figure 10. TEM images of the coarse grain (CG) and nanostructured (NS) Ti.

In the case of coating deposition on substrates with significantly different structural
states, a direct influence of surface defects, number of grain boundaries, and dislocation
density on the growth and structure of the films is expected. Figure 11 shows an XRD-
pattern of a coating deposited on the NS Ti surface after sputtering of a Zn-HA target,
which was located at a distance of 40 mm from the plane of the substrate holder. The
temperature of the substrate was 200 ◦C. A region of diffuse scattering was observed in the
region corresponding to the range of angles in which the main reflexes of the HA crystal
phase are located. According to the results of XRD, we can conclude that the coating is
amorphous or the size of crystallites of the HA phase in the coating is so small that no
individual reflexes of this phase can be detected by XRD.
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Figure 12 shows cross-sectional images of Zn-HA coatings on NS Ti substrate obtained
by high-resolution TEM. The CaP coating is represented by an equiaxial polycrystalline
grain structure with a gradient change in grain size (part of the grains are marked with
circles in the figure as a visual guide) from the substrate to the coating surface in the range
from 10 ± 3 nm to 27 ± 3 nm. This type of structure has the lowest internal residual stresses,
which increases the mechanical properties of such coatings. The probability of cracking
or chipping on the material surface with this type of structure is much lower compared
to the coarse-grained structure. Figure 12b shows the coating-substrate interface in high
resolution, from which the interplanar distances of crystallites included in the coating were
calculated, which turned out to be 0.262 ± 0.006, 0.418 ± 0.007, 0.517 ± 0.007 nm, which
corresponds to the reflection planes (300), (200), and (101) of the HA crystal lattice. The
microdiffraction obtained from the coating area (Figure 12a) also indicates a polycrystalline
type of structure with a fraction of the ACP phase. While the coating’s CaP structure is
crystalline, the interface is amorphous TiO2, as evidenced by the dispersed salt-pepper
type of contrast shown in Figure 12(c2), accompanied by characteristic scattering in the
FFT image.

The Ca/P ratio was obtained by EDX mapping of the coating area and was 1.4. The
Zn concentration was also small, as in the case of ACP, and did not exceed 0.3 at.%. This
Zn concentration is close to the detection limit for the EDX method and can only indicate
the presence of this element, but not its quantity in the material.

The equiaxed grain size distribution is a gradient of the grain size distribution function
of the structure as a function of the distance between the substrate surface and the free
coating surface. The grain size distribution function of the distance from the coating surface
is shown in Figure 13. Thus, the grain size distribution can be divided into two zones. In
zone I, at the initial stage of the coating growth the average grain size decreases, and the
first CaP layers of the coating are formed. In zone II, there is a linear growth of the grain
size, due to reduced heat dissipation, since the first deposited layers have a barrier function
and prevent heat dissipation to the metallic NS Ti. The presented linear dependences
associated with crystallite growth are reflected in the graph of the derivatives of the grain
size distribution function dl/dh.
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Figure 12. TEM image of the cross-section of Zn-HA coating on an NS Ti substrate with the cor-
responding SAED (a), high-resolution TEM image of the interface between the substrate and the
coating (b), as well as the structure of coating areas (1), interface between the substrate and the
coating (2) and substrate material (3) with the corresponding Fourier-transform image (c).
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Figure 13. Grain size distribution in the coating (l) as a function of the distance (h) from the interface
to the free surface of the coating in nm. The graph also shows the derivatives of the grain size
distribution function dl/dh(h).

However, the formation of a CaP coating on a CG Ti substrate also resulted in the
formation of an equiaxed grain structure (Figure 14a), as in the case of NS Ti. The interface
between the coating and the substrate is also clearly defined (Figure 14b). Thus, the
determining parameter for the formation of one or another type of microstructure of the
CaP coating is the temperature of the substrate rather than the structural state of the
substrate material.
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Figure 14. TEM image of Zn-HA coating cross-section on Ti substrate in the CG state (a) and the
interface between the substrate and the coating (b).

The transition layer plays a decisive role in the adhesion of the coating to the substrate
surface. Thus, the amorphous TiO2 layer shown earlier in the TEM images helps to increase
the adhesion of the coating to the substrate, such that the critical load in the scratch test
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was 22 N for the coating on NS Ti substrate and 18 N for the coating on CG Ti substrate
(Figure 15). The mean value of critical load in the case of coatings deposited on NS Ti was
22 ± 2 N while for CG Ti it was found to be 18 ± 1 N.
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Figure 15. Indentation track from the indenter after the adhesion test by the scratch test of CaP
coating on NS Ti substrate (a) and CG Ti substrate (b).

On the other hand, the determined value of the critical load is probably related not
only to the transition layer and the coating structure but also to the hardness of the NS Ti
substrate. When the load on the indenter increases during the measurement, the failure of
the coating is due to ductile fracture of the substrate, which is not observed in the case of
NS Ti substrate. Hence, NS Ti is a favorable choice when increased mechanical properties
of the implant are needed.

3.4. Influence of Controlled Heating of Substrates during RF Magnetron Sputtering and
Post-Deposition Heat Treatment

As was mentioned in the previous subsection, the main governing parameter of
coatings’ structure formation is temperature. In this subsection, the influence of controlled
heating of substrates during RF magnetron sputtering and post-deposition HT are going to
be discussed. The XRD of samples deposited at different substrate temperatures using the
heater mounted in the substrate holder shows that the initial temperature for the formation
of coating with the formation of texture and growth of crystallites with predominant
orientation in the direction [002] is 300 ◦C (Figure 16). Increasing the temperature to 400 ◦C
leads to an increase in the degree of crystallinity and to the appearance of the reflections
from (112) plane. Predominant growth of crystallites in the plane (002) is associated with
the fact that this direction is the most energetically advantageous, has the lowest surface
energy, and is characteristic of HA-based coatings. The influence of Zn or Cu ions did
not result in a significant change in the coating structure. It is connected with a small
concentration of dopant material in the coating.

The structure of the Zn-HA coating has been recently published [62]. Figure 17 shows
TEM images of polycrystalline Zn-HA coating deposited on a substrate controllably heated
up to 400 ◦C. Using the microdiffraction pattern obtained from the coating (Figure 17a), it
was possible to determine the crystallographic planes of growth—(002), (102), (211), and
(112). As in the previous case, a thin TiO2 oxide layer is visible at the interface between
the coating and the substrate. It is worth noting that the deposition of CaP coatings on
a hot substrate significantly slows down the coating growth rate, which in this case was
0.9 nm/min. Figure 17b shows a dark-field image of the Zn-HA coating in the reflection
(002). A fine zoned structure is represented by densely packed HA grains and subgrains.
The columnar type of coating growth is visible, the average grain size, calculated from
several sections, is 30–90 nm. The formed coating is sub-stoichiometric with a Ca/P ratio
equal to 1.5, which is associated with active desorption of phosphate groups under the
influence of high substrate temperature during deposition. The Zn content in the coating
does not exceed 0.3 at.%.
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Figure 17. TEM image of the cross-section of Zn-HA coating on Ti deposited at the substrate
temperature of 400 ◦C bright field, the inset shows the corresponding SAED (a) and dark field (b) [62].

In order to keep a high deposition rate and obtain crystalline HA structure, it is
far more convenient to perform a post-deposition HT. For crystallization of the coatings
deposited from HA, Zn-HA, and Cu-HA targets, annealing in an air atmosphere was
performed. The Ti samples were annealed for 1 h at a constant temperature of 700 ◦C.
Figure 18 shows the XRD of the coatings obtained after sputtering of Zn- or Cu-HA targets
and stoichiometric HA after annealing. It can be seen that the XRD patterns obtained from
these coatings are represented by a single main phase—HA. The performed annealing
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made it possible to crystallize the coating so that the main reflexes characteristic of the HA
phase are clearly defined.

Materials 2022, 15, x FOR PEER REVIEW 23 of 28 
 

 

 

 
Figure 18. XRD of the CaP coatings after post-deposition annealing in air (red, blue, and gray lines 
represent HA (red) and Ti (blue) etalon XRD patterns according to PDF-card no. 00-009-0432 and 
00-044-1294, respectively). 

Table 4 shows the lattice parameters of HA coatings on Ti substrates after annealing. 
It is found that the calculated lattice parameters agree with the theoretical values for pure 
HA. The substitution of Zn2+ and Cu2+ cations in the HA crystal lattice is confirmed both 
by an increase in the lattice volume from 3 to 4% compared to stoichiometric HA and with 
a regular increase in the unit cell parameter c, as has been demonstrated earlier for Cu-
HA or Zn-HA targets. Thus, the coatings obtained by RF magnetron sputtering of targets 
sintered from pure HA, Zn-HA, and Cu-HA powders on Ti substrates are characterized 
by an amorphous structure. Annealing in the furnace in air with a stepwise temperature 
increase allows the transformation of the CaP coatings to the crystalline state close to the 
stoichiometric HA phase. 

Table 4. Lattice parameters and crystallinity index of CaP coatings deposited from different tar-
gets. 

Target Material Lattice Parameters Crystallinity Index (%) 
HA a = b = 9.529 Å, c = 6.841 Å 18 ± 12 

Cu-HA a = b = 9.659 Å, c = 6.869 Å 25 ± 17 
Zn-HA a = b = 9.587 Å, c = 6.913 Å 29 ± 14 

To compare the influence of an ambient atmosphere during annealing on the crystal-
linity state of coatings, the next annealing processes were performed in an Ar gas atmos-
phere. The XRD results are shown in Figure 19. From the results, it can be seen that at 400 
°C a crystal structure characteristic of the HA lattice is formed with the preferential 
growth direction, which corresponds to the crystallographic direction <001> correspond-
ing to (002) plane. 

Figure 18. XRD of the CaP coatings after post-deposition annealing in air (red, blue, and gray lines
represent HA (red) and Ti (blue) etalon XRD patterns according to PDF-card no. 00-009-0432 and
00-044-1294, respectively).

Table 4 shows the lattice parameters of HA coatings on Ti substrates after annealing.
It is found that the calculated lattice parameters agree with the theoretical values for pure
HA. The substitution of Zn2+ and Cu2+ cations in the HA crystal lattice is confirmed both
by an increase in the lattice volume from 3 to 4% compared to stoichiometric HA and with
a regular increase in the unit cell parameter c, as has been demonstrated earlier for Cu-HA
or Zn-HA targets. Thus, the coatings obtained by RF magnetron sputtering of targets
sintered from pure HA, Zn-HA, and Cu-HA powders on Ti substrates are characterized
by an amorphous structure. Annealing in the furnace in air with a stepwise temperature
increase allows the transformation of the CaP coatings to the crystalline state close to the
stoichiometric HA phase.

Table 4. Lattice parameters and crystallinity index of CaP coatings deposited from different targets.

Target Material Lattice Parameters Crystallinity Index (%)

HA a = b = 9.529 Å, c = 6.841 Å 18 ± 12

Cu-HA a = b = 9.659 Å, c = 6.869 Å 25 ± 17

Zn-HA a = b = 9.587 Å, c = 6.913 Å 29 ± 14

To compare the influence of an ambient atmosphere during annealing on the crys-
tallinity state of coatings, the next annealing processes were performed in an Ar gas
atmosphere. The XRD results are shown in Figure 19. From the results, it can be seen that
at 400 ◦C a crystal structure characteristic of the HA lattice is formed with the preferential
growth direction, which corresponds to the crystallographic direction <001> corresponding
to (002) plane.

The broadening of the reflexes identified on the XRD-patterns relative to the reflexes
characteristic of stoichiometric HA indicates the development of internal stresses in the
coating. At the maximum annealing temperature of 700 ◦C, the value of the CSR size
is smaller than at 400 ◦C which could be connected to the faster grain growth and more
competing character of grain evolution (Table 5). From Figure 19a, it is visible that the
as-deposited coating is in an amorphous state. Coating post-deposition HT at 400 ◦C in
a protective Ar atmosphere leads to the rearrangement of Ca (Cu, Zn), P, O, H atoms
and the formation of a texturized HA-lattice (Figure 19b). As can be seen in Figure 19b,
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the highest intensity belongs to the (002) peak, i.e., <001> is the direction of preferable
growth for the PVD coatings in general. At the initial moment of coating crystallization,
the crystallites grow in the direction according to the temperature gradient, i.e., in an
orientation perpendicular to the substrate surface. After that, at a higher HT temperature
of 700 ◦C, as can be seen from Figure 19c, orientation planes (211) or (112) start to appear.
Structure rearrangement resulted in the XRD pattern being more closely related to the
stochiometric HA. In contrast to that, in the case of post-deposition HT at 700 ◦C in air, a
texturized structure following the growth direction of <001> appears similar to what was
observed for HT at a lower temperature of 400 ◦C in the Ar atmosphere. It could be so
that coating crystallization in air or Ar atmosphere is drastically different. Crystallization
in the Ar atmosphere could start from lower treatment temperatures while the higher
temperature is required for similar to stochiometric HA lattice formation in air. We aim
to perform additional experiments and thoroughly discuss the mechanism of CaP coating
crystallization in different atmosphere conditions.
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competing character of grain evolution (Table 5). From Figure 19a, it is visible that the as-
deposited coating is in an amorphous state. Coating post-deposition HT at 400 °C in a 
protective Ar atmosphere leads to the rearrangement of Ca (Cu, Zn), P, O, H atoms and 
the formation of a texturized HA-lattice (Figure 19b). As can be seen in Figure 19b, the 
highest intensity belongs to the (002) peak, i.e., <001> is the direction of preferable growth 
for the PVD coatings in general. At the initial moment of coating crystallization, the crys-
tallites grow in the direction according to the temperature gradient, i.e., in an orientation 
perpendicular to the substrate surface. After that, at a higher HT temperature of 700 °C, 
as can be seen from Figure 19c, orientation planes (211) or (112) start to appear. Structure 
rearrangement resulted in the XRD pattern being more closely related to the stochiometric 
HA. In contrast to that, in the case of post-deposition HT at 700 °C in air, a texturized 
structure following the growth direction of <001> appears similar to what was observed 
for HT at a lower temperature of 400 °C in the Ar atmosphere. It could be so that coating 
crystallization in air or Ar atmosphere is drastically different. Crystallization in the Ar 
atmosphere could start from lower treatment temperatures while the higher temperature 
is required for similar to stochiometric HA lattice formation in air. We aim to perform 
additional experiments and thoroughly discuss the mechanism of CaP coating crystalli-
zation in different atmosphere conditions. 

Table 5. Crystalline lattice parameters in the structure of Cu-HA coatings obtained by sputtering 
Cu-HA target on Ti substrates after annealing at 400 or 700 °C, 3 h. 

Figure 19. XRD-patterns of Cu-HA coating on Ti as-deposited (a), after annealing at 400 ◦C for 3 h
(b), and after HT at 700 ◦C for 3 h (c) (red, blue, and gray lines represent HA (red) and Ti (blue) etalon
XRD patterns according to PDF-card no. 00-009-0432 and 00-044-1294, respectively).

Table 5. Crystalline lattice parameters in the structure of Cu-HA coatings obtained by sputtering
Cu-HA target on Ti substrates after annealing at 400 or 700 ◦C, 3 h.

Annealing
Temperature, ◦C Lattice Parameters CSR, nm Crystallinity Index

(%)

- Amorphous state - -

400 a = b = 9.547Å, c = 6.866 Å 47 27 ± 12

700 a = b = 9.534 Å, c = 6.783 Å 13 43 ± 18
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There are certain limitations to the current study that need to be mentioned. To pre-
cisely determine the position of substituents in the HA lattice and more precisely analyze an
amorphous CaP coating, more advanced techniques are needed, for example, synchrotron
X-ray studies, Raman spectroscopy of FTIR spectroscopy, small-angle X-ray scattering, or
nuclear magnetic resonance studies. Frequently, to determine the elemental composition of
the obtained powders, sintered targets, and deposited coatings, an EDX method is routinely
used; however, the quantitative results are somewhat difficult to obtain due to rather small
concentrations of substitution elements. For further studies, more advanced techniques,
such as X-ray photoelectron spectroscopy, are suggested. Nevertheless, the concentration
of Zn or Cu provided the antibacterial effect in vitro that was shown in our previous re-
port [61]; it is worth increasing the concentration of these dopants to determine an upper
and lower limit of antibacterial effect that does not result in systemic cytotoxicity. Moreover,
it is necessary to conduct experiments regarding the influence of coatings’ crystallinity
states on their degradation behavior and antibacterial properties both in vitro and in vivo.

4. Conclusions

It was shown in the present paper how the elemental composition and structure of
targets, substrates grain distribution, and thermal treatments could be used to fine-tune the
deposited antibacterial coatings. It was found that substitutions of Cu+2 or Zn+2 cations
in the lattice of hydroxyapatite increase the growth rate of coatings. It was established
that the deposition of coatings by RF magnetron sputtering on titanium substrates both
in the coarse-crystalline and nanostructured state with the temperature of 200 ◦C leads
to the formation of an equiaxed nanograined structure with a gradient in its size. The
use of nanostructured titanium, however, notably increased the scratch resistance. It was
shown that the substrate temperature regulated by controlled substrate heating in the range
(100–400) ◦C determines the crystal structure of the coating, from amorphous (<100 ◦C) to
nanocrystalline (200 ◦C) and further to columnar (>300 ◦C). At a substrate temperature of
400 ◦C, a coating with a columnar grain structure is formed with the predominant grain
direction perpendicular to the substrate plane and oriented in the [002]HA direction. The
range of transverse size of the “columnar” grains is 30–90 nm. It was revealed that post-
deposition heat treatment in an air atmosphere and an argon atmosphere in the temperature
range of 400–700 ◦C allows the transformation of amorphous calcium phosphate coatings
into a crystalline state without damaging their integrity. Further research will be devoted to
the investigation of Cu and Zn containing calcium phosphates at higher concentrations and
the influence of coatings’ crystallinity states on their degradation behavior and antibacterial
properties both in vitro and in vivo.
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28. Raţiu, C.A.; Cavalu, S.D.; Miclăuş, V.; Rus, V.; Lăzărescu, G.I. Histological Evidence of Novel Ceramic Implant: Evaluation of
Tolerability in Rabbit Femur. Rom. J. Morphol. Embryol. 2015, 56, 1455–1460.

29. Allegrini, S.; da Silva, A.C.; Tsujita, M.; Salles, M.B.; Gehrke, S.A.; Braga, F.J.C. Amorphous Calcium Phosphate (ACP) in Tissue
Repair Process. Microsc. Res. Tech. 2018, 81, 579–589. [CrossRef]

30. Qadir, M.; Li, Y.; Wen, C. Ion-Substituted Calcium Phosphate Coatings by Physical Vapor Deposition Magnetron Sputtering for
Biomedical Applications: A Review. Acta Biomater. 2019, 89, 14–32. [CrossRef]

31. Ozeki, K.; Aoki, H.; Masuzawa, T. Influence of the Hydrothermal Temperature and PH on the Crystallinity of a Sputtered
Hydroxyapatite Film. Appl. Surf. Sci. 2010, 256, 7027–7031. [CrossRef]

32. Radin, S.; Ducheyne, P.; Berthold, P.; Decker, S. Effect of Serum Proteins and Osteoblasts on the Surface Transformation of
a Calcium Phosphate Coating: A Physicochemical and Ultrastructural Study. J. Biomed. Mater. Res. 1998, 39, 234–243. [CrossRef]

33. Porter, A.E.; Hobbs, L.W.; Rosen, V.B.; Spector, M. The Ultrastructure of the Plasma-Sprayed Hydroxyapatite-Bone Interface
Predisposing to Bone Bonding. Biomaterials 2002, 23, 725–733. [CrossRef]

34. Mak, I.W.Y.; Evaniew, N.; Ghert, M. Lost in Translation: Animal Models and Clinical Trials in Cancer Treatment. Am. J. Transl. Res.
2014, 6, 114–118. [PubMed]

35. Xue, W.; Tao, S.; Liu, X.; Zheng, X.B.; Ding, C. In Vivo Evaluation of Plasma Sprayed Hydroxyapatite Coatings Having Different
Crystallinity. Biomaterials 2004, 25, 415–421. [CrossRef]

36. Corno, M.; Chiatti, F.; Pedone, A.; Ugliengo, P. In Silico Study of Hydroxyapatite and Bioglass®: How Computational Sci-
ence Sheds Light on Biomaterials. In Biomaterials—Physics and Chemistry; Pignatello, R., Ed.; InTech: London, UK, 2011;
ISBN 978-953-307-418-4.

37. Bystrov, V.; Paramonova, E.; Avakyan, L.; Coutinho, J.; Bulina, N. Simulation and Computer Study of Structures and Physical
Properties of Hydroxyapatite with Various Defects. Nanomaterials 2021, 11, 2752. [CrossRef]

38. Ivanova, A.A.; Surmeneva, M.A.; Tyurin, A.I.; Surmenev, R.A. Correlation between Structural and Mechanical Properties of RF
Magnetron Sputter Deposited Hydroxyapatite Coating. Mater. Charact. 2018, 142, 261–269. [CrossRef]

39. Ivanova, A.A.; Surmeneva, M.A.; Surmenev, R.A.; Depla, D. Structural Evolution and Growth Mechanisms of RF-Magnetron
Sputter-Deposited Hydroxyapatite Thin Films on the Basis of Unified Principles. Appl. Surf. Sci. 2017, 425, 497–506. [CrossRef]

40. Thian, E.S.; Huang, J.; Best, S.M.; Barber, Z.H.; Bonfield, W. Magnetron Co-Sputtered Silicon-Containing Hydroxyapatite Thin
Films—An in Vitro Study. Biomaterials 2005, 26, 2947–2956. [CrossRef]

41. Feng, F.; Wu, Y.; Xin, H.; Chen, X.; Guo, Y.; Qin, D.; An, B.; Diao, X.; Luo, H. Surface Characteristics and Biocompatibility of
Ultrafine-Grain Ti after Sandblasting and Acid Etching for Dental Implants. ACS Biomater. Sci. Eng. 2019, 5, 5107–5115. [CrossRef]

42. Balasubramanian, R.; Nagumothu, R.; Parfenov, E.; Valiev, R. Development of Nanostructured Titanium Implants for Biomedical
Implants—A Short Review. Mater. Today Proc. 2021, 46, 1195–1200. [CrossRef]

43. Chaikina, M.V.; Bulina, N.V.; Prosanov, I.Y.; Vinokurova, O.B.; Ishchenko, A.V. Structure Formation of Zinc-Substituted Hydroxya-
patite during Mechanochemical Synthesis. Inorg. Mater. 2020, 56, 402–408. [CrossRef]

44. Orlovskii, V.P.; Komlev, V.S.; Barinov, S.M. Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorg. Mater. 2002, 38, 973–984.
[CrossRef]

45. Sharkeev, Y.P.; Eroshenko, A.Y.; Danilov, V.I.; Tolmachev, A.I.; Uvarkin, P.V.; Abzaev, Y.A. Microstructure and Mechanical
Properties of Nanostructured and Ultrafine-Grained Titanium and the Zirconium Formed by the Method of Severe Plastic
Deformation. Russ. Phys. J. 2014, 56, 1156–1162. [CrossRef]

46. Kweh, S.W.K.; Khor, K.A.; Cheang, P. Plasma-Sprayed Hydroxyapatite (HA) Coatings with Flame-Spheroidized Feedstock:
Microstructure and Mechanical Properties. Biomaterials 2000, 21, 1223–1234. [CrossRef]

47. Yang, Y.C.; Chang, E. The Bonding of Plasma-Sprayed Hydroxyapatite Coatings to Titanium: Effect of Processing, Porosity and
Residual Stress. Thin Solid Films 2003, 444, 260–275. [CrossRef]

48. Miranda, P.; Saiz, E.; Gryn, K.; Tomsia, A.P. Sintering and Robocasting of β-Tricalcium Phosphate Scaffolds for Orthopaedic
Applications. Acta Biomater. 2006, 2, 457–466. [CrossRef]

http://doi.org/10.3390/coatings11070811
http://doi.org/10.3390/coatings11010110
http://doi.org/10.1016/j.ceramint.2020.09.274
http://doi.org/10.3390/coatings10111113
http://doi.org/10.1007/s10856-017-5846-2
http://doi.org/10.1016/j.ceramint.2018.09.246
http://doi.org/10.1002/jemt.23013
http://doi.org/10.1016/j.actbio.2019.03.006
http://doi.org/10.1016/j.apsusc.2010.05.018
http://doi.org/10.1002/(SICI)1097-4636(199802)39:2&lt;234::AID-JBM10&gt;3.0.CO;2-D
http://doi.org/10.1016/S0142-9612(01)00177-6
http://www.ncbi.nlm.nih.gov/pubmed/24489990
http://doi.org/10.1016/S0142-9612(03)00545-3
http://doi.org/10.3390/nano11102752
http://doi.org/10.1016/j.matchar.2018.05.042
http://doi.org/10.1016/j.apsusc.2017.07.039
http://doi.org/10.1016/j.biomaterials.2004.07.058
http://doi.org/10.1021/acsbiomaterials.9b00579
http://doi.org/10.1016/j.matpr.2021.02.064
http://doi.org/10.1134/S0020168520040044
http://doi.org/10.1023/A:1020585800572
http://doi.org/10.1007/s11182-014-0156-3
http://doi.org/10.1016/S0142-9612(99)00275-6
http://doi.org/10.1016/S0040-6090(03)00810-1
http://doi.org/10.1016/j.actbio.2006.02.004


Materials 2022, 15, 6828 25 of 25

49. Rau, J.V.; Wu, V.M.; Graziani, V.; Fadeeva, I.V.; Fomin, A.S.; Fosca, M.; Uskoković, V. The Bone Building Blues: Self-Hardening
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