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Abstract: Secondary lining concrete is frequently used in underground tunnels. Due to the internal
restriction of the annular concrete segment, micro-cracks may be caused by temperature stress and
volume deformation, thus affecting the safe transportation of the tunnel. The purpose of this study
is to provide a concrete experimental basis with low hydration heat and low shrinkage for tunnel
engineering with different construction requirements. Different amounts of expansion agent (EA),
shrinkage-reducing agent (SRA), and superabsorbent polymer (SAP) were considered in commercial
concrete. It was found that EA elevated the degree of hydration and the hydration exothermic rate,
while SRA and SAP showed the opposite regularity. SRA has the optimum shrinkage reduction
performance with a 79% reduction in shrinkage, but the strength decreases significantly compared to
EA and SAP groups. The effect of the combination of different shrinkage reducing components in
commercial concrete is instructive for the hydration rate and shrinkage compensation in secondary
lining engineering.

Keywords: secondary lining engineering; commercial concrete; low shrinkage

1. Introduction

As the global industrialization of the 21st century continues to grow, cities have
become the main gathering place for people. In order to meet the growing material and
cultural needs of the population, the development of urban infrastructure has become a
hot topic [1]. Railways and roads have become an important means of promoting intercity
collaboration. However, obstacles such as rivers, lakes and mountains limit the planning
and layout of traffic routes and affects the close connection between regions. Therefore,
vigorously developing underground rock and soil resources is a new direction of our
development. Underground tunnels are built for transport of people and goods, water
supply channels and sewage treatment, which have obvious advantages over overground
installations [2]. Tunnels can optimize route planning and reduce damage to vegetation
while overcoming terrain and other obstacles. Underground transportation can effectively
alleviate traffic congestion in cities.

The design and construction of most tunnels generally follow the New Austrian
Tunnelling method [3,4]. For the stability of the surrounding rock and to ensure operational
safety, a support structure with sufficient strength is necessary after the subject tunnel
body has been excavated. The composite lining structure is mainly composed of two parts:
primary support and secondary lining [5]. The primary support mainly serves to bear
the load and keep the stabilization of the surrounding rock. The supporting material

Materials 2022, 15, 6848. https://doi.org/10.3390/ma15196848 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15196848
https://doi.org/10.3390/ma15196848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5332-7862
https://doi.org/10.3390/ma15196848
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15196848?type=check_update&version=2


Materials 2022, 15, 6848 2 of 18

for the primary support usually consists of concrete and pre-positioned steel bars. The
high-fluidity concrete is transported through a closed pipe system and then sprayed onto
the exposed rock surface to form support shell. The secondary lining is constructed after
the surrounding rock and the primary support are stabilized, generally using reinforced
concrete. The secondary lining structure can prevent the deterioration of surrounding rock
and the accidental load caused by geological disasters such as earthquakes and enhance the
durability of the tunnel structure system. Furthermore, the secondary lining is combined
with the primary support structure to share part of the surrounding rock load [6], enhancing
the stability of surrounding rock. Figure 1 is a schematic diagram of the second lining
project structure.
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Figure 1. Schematic diagram of secondary lining engineering of underground tunnel.

The volume stability of the secondary lining structure has a prominent impact on the
quality and service life of the tunnel. It is reported that the cracking of lining structures is
caused by internal and external factors. The failure caused by external factors is mainly
because the load acting on the supporting structure exceeds the bearing capacity of the
structure [7,8]. Structural cracking caused by internal factors is mainly related to the autoge-
nous shrinkage and temperature stress of concrete materials. Although these cracks do not
directly lead to a diminution in the bearing capacity, they can reduce the durability of the
secondary lining structure, which in turn has an impact on the safety of the structure [9,10].

At present, the construction of tunnels is mostly carried out in complex geological
conditions, which comes up with higher demands for the shrinkage and crack resistance of
secondary lining concrete materials. To avoid the occurrence of cracks in secondary lining
concrete, many scholars devote themselves to studying the influence of different methods
to restrain autogenous shrinkage on the performance of concrete. Lawler et al. [11] and
Kaufmann et al. [12] found that the crack resistance of concrete is significantly enhanced
with the addition of steel fibers (SFS). Meda et al. [13] studied concrete segments containing
steel fibers and glass fibers and showed that this composite fiber increases the maximum
bearing capacity and reduces the crack width. In tunnel engineering, according to the
construction requirements, the commercial secondary lining concrete needs to be pumped
to the designated pouring site.

In addition to fibers, concrete additive can be used to compensate for shrinkage and
inhibit cracking of the concrete. Expansion agent is an admixture that can cause a certain
volume expansion of concrete. The types of expansion agents are calcium sulfoaluminate,
calcium oxide, etc. Among them, the expansion effect of calcium oxide expansion agent
is mainly caused by the hydration of calcium oxide crystals to form calcium hydroxide
crystals, and the volume increases. This in turn counteracts the strain caused by the
shrinkage of the cement-based material. Zhao et al. [14] studied the performance of CaO-
based expansion agent (CEA) and MgO-based expansion agent (MEA) on cement-based
materials and indicated that the combined addition can optimize the pore structure of
mortar. Meddah et al. [15] added shrinkage-reducing agent (SRA) and expansion agent
(EA) to high performance concrete, which significantly reduces autogenous shrinkage and
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increases the limit value of cracking stress. Concrete SRA is an organic compound that
curtails the surface tension of pore solution of concrete, which reduces capillary negative
pressure and shrinkage stress. Zuo et al. [16] conducted a cement net mortar experiment in
which two shrinkage reducers were incorporated into water to cement ratio of 0.3 net mortar
and found that the two SRAs reduced early self-shrinkage by 55% and 34%. Bentz et al. [17]
explored the early shrinkage of SRA cement-based materials, and the results showed
that SRA could maintain internal humidity and reduce autogenous shrinkage under the
same hydration time. Super absorbent polymer (SAP) is a functional polymer material.
For cement-based building materials, SAP can also be used as a “miniature reservoir”
to supplement the internal curing moisture for the “growth” of cement concrete and
compensate for the shrinkage of concrete. Almeida et al. [18] demonstrated the significant
internal curing effect of SAP in the Portland cement replacement by ground granulated
blast-furnace slag (PC-GGBS) system, which was able to observably reduce autogenous
shrinkage. According to previous research, EA, SRA, and SAP all have the characteristics of
shrinkage and crack resistance. In this paper, different shrinkage-reducing components are
used in engineering practice and the shrinkage cracking of a multi-component cementitious
material system is used as the research object to supplement the secondary lining concrete
engineering. The theoretical basis of shrinking functional components is provided, and the
applicability of these shrinkage-reducing components to multi-component cementitious
material systems is explored.

For the shrinkage and crack of secondary lining concrete with high volume mineral
admixture, this study comparatively analyzed the effects of different shrinkage reducing
components on various properties of secondary lining concrete. EA, SRA and SAP were
characterized by laser particle size measurement, X-ray fluorescence and SEM, respectively.
The effects of three shrinkage-reducing components on the hydration process and compen-
satory shrinkage of secondary lining concrete with high volume mineral admixture were
evaluated by the rheology, compressive strength, autogenous shrinkage, heat of hydration,
capillary water absorption, electric flux, and pore structure. This paper provides a reference
for the mix proportion design of secondary lining concrete in practical engineering.

2. Experimental Programs
2.1. Materials

This paper uses ordinary Portland cement (P.O. 42.5). The particle size distribution
and cumulative distribution of the ground granulated blast furnace slag (GGBS), silica fume
(SF) and fly ash (FA) are shown in Figure 2. The chemical composition of the cement, GGBS,
SF, FA and EA was determined by X-ray fluorescence (XRF), and the results are shown in
Table 1. In addition, the XRD patterns of raw materials are shown in Figure 3. The fine
aggregate is well-graded river sand (0–4.75 mm) and the coarse aggregate is natural gravel
(5–16 mm); its bulk density is about 1490 kg/m3. The polycarboxylate superplasticizer
(PCE) is a high-performance water reducer with a water reduction rate of 38%.
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Table 1. Chemical composition of materials (%).

MgO Al2O3 SiO2 SO3 CaO Fe2O3 P2O5 K2O LOI

Cement 2.27 6.221 20.835 3.322 58.176 3.315 0.109 0.947 4.802
GGBS 7.45 15.707 31.58 3.813 39.313 0.289 0.029 0.398 4.079

SF 0.98 0.219 90.81 1.122 0.4 0.056 0.124 0.917 1.416
FA 0.63 41.343 42.479 1.215 5.34 3.719 0.362 0.827 5.37
EA 1.96 2.567 4.61 17.663 58.484 1.214 0.027 0.233 13.262
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The different shrinkage-reducing components used are EA, SRA and SAP. EA is a
compound swelling agent, the main components include calcium oxide–calcium sulfate,
with a restrained expansion rate at 7 d (volume fraction) in water ≥0.034%. SRA is a
solution whose main component is a polyether organic compound. SAP is an acrylic
acrylamide copolymer with a particle size of 0.2–1 mm.

2.2. Proportions of Concrete Mix

The concrete mix is shown in Table 2, with a water/binder (W/B)of 0.34 and
binder:sand:gravel of 1:1.67:1.71. The hydration heat test was carried out according to the
concrete mix without the sand and gravel, and mercury intrusion porosimetry without
the gravel.

Table 2. Proportions of concrete mix (kg/m3).

Code Cement FA GGBS SF Sand Gravel Water EA SRA SAP

Control 270 150 75 20 860 880 175
EA-4% 270 150 75 20 860 880 175 20.6
EA-8% 270 150 75 20 860 880 175 41.2
EA-12% 270 150 75 20 860 880 175 61.8
SRA-1% 270 150 75 20 860 880 175 5.15
SRA-2% 270 150 75 20 860 880 175 10.3
SRA-3% 270 150 75 20 860 880 175 15.45

SAP-0.2% 270 150 75 20 860 880 186.3 1.03
SAP-0.4% 270 150 75 20 860 880 197.6 2.06
SAP-0.6% 270 150 75 20 860 880 208.9 3.09
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2.3. Water Absorption of SAP

The adsorption tests of SAP in various solutions (deionized water, tap water, 0.2 mol/L
NaCl solution and w/c 0.3 pore fluid) were carried out by the teabag method [19]. A
measure of 5.9 g of NaCl was added into 500 mL of deionized water to prepare a 0.2 mol
NaCl solution. The cement slurry was stirred and a suction filter was used to extract the
cement filtrate. Four beakers were filled with deionized water, tap water, 0.2 mol NaCl
solution, and w/c of 0.3 pore fluid, to completely immerse the tea bag in the solution.
The change in SAP quality within 10 min was recorded, the interval was the 30 s at the
beginning, and the quality change was recorded every 2 min after 2 min. The excess
water on the surface was removed, the mass marked as mg dry SAP with mass md was
weighed and added into wet tea bags, and mt was weighed regularly. Water absorption
was determined by averaging three suction tests. The specific formula is as follows:

Qt =
mt − mg − md

md
(1)

The morphology of the SAP under scanning electron microscopy was shown in
Figure 4.
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The water absorption of SAP in deionized water, tap water, sodium chloride solution
and w/c of 0.3 pore fluid were 180, 110, 20 and 12 times, respectively, according to Figure 5.
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2.4. Experimental Methods
2.4.1. Rheological Properties

The rheology test was performed using a BROOKFIELD DV3T rheometer. The rate
range was 0.01 RPM–1300 RPM, and the torque resolution was 0.15 µN·m [20]. The
cement slurry was tested by a rheometer, keeping the room temperature at 25 ± 2 ◦C. The
obtained data were fitted according to the modified Bingham model to obtain the results.
Its equation is

τ = τ0 + ηp
.
γ + c

.
γ

2 (2)

where τ is shear stress (Pa), τ0 is yield stress (Pa), ηp is plastic viscosity (Pa·s),
.
γ is shear

rate (s−1), and c is a constant.

2.4.2. Hydration Heat Evaluation

The hydration heat test was carried out by a TAM Air 8-channel heat of hydration
microcalorimeter from TA, USA. The microcalorimeter is preheated to the specified temper-
ature before testing, after which the cement paste is stirred well and 6 g of paste is weighed
into the bottle. The heat flow and cumulative heat were recorded for 72 h.

2.4.3. Compressive Strength

A 100 × 100 × 100 mm3 cube mold was used for the concrete compressive strength
test. The fresh concrete mixtures were put up in the standard maintenance room (20 ± 2 ◦C,
relative humidity ≥ 95%). The compressive strength of concrete specimens was tested
using the DYE-2000 press with a loading speed of 5 kN/s at 3, 7 and 28 d. The average value
of 3 specimens in the same group was regarded as the final compressive strength result.

2.4.4. Autogenous Shrinkage Test

Concrete specimens of 100 × 100 × 500 mm3 after 1 d of standard curing were sealed
using polyethylene film wraps. The upper and lower surfaces were sealed with a single
layer of film to avoid evaporation of internal moisture. The self-shrinkage was detected
using the GS-II automatic concrete shrinkage tester produced by Beijing Jinghaiquan
Sensing Technology Co., Ltd., Beijing, China. with a range of ±1.0000 mm, and the data
were collected automatically.

2.4.5. Capillary Water Absorption

Concrete specimens of 50 mm × Φ 100 mm were cast, cured for 28 d, and then dried in
an oven at 60 ◦C for 2 d. The sides and top of the specimen were wrapped with polyethylene
film, sealed with foil tape on the sides, and the underside was sanded with sandpaper. The
bottom of specimen was submerged in water by 3 mm. The water absorption quality was
observed before 12 h and after 24 h, and the slope of the curve of the water absorption
height per unit section was calculated; the square root of time is recorded as the first
adsorption coefficient S1 and the second adsorption coefficient S2 [21]. The conversion
formula of capillary water absorption S1 and S2 is as follows:

At =
mt − m0

α× q
(3)

where At is accumulated water absorption at moment t; mt is the mass of the specimen at
moment t; m0 is the mass of the specimen after drying; α is the area of the base; q is the
density of water.

2.4.6. Chloride Permeability Test

Determination of chloride ion permeability resistance of concrete by electric flux
method. Cylindrical concrete specimens with dimensions of 50 mm × Φ84 mm were
prepared according to ASTM C1202.
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The test block after standard curing for 28 d was immersed in water for 2 d. After
curing for 27 d, the blocks were soaked in clean tap water for 24 h and were fixed in the
electrical flux tester that the cathode side was 3 wt% NaCl solution, while the anode side
was 0.3 M NaOH solution. At room temperature, a voltage of 60 V was applied to the
specimen, and the current was recorded every 30 min for 6 h. The average of the three
blocks is the final result.

2.4.7. Mercury Intrusion Porosimetry (MIP)

The pore structure of 28 d mortar specimens was tested using a PoreMaster-60 [22].
The samples with a 4–5 mm particle size were dried for 4 h at 50 ◦C. The samples were
first intruded in a low-pressure porosimeter with a pressure up to 3.5139 KPa, and then
moved in a high-pressure porosimeter with pressure up to 413,400 KPa. The contact angle
between the paste and the mercury was chosen as 130◦. The measurable pore size range is
4.5–200,000 nm.

3. Results and Discussion
3.1. Rheological Property

Figure 6 shows the rheological curves of cement paste containing different shrinkage-
reducing components. The Modified Bingham Model was used to fit the rheological curves
of each of the three shrinkage-reducing components, and the results are shown in Table 3.
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Table 3. Rheology parameters of compound pastes.

Sample ID τ0/Pa µ/Pa·s Fitting Equation R2

Cement 21.11257 0.82807 τ = 21.11257 + 0.82807γ − 1.29 × 10−3γ2 0.99318
EA-4% 10.42214 0.80191 τ = 10.42214 + 0.80191γ − 8.58388 × 10−4γ2 0.99759
EA-8% 10.69963 1.31995 τ = 10.69963 + 1.31995γ − 2.52 × 10−3γ2 0.99572

EA-12% 20.31382 1.48647 τ = 20.31382 + 1.48647γ − 3.08 × 10−3γ2 0.99617
SRA-1% 14.94641 1.03673 τ = 14.94641 + 1.03673γ − 1.39 × 10−3γ2 0.99748
SRA-2% 18.19536 0.787 τ = 18.19536 + 0.787γ − 1.11 × 10−3γ2 0.99657
SRA-3% 10.249 0.58992 τ = 10.249 + 0.58992γ − 7.8803 × 10−4γ2 0.99617

SAP-0.2% 27.09619 0.54142 τ = 27.09619 + 0.54142γ − 3.68807 × 10−4γ2 0.99902
SAP-0.4% 39.72358 0.51597 τ = 39.72358 + 0.51597γ + 5.06153 × 10−6γ2 0.99948
SAP-0.6% 39.88603 0.37507 τ = 39.88603 + 0.0.37507γ + 3.8843 × 10−5γ2 0.99893

It is shown that the shear stress and plastic viscosity increase with an increasing
dose of EA. The CH crystal formed by the reaction of CaO and water occupies the pores,
which increases the friction between particles, thus increasing the shear stress and plastic
viscosity [23].

It is worth noting that the yield stress of the SRA group is lower than that of the
control, and the plastic viscosity of SRA mixed slurry decreases with the increase in SRA
content. This is attributed to the fact that the polar unit of SRA reduces the surface tension
and interfacial energy of the pore solution; SRA can improve the dispersion of cement
particles as well [24,25].

Although additional water was introduced to compensate for the water uptake of the
SAP, this change in the total water–cement ratio would have some different changes with
the addition of SAP. The yield stress of the SAP mixed slurry gradually increased, but the
plastic viscosity decreased, compared with the control. The increase in the SAP content
increases the yield stress, which may be related to the effect of the expanded SAP size on
the slurry. Compensated by the additional introduction of water, it affects the overall W/B
and reduces the viscosity of the slurry [26].

After comparison, it is concluded that SAP is more suitable for long-distance pumping
in engineering, while EA and SRA are more suitable for short-distance pumping.

3.2. Hydration Heat

The process of hydration of the cement-based materials with high volume content of
FA, GGBS and SF in this study was divided into the initial period, the induction period,
the acceleration period, and the retardation period [27–29]. The hydration heat flow and
hydration heat of different shrinkage-reducing components are shown in Figure 7. Inter-
estingly, three consecutive hydration heat peaks are observed in the control group [30–33],
which are related to the hydration of different mineral admixtures. According to previous
studies, cement has a faster hydration rate compared to the mineral admixtures, while
the combination of FA and SF tend to have a faster hydration rate than GGBS among the
mineral admixture concrete in this paper. Peak 1 is attributed to the hydration heat flow
peak of the silicate clinker, which occurs within approximately 12 h [34]. Peak 2 occurs
at the 17 h during acceleration period, which was mainly relevant to the hydration of FA
and SF [35–37]. Peak 3 located at around 21 h of hydration is formed by the hydration of
GGBS [37,38].
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Figure 7a corresponds to the graph of hydration heat flow and hydration heat after EA
incorporation. It is obvious that the effect of EA on the heat of hydration is different from
that of SRA and SAP, which is attributed to the chemical effect of EA. One can observe that
the addition of EA makes peaks 2 and 3 disappear, while peak 1 is much higher than the
peaks doped with SRA and SAP. This is due to the ability of CaO and CaSO4 in EA to react
with FA, SF and GGBS in advance to form C-S-(A)-H gel and AFt without relying on CH
produced by cement hydration [39,40]. The additional chemical reaction of EA with the
admixture also makes the heat of hydration higher than that of the control [41]. On the
other hand, the additional AFt generated by the reaction of EA results in higher peaks of
AFt to AFm conversion in the later stages of hydration [42,43].

In Figure 7b, SRA slowed down the hydration rate of cement and caused the cumu-
lative heat release to decrease with the increase in SRA dosage. The influence of SRA on
the early hydration performance of cement slurry was caused by two aspects. On the one
hand, SRA molecules formed by covalent bonding of hydrophilic head molecules and
hydrophobic tail molecules will reduce the contact area between water and cement parti-
cles [44]. With the increase in SRA incorporation, the SRA molecules in solution negatively
affect the cement particles and hydration products, the interfacial energy decreases, and the
hydration reaction was delayed and decreased [25,45]. On the other hand, the hydrophilia
of SRA changed the pore solution polarity [46], reducing the alkaline ion solubility and
limiting the hydration of C3A in solution [16].

Figure 7c shows the hydration heat flow rate and cumulative heat release of the
cement paste incorporated SAP. Obviously, the peak of heat flow was delayed and the
cumulative heat release decreased in the SAP group. The SAP adsorbed the alkaline
ions produced by cement hydration [47] and gradually released water during further
cement hydration, increasing the effective water–cement ratio and decreasing the hydration
rate [48]. Predictably, the cumulative hydration heat of the SAP group will be more than
the control due to the introduction of more water.
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EA can accelerate hydration and promote the hydration process. The difference is that
SRA and SAP can significantly reduce the peak heat of hydration and the exothermic rate
of hydration, providing a solution to reduce the thermal stress of mass concrete.

3.3. Compressive Strength

The compressive strengths of secondary lining concrete at 3 d, 7 d and 28 d are
shown in Figure 8. From Figure 8a, we can see that the compressive strength of the
4% EA-added concrete increases, compared with control at all ages (3 d, 7 d and 28 d).
However, the compressive strength of EA-12% EA decreases by 10% at the age of 28 d.
The expansion components such as CaO in EA reacted to form Ca(OH)2 crystals, which
increases in volume and generate expansion force that is transferred to the surrounding
cement hydration products [49], optimizing the microstructure of concrete and improving
early strength. In addition, higher incorporation of EA will hydrate to generate more
CH, which will bring high crystallization pressure and lead to excessive expansion, and
the microstructure of concrete tends to loosen, thus negatively affecting the mechanical
properties of concrete [49,50].
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Figure 8b shows the effect of different amounts of SRA on the compressive strength.
The SRA harms the strength of concrete, either at an early or late stage. The decrease in
the compressive strength of concrete is attributed to the increase in the SRA content. This
is mainly because the incorporation of SRA hinders the hydration reaction of cement and
reduces the alkalinity of the reaction system, resulting in a decrease in strength [51]. This
result can be confirmed by the heat of hydration test in Section 3.2.

Figure 8c shows that the incorporation of SAP reduces the early compressive strength
of concrete. The decrease in early strength after adding SAP is mainly due to two reasons.
Firstly, the volume expansion of SAP in concrete due to water absorption reduces the
overall strength of concrete. Secondly, SAP increases the effective water–cement ratio of
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cement paste, which is related to water release. However, SAP has two different effects
on the compressive strength of concrete in the later ages: (1) SAP shrinks and leaves
macroscopic pores after water release; (2) SAP promotes cement hydration due to water
release, forming the dense interfacial transition zone (ITZ) [52]. The small amount of SAP
offsets the negative effect of macroscopic pores on the mechanical properties of concrete
through internal curing, and the compressive strength of SAP-0.2% is basically the same as
that of the control at 28 d.

The analysis of the compressive strength test shows that EA incorporation shows
an increase in strength, compared to SRA and SAP. EA is able to improve the strength
performance of concrete, and SAP has a negative impact on the early strength, which can
be compensated for the previous loss by curing at a late stage. Overall, EA and SAP have
small strength loss in engineering practice.

3.4. Autogenous Shrinkage

As shown in Figure 9, different shrinkage reduction components can reduce the
autogenous shrinkage of concrete. It can be seen from Figure 9a that the concrete with
EA was effective in reducing the autogenous shrinkage of concrete, and the autogenous
shrinkage decreased with the increase in EA content. Notably, the 12% EA group showed
volume expansion at 7 h, followed by gradual volume shrinkage, which decreased by 70.1%
compared to control at 7 d. EA is affected by an alkaline environment during hydration, and
CH crystals aggregated on surfaces of CaO, forming early swelling stress and improving
the autogenous shrinkage of concrete [49]. However, excessive EA generated more CH
crystals to cause early expansion. However, with the hydration of cement, the capillary
negative pressure increased and the concrete shrank as a whole.
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As shown in Figure 9b, with the addition of SRA, the autogenous shrinkage of concrete
gradually decreases. Compared with the control, the autogenous shrinkage of concrete
with 3% SRA is reduced by 79.6% at 7 d. This was mainly related to the structure of SRA
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molecule, which could reduce the surface tension of the capillary solution, thus reducing
the development of negative capillary pressure in concrete [25,53].

It can be observed in Figure 9c that the autogenous shrinkage of concrete was signif-
icantly decreased after adding SAP, and it gradually decreased with the increase in SAP
content [54,55]. The early free water exchange of SAP in cement-based materials was mainly
controlled by osmotic pressure. Although this part did not play an obvious internal curing
effect, it can increase the effective water-binder ratio of concrete. This is also the reason why
the concrete with 0.4% and 0.6% SAP has less autogenous shrinkage in the first 3 d. After
initial water release, SAP entered the second water release stage controlled by temperature
and humidity, which delayed the reduction in the relative humidity in the concrete by
continuously releasing water. Therefore, SAP played a better role in compensating for
the autogenous shrinkage of concrete, and could even offset the autogenous shrinkage
of concrete.

All three shrinkage-reducing components have significant effects on concrete autoge-
nous shrinkage. Among them, SRA has the best effect on alleviating autogenous shrinkage
and can be applied in secondary lining projects to achieve effective shrinkage reduction
and reduce the generation of cracks.

3.5. Capillary Water Absorption

Capillary water absorption was used as a measurement of the ability of concrete
to absorb liquid through capillarity. The test results were related to pore content and
connectivity. Figure 10 shows the effect of different shrinkage-reducing components on
the water transport of concrete at 28 d. The capillary water absorption was divided into
two stages, based on the internal water transport mechanism of concrete [56]. The initial
6 h is the S1 stage controlled by the connectivity between capillary pores. 1–7 d is the
S2 stage controlled by diffusive transport, where moisture fills mainly large and poorly
connected pores.
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As shown in Figure 10a, compared with control, the ability of EA and SAP groups to
perform anti-capillary penetration was improved, and the improvement effect of EA is the
most obvious. This is related to the improvement of EA on the internal porosity of concrete.
In contrast, the delay of SRA on the hydration process of cement led to a decrease in the
resistance to capillary penetration.

As shown in Figure 10b,c the initial adsorption coefficient S1 of EA-8% was lower than
the control at 0–6 h. This is attributed to the formation of ettringite and calcium hydroxide
formed by the hydration of EA, resulting in transformation of macropores into capillary
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pores. However, in the second stage, the adsorption coefficient S2 was 37.1% higher than
the control, indicating that EA reduced the connectivity of the mortar capillary pores.

Compared with the control, the cumulative water absorption of SRA-2% and the
adsorption coefficient in both stages were significantly improved, which was related to
its higher internal pore content. During the cement hydration process, the of SRA makes
negative effect, the loose cement matrix reduced the resistance of SRA-2% to moisture
transport, which was confirmed by previous heat of hydration tests. Specifically, S1 and S2
increased by 12.6% and 22.5%, respectively, compared with the control [57].

The adsorption coefficient S1 in the first stage slightly decreased due to the effect of
internal curing of SAP in cementitious materials [56]. On the one hand, SAP shrank and
left macroscopic holes after completing the conservation action, which may lead to an
elevation in S2. On the other hand, the repeated water absorption of SAP during the testing
stage made it inevitably swell and block the permeation channel, hindering the capillary
transport of water [58]. Overall, there is no significant change in the value of S2.

3.6. Chloride Permeability Test

Figure 11 shows the chloride penetration resistance of the concrete block with different
shrinkage reducing components. It can be seen that EA is beneficial to chloride penetration
resistance, and the electric flux of 8% EA is the lowest, which is 9.2% lower than the
control. This was mainly attributed to the optimization effect of EA on the pore structure
of concrete, which exerted expansion stress on the surrounding products through the
space occupancy effect of CH crystals, reducing the passage of harmful ions. The addition
of SRA increased the electric flux by 11% since that the SRA slows down the hydration
process of the concrete [44], resulting in the increase in porosity and less dense structure
in concrete, and promoting the transmission of harmful ions. The electric flux of the SAP
group was almost identical to the control, only decreased by 2.5%. This was mainly affected
by two aspects. On the one hand, SAP shrank into macroscopic pores after water release,
which could provide channels for the transmission of chloride ions, and had a negative
effect on the chloride penetration resistance of concrete. On the other hand, SAP could
gradually release water to improve the hydration degree of cement interface transition zone
and compact matrix structure in the later stage, which improved the chloride penetration
resistance [59]. The combined action of the two reasons resulted in the electric flux of
concrete with SAP being basically the same as control.
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3.7. Pore Structure

Figure 12 shows the effect of the different shrinkage reducing components on the pore
structure of the cement mortars at the age of 28 d. It can be visualized that the cement
mortars mixed with SRA or EA has a higher cumulative pore volume, compared with the
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control. The matrix of the less hydrated cement is looser. The high pore volume of the
SRA originates from the already mentioned inhibition of hydration by the SRA, which was
confirmed in Sections 3.2 and 3.3. It is noteworthy that the cumulative pore volume curve
of EA-8% had a steep rise at the lower size pores, and the higher most-probable pore size
peak of EA-8% was observed in the pore size distribution (Figure 12b) with a leftward shift
compared with the other groups. This was associated with the fact that the EA has some
fine holes encapsulated by the CH crystals during the expansion process. In addition, it
was not unexpected that the internal curing effect of SAP admixture on the cement mortar
reduces the volume of pores in the matrix.
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Based on the pore size characteristics of cementitious materials, pores can be classified
as gel pores (<10 nm), small capillaries (10 nm to 50 nm), medium capillaries (50 nm to
100 nm), large capillaries (100 nm to 10 µm), and macroscopic pores (>10 µm) [60,61].

The delineation results are shown in Table 4. The major pores in the EA group are
gel pores and small capillaries, which account for 23.8% and 48.39% of the total volume,
respectively. The percentage of large capillaries is reduced by 14.4% in EA-8% compared
with the control, which indicated that EA significantly optimizes the pore structure of
cement mortar. During the hydration of EA, the expansion of its volume blocked the large
capillary pores, while the CH crystals carried some of the small pores. Moreover, CH and
CaSO4 in EA promoted the secondary reaction of cement and mineral admixtures (GGBS,
FA and SF) to generate AFt and fill the pores. The negative effect of SRA on the pore
structure of the cement was again confirmed by the pore volume fraction. The percentage
of gel pores and small capillaries of SRA-2% was reduced 5.1% and 10.6%, respectively,
compared with the control. It is well known that the generation of gel pores and small
capillary pores is bound up with the hydration of cement and mineral admixtures. The
reduction in these two types of pores demonstrated that SRA exerts an inhibitory effect on
cement hydration, which corresponds to the results in Section 3.3. Compared to the control,
the SAP group showed a 15.62% decrease in large capillary pores and a 9.77% increase
in macroscopic pores. The SAP produced more hydration products through continuous
water release at the later stages of cement hydration, thus refining the pore size [59]. It is
important to note that the addition of SAP optimized the capillary pores, yet SAP shrinkage
left larger pores, leading to an increase in macroscopic pores.
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Table 4. Pore volume and porosity of hardened mortars samples.

Samples Porosity
(mL/g)

Pore Volume Fraction (%)

<10 nm 10–50 nm 50–100 nm 100 nm–10 µm >10 µm

Control 0.0671 18.25 38.6 3.36 29.05 10.74
EA-8% 0.0925 23.86 48.39 2.11 14.65 10.99

SRA-2% 0.0979 17.32 34.51 3.16 32.17 12.84
SAP-0.4% 0.05 19.45 37.41 9.2 13.43 20.51

4. Conclusions

In present work, the effect of different shrinkage-reducing agents on hydration rate
and autogenous shrinkage of commercial concrete used in tunnel annular secondary lining
engineering were investigated. The main conclusions are as follows:

1. EA, SRA, and SAP lead to different hydration heat release behaviors in commercial
concrete. EA increases the degree of hydration and increases the total amount of
exothermic heat of cementitious binder, while SAP and SRA have lower peaks and
total hydration heat. EA, SAP, and SRA have a good compensation effect on autoge-
nous shrinkage of commercial concrete. Among them, SRA-3% has the most obvious
shrinkage reduction rate of 79.6%.

2. The negative effect of SRA and SAP on the early compressive strength of concrete is
increased with the dosage. The compressive strength of SRA group is decreased by
up to 44.6% at 3 d. However, the appropriate amount of SAP can equalize with the
control group at 28 d. On the contrary, a moderate amount of EA has an increased
effect on compressive strength. EA and SAP reduce the content of 100 nm–10 µm
pores in commercial concrete by 49.5% and 54.2%.

3. The incorporation of EA can reduce the total capillary water absorption and improve
the resistance to chloride ion penetration, while SRA has the opposite effect to EA.
SAP group is close to the control group in terms of total capillary water uptake and
resistance to chloride ion permeation.

4. The incorporation of EA can bring about better strength in the early stage and has
the effect of improving the pore structure and enhancing durability performance.
However, the addition of a large amount will produce an expansion effect and affect
the volume stability of the concrete. SRA has an excellent ability to delay shrinkage,
as well as the effect of reducing the rate of the heat of hydration, while it has a great
influence on the mechanical properties. SAP compensates for the shrinkage with
better late compressive strength and delays the hydration rate.

5. Compared with SRA and SAP, EA is more suitable for projects that require early
strength and has better application value for secondary lining projects. SRA can effec-
tively reduce the negative effects of concrete shrinkage, but the resulting decrease in
strength will affect the subsequent duration of the secondary lining project. SAP as a
new material applied to fill the shrinkage and anti-cracking still has more need for im-
provement. Under the premise of strict requirements for the compressive strength of
concrete, SAP is a better choice for secondary lining projects with higher requirements
for early hydration exotherm when choosing shrinkage reduction components.
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