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Abstract: Nanofluids can be employed as one of the two fluids needed to improve heat exchanger
performance due to their improved thermal and rheological properties. In this review, the impact of
nanoparticles on nanofluid properties is discussed by analyzing factors such as the concentration, size,
and shape of nanoparticles. Nanofluid thermophysical properties and flow rate directly influence the
heat transfer coefficient and pressure drop. High thermal conductivity nanoparticles improve the heat
transfer coefficient; in particular, metallic oxide (such as MgO, TiO2, and ZnO) nanoparticles show
greater enhancement of this property by up to 30% compared to the base fluid. Nanoparticle size
and shape are other factors to consider as well, e.g., a significant difference in thermal conductivity
enhancement from 6.41% to 9.73% could be achieved by decreasing the Al2O3 nanoparticle size from
90 to 10 nm, affecting nanofluid viscosity and density. In addition, equations to determine the heat
transfer rate and the pressure drop in a double-pipe heat exchanger are presented. It was established
that the main factor that directly influences the heat transfer coefficient is the nanofluid thermal
conductivity, and nanofluid viscosity affects the pressure drop.

Keywords: nanofluids; nanoparticles; double-pipe heat exchanger; pressure drop; heat transfer
coefficient; morphology

1. Introduction

The double-tube heat exchanger is one of the most common designs of heat exchangers
used in commercial and industrial applications. It is the simplest and one in which hot and
cold fluids move in same or opposite directions [1]. A great advantage of the double-tube
heat exchanger is the ability to process products with particles without any blockage risk.

The chemical, food, oil, and gas industries use double-pipe heat exchangers to per-
form tasks such as pasteurization, sterilization, reheating, preheating, digester heating,
and effluent heating processes [2], for example, heating and/or cooling in sanitary and
pharmaceutical applications. Moreover, the double-tube heat exchanger has been widely
used in different renewable energy systems, such as solar energy, waste heat recovery,
geothermal, combustion, latent heat energy storage, and air conditioning, due to its simple
construction, easy cleaning, and low cost [3].

The heat transfer improvement in exchangers is usually accompanied by a pressure
drop increase and, as a consequence, it requires higher pumping power. Therefore, any
gains from improved heat transfer should be balanced against the associated pressure drop
cost [4,5]. In this way, the main reasons for research work on heat exchangers are (i) to
enhance their heat transfer rate, consequently reducing the heat exchanger’s overall size,
saving initial cost and space, and (ii) to minimize or avoid a large pressure drop, allowing
pumping power to be reduced and saving operating costs. Therefore, knowledge about the
pressure drop and convective heat transfer characteristics in heat exchangers is essential
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for adopting this technology into marketable products. Therefore, several techniques are
scrutinized in order to enhance heat pipe performance, such as new structure configurations,
designs, and technologies or their modification, the integration of heat pipes with other
systems such as solar concentrators, improving the working fluid type, or employing heat
storage systems [6].

In the recent decade, many scientists have worked to improve performance in heat
exchangers using nanofluids as heat transfer fluids. Kavitha et al. experimentally used the
CuO-water nanofluid as a heat transfer fluid to enhance a double-pipe heat exchanger [7].
Jassim et al. experimentally assessed TiO2 and Al2O3 nanofluids on heat exchanger perfor-
mance by considering nanofluids replacing conventional fluid, resulting in performance
improvements from 13% to 23% with a concentration of 3% [8]. Ding et al. carried out a
numerical simulation of TiO2-water nanofluids in a double-pipe heat exchanger consid-
ering various flow rates and TiO2 mass fractions. The results demonstrated that the heat
transfer capacities of all mass fractions of TiO2-water nanofluids were higher than those
of deionized water, but they also increased the flow resistance in a corrugated pipe [9].
Akbar et al. achieved excellent results employing a hybrid nanofluid (Al2O3+TiO2-water)
to improve the heat transfer and pressure drop through horizontal tubes with diameter
sizes of 30 to 45 nm. The results proved that the thermophysical properties of the hybrid
nanofluid were enhanced from 7 to 13% compared to water, increasing the Nusselt number
by approximately 30%, with a slight (5%) increase in pressure drop along a horizontal
heated tube and a heat transfer highly appropriate for practical and industrial applica-
tions [10]. Jassim et al. experimentally assessed Al2O3 and Cu nanofluids on performance
and heat leak in a double-pipe heat exchanger, showing that the Nusselt number was
enhanced at all volume concentrations of Cu and Al2O3 nanofluids when compared to
the base fluid (water). The Nusselt number was directly proportional to the Reynolds
number for all cases. The use of nanoparticles in the base fluid causes an increment in
exchanger effectiveness [11]. Mansoury et al. experimentally studied the heat transfer and
flow characteristics of an Al2O3-water nanofluid in various heat exchangers on counter
flow with a 20 nm nanoparticle size and turbulent flow. The double-pipe heat exchanger
presented a 60% enhancement in the heat transfer coefficient, while the plate heat exchanger
reflected an 11% increment in the heat transfer coefficient. However, the smallest percent-
age of pressure drop of 27% was reported in the plate heat exchanger, compared to the
double-pipe heat exchanger at 85% [12].

Likewise, several studies confirmed simultaneous improvements in heat exchangers
and solar collectors using a nanofluid as one of their heat transfer fluids. Vincely et al.
performed an experimental investigation of solar flat plate collector performance using a
graphene oxide–water nanofluid under forced circulation connected to a concentric-tube
heat exchanger. It was observed that the collector efficiency was enhanced with increasing
concentrations and flow rates. The heat transfer coefficient increments for the nanofluid
in a laminar flow with concentrations of 0.005, 0.01, and 0.02 were 8.03%, 10.93%, and
11.50%, respectively [13]. Similarly, Henein et al. utilized a MgO/MWCNT-water hybrid
nanofluid as a working fluid to enhance the thermal performance of a heat-pipe evacuated-
tube solar collector with a 0.02% concentration at various volume flow rates ranging from
1 to 3 L/min. The results showed an enhancement in the energy and exergy efficiencies
with an increase in the weight ratios of the MWCNT nanoparticles and the volume flow
rate. The energy and exergy efficiency enhancements for the collector were 55.83% and
77.14%, respectively, for the MgO/MWCNT (50:50) hybrid nanofluid [14].

As already discussed, almost all research activities have focused solely on improving
the heat transfer coefficient. However, they have not emphasized the importance of
minimizing or avoiding pressure drops. Moreover, studies related to the use of nanofluids
in heat exchangers only support factors affecting heat transfer, while few or no discussions
about the parameters that influence pressure drop are deeply scrutinized, to the best of
our knowledge. Consequently, the main objective of this review is to analyze the factors
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influencing nanofluids in the performance of heat exchangers, not only to improve heat
transfer but also to minimize or avoid large increments in pressure drop.

2. Heat Exchanger Performance

Different methodologies were investigated to improve heat exchanger performance.
Examples of active and passive methods are summarized in Table 1. For active methods,
external forces are required for heat transfer performance in double-tube heat exchangers.
Generally, the main external forces used were mechanical forces, ultrasound, and magnetic
fields [3]. As can be seen in Table 1, high-power and sophisticated devices were applied to
improve the heat transfer rate by active methods. Contrastingly, passive methods did not
require a powerful force. In that case, simple techniques were used to improve the heat
transfer coefficient. Helical wires and porous media were two techniques considered with
a greater percentage of pressure drop. However, this pressure drop could be compensated
with a percentage of heat transfer improvement. Passive techniques were better when
compared to active techniques because of their simplicity, low cost, and certain level of en-
hancement with a tolerable pressure drop [15]. The use of nanoparticles has been one of the
most promising ways among the passive methods to improve heat exchanger performance.

Table 1. Examples of methods used to improve the double-pipe heat exchanger.

Methods Improvement Approach Observations (by Percentage, %) Ref.

Active

Using air bubble injection The percentage improvement of the overall heat
transfer coefficient can be from 10.30% to 149.50%. [16]

Using surface vibrations Heat transfer coefficient enhancement of 9% [17]

Using magnetic field Heat transfer enhancement up to 320% and a
slight increase in pressure drop [18]

Using ultrasonic vibration Heat transfer is enhanced by about 60%. [19]

Passive

Porous media Enhanced heat transfer of 44% with larger
pressure drops [20]

Using fins Heat transfer rate enhancement of around 90–98%.
Pressure drops for finned tube also increased. [21]

Helical wires Augments Nusselt number by up to 2.64 fold.
Increases friction factor by about 2.74 fold. [22]

Twisted tape Significant (15%) enhancement in heat transfer
rate. Friction factor increased by 10%. [23]

Metal foam Nusselt number enhanced by 57.21%. [24]

Nanofluids (MgO-ethylene
glycol)

Heat transfer coefficient enhancement of 27% for
wt.% = 0.3 and 35% pressure drop at wt.% = 0.3. [25]

Double-pipe heat exchanger performance consists of increasing the heat transfer rate
and avoiding or minimizing a large pressure drop. Commonly, a fluid with a high viscosity
value is the most appropriate for the side with the larger passage area (annular) since it
implies a lower pressure drop [4]. In Figure 1, a diagram of a double-pipe heat exchanger is
presented. When hot and cold fluids move in same or opposite directions in a double-pipe
construction, this corresponds to the simplest heat exchanger model. One of the fluids
passes through the smallest tube, while the other passes through the annular space between
two tubes. Two types of flow arrangement are possible, one is employing both fluids in
parallel flow, where cold and hot fluids enter at the same edges and move in the same
direction (Figure 1a). In the other arrangement (Figure 1b), fluids enter at opposite inlets in
counterflow, running in opposite directions [4,5].
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Figure 1. Double-pipe heat exchangers using (a) parallel flow and (b) counter flow [3].

The main factors that influence heat exchanger performance are the design, fluid
properties, and flow types (Figure 2). A lower pressure drop helps avoid the requirement
for a huge pump without affecting the initial cost. It also reduces electrical consumption,
which affects operating costs. Low speeds are helpful to avoid erosion, tube vibrations, and
noise as well as pressure drop [4].
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A novel method that has been promoted recently is the use of nanofluids. Different
nanofluids have been investigated to improve double-tube heat exchanger performance [26].
The heat transfer coefficient and the pressure drop are characterized by relative variations
in nanofluid thermophysical properties that include the density, specific heat, viscosity,
expansion coefficient, and thermal conductivity in addition to the flow regime [27]. Accord-
ing to Gupta et al., nanofluid thermophysical properties depend on the base fluid and on
the influence of certain factors specific to nanoparticles, such as the concentration, size, and
geometry (shape) [28]. In the next section, a detailed analysis of this topic is provided.

3. Impact of Morphology and Concentration of Nanoparticles on Nanofluid Properties
3.1. Nanofluids in Heat Exchangers

Nanoparticles (NPs) are particulate substances that range between 5 and 100 nm in
size [29]. Recently, nanoparticles have been used in a base fluid for the formation of new
materials called nanofluids for special uses in many applications such as solar energy [30,31],
automotive radiators [32,33], thermal energy storage [34,35], refrigeration [36,37], and
double-pipe heat exchangers (Table 2).

These nanofluids can be employed as heat transfer fluids that usually have a higher
thermal performance than other conventional fluids. They have been investigated for a long
time as an alternative working fluid. They are formed from the suspension of small solid
particles of nanometer size in a base fluid. Conventional fluids that are usually employed
as base fluids are water, ethylene glycol, engine oil, paraffin oil, and others [38].

It can be observed that nanoparticle characteristics have a significant impact on
nanofluid properties and influence the heat transfer coefficient. High thermal conduc-
tivity nanoparticles are better since this feature improves both the nanofluid and its heat
transfer coefficient. Nanoparticles such as metallic oxides show greater heat transfer coeffi-
cient enhancement than others. TiO2 and ZnO nanoparticles result in better heat transfer
percentage improvements than Ag nanoparticles. A large observed pressure drop value
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corresponds to a high concentration and a flow rate increment. In the next section, other
than nanoparticle nature, additional parameters that influence nanofluids are detailed.

Table 2. Formed nanofluids commonly used in the enhancement of double-pipe heat exchangers.

Nanoparticles Size
(nm) Base Fluid Concentration

(%)
Temperature
Range (◦C) Observation Ref.

Al2O3 45
60% ethylene

glycol 40%
water

4.00 11.85–151.85

Average heat transfer enhancements of 40%, 29%,
and 43%, respectively.

Increased pressure drop by 84%, 47%, and 100%,
respectively.

[39]SiO2 50

CuO 29

TiO2 8–18
Water 0.25 30–60

Heat transfer coefficient enhanced by up to 32%,
21%, and 16%, respectively. [40]ZnO 12–28

Ag 7–24

Multiwalled carbon
nanotubes
(MWCNT)

20–30 Solar glycol 0–0.60 30–50

Heat transfer enhanced by 115% for 0.04 kg/s and
0.6% concentration.

A 1.56-fold increase in pressure drop for 0.08 kg/s
and 0.6% concentration.

[41]

Fe3O4 50–100 Water 0–0.40 31–90

Heat transfer enhanced by 80–90% for 0.4%
concentration.

Increase in pressure drop, along with the Reynolds
number and the nanofluid volume concentration.

[21]

MgO 45–50
50% water—
50% ethylene

glycol
0–0.300 20–100 Heat transfer enhanced by 39% at wt.% = 0.3 and

friction factor increased by 33.80%. [42]

TiO2 21 Water 0.2 15–50 Heat transfer coefficient enhanced by 6–11%.
Low penalty of pressure drop. [43]

3.2. Influences of Nanoparticles on Nanofluid Properties

A nanoparticle suspension in a base fluid enhances the energy transmission in the
fluid, leading to improved thermal conductivity properties and better heat transfer charac-
teristics [26]. According to Pordanjani et al., there are four thermophysical properties of
nanofluids that change with the addition of nanoparticles to a base fluid: the density, viscos-
ity, thermal conductivity, and specific heat [44]. Moreover, other experimental studies have
demonstrated that nanofluid thermophysical properties depend on the concentration, size,
shape, and characteristics (nature) of nanoparticles [38]. Hozien et al. have experimentally
studied the thermophysical properties of TiO2/water, ZnO/water, and Ag/water nanoflu-
ids, with their average nanoparticle sizes being 14, 20, and 16 nm, respectively. Three types
of nanofluids were prepared with nanoparticle volume concentrations of 0.25%. Their
results showed that the density, viscosity, and thermal conductivity of all three nanofluids
increased. Precisely, the thermal conductivity values showed average enhancements of
8.50%, 6.00%, and 5.00%, respectively. XRD, SEM, TEM, and the Zetasizer test are used
for the characterization of synthesized nanoparticles [40]. In the following sections, the
influences of the most significant factors (volume concentration, size, and shape) on the
thermophysical properties of nanofluids are presented.

3.2.1. Influences of Volume Concentration of Nanoparticles on Nanofluids Properties

In Figure 3, the effect of the nanoparticle concentration on nanofluid properties is
presented. In general, an increasing particle concentration in a base fluid increases the
nanofluid viscosity and density while enhancing its thermal conductivity. Experimental
studies with a Viscolite 2700 viscometer carried out by Rabienataj et al. showed that a
nanoparticle concentration increase in base a fluid increases the nanofluid viscosity [45].
Similarly, Osman et al. measured the nanofluid viscosity of (Al2O3—water), resulting in
an increase in nanofluid viscosity with the volume concentration [46]. Later, with a new
experimental study of nanofluids (Al2O3-base fluid and CuO-base fluid), Asokan et al.
confirmed that the density, thermal conductivity, and viscosity increase with the nanoparti-
cle concentration in the base fluid [47]. A mixture of 60% ethylene glycol and 40% water
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was used as a base fluid [48]. Recently, Saleh et al. analyzed a MWCNT/water nanofluid
(multiwalled carbon nanotube/water nanofluids), demonstrating that the thermal conduc-
tivity, viscosity, and density were augmented by 15.27%, 9.15%, and 1%, respectively, at a
0.3% particle concentration compared with water as the base fluid. The characterization
of MWCNT was performed with XRD (Siemens D-500, 45 kV) and SEM (Hitachi SU-70
SEM) [49]. The nanofluid density was the property that influenced the Reynolds number,
determining the flow condition (laminar or turbulent), and allowed for the heat transfer
coefficient and pressure drop calculations [50]. Then, the density’s influence on heat ex-
changer performance was not significant because it exerted a positive influence on the heat
exchanger by enhancing the heat transfer coefficient and a negative one by increasing the
pressure drop percentage.

In Table 3, a summary of examples of the effects of the nanoparticle volume fraction
on nanofluid properties is presented. Generally, it could be observed through the articles
reviewed in this section that nanofluids’ main thermophysical properties were influenced
by the modification of nanoparticle concentrations in the base fluids. With a concentration
increase, thermal conductivity, density, and viscosity increased. Metal oxide nanoparticles
showed better behavior in thermal conductivity compared with metallic nanofluids. Metal-
lic nanoparticles presented better improvements in density and viscosity. The nanofluid
specific heat was not significant in the process because it resulted in lower performance
than the base fluid. It should be remembered that, with increasing temperature, nanofluid
thermal conductivity increases and viscosity and density decrease.

Table 3. Influences of the concentration of nanoparticles on nanofluid properties according to
different studies.

Base Fluid Nanoparticles
Particle Con-

centration
(%)

Size
(nm)

Temperature
Range (◦C) Observation Ref.

Ethylene glycol
MWCNT

(multi-walled carbon
nanotubes)

0.02–0.10 12–30 30–60

Thermal conductivity increased by 50% with a
0.06% concentration.

Viscosity increased by 58% with a 0.1%
concentration.

[51]

TH55 oil Al2O3 0.10–1.00 40–50 20–90

Thermal conductivity was enhanced by 8.44% at
65 ◦C with a 1.0% concentration.

Density increased 3.31% at 20 ◦C with a 1.00%
concentration.

Viscosity at 30 ◦C improved by 28%.

[52]

TH55 oil
GNP

(graphene
nanoplatelets)

0.01–0.10 – 20–90

Thermal conductivity was enhanced by 15.69%
with a concentration of 0.10% at 65 ◦C.

Density increased slightly compared to the base
fluid.

Viscosity at 30 ◦C improved by 32%.

[52]

60% Ethylene
glycol/40%

water
CuO 0.06 <50 <100

Thermal conductivity improved by
26%, density improved by 29%, and viscosity

improved by 27%.
[47]

Water Al2O3 1.00 20 55 Increased viscosity by 31% compared to the base
fluid. [45]

Water
MWCNT

(multi-walled carbon
nanotubes)

0.30 15 25–70
Thermal conductivity increased by 9.80–15.28%.
Viscosity increased by 11.489.15%, and density

increased as well.
[49]

Water

TiO2

0.25

8–18

30–60

Average thermal conductivity increased by 8.5%,
6.0%, and 5.0%.

Average density increased by
7%, 11%, and 24%.

Average viscosity increased by 4.7%, 5.1%, and
5.3%, respectively.

[40]ZnO 12–28

Ag 7–24



Materials 2022, 15, 6879 7 of 22

Materials 2022, 15, x FOR PEER REVIEW 6 of 23 
 

 

an increase in nanofluid viscosity with the volume concentration [46]. Later, with a new 
experimental study of nanofluids (Al2O3-base fluid and CuO-base fluid), Asokan et al. 
confirmed that the density, thermal conductivity, and viscosity increase with the nano-
particle concentration in the base fluid [47]. A mixture of 60% ethylene glycol and 40% 
water was used as a base fluid [48]. Recently, Saleh et al. analyzed a MWCNT/water 
nanofluid (multiwalled carbon nanotube/water nanofluids), demonstrating that the ther-
mal conductivity, viscosity, and density were augmented by 15.27%, 9.15%, and 1%, re-
spectively, at a 0.3% particle concentration compared with water as the base fluid. The 
characterization of MWCNT was performed with XRD (Siemens D-500, 45 kV) and SEM 
(Hitachi SU-70 SEM) [49]. The nanofluid density was the property that influenced the 
Reynolds number, determining the flow condition (laminar or turbulent), and allowed for 
the heat transfer coefficient and pressure drop calculations [50]. Then, the density’s influ-
ence on heat exchanger performance was not significant because it exerted a positive in-
fluence on the heat exchanger by enhancing the heat transfer coefficient and a negative 
one by increasing the pressure drop percentage. 

 
Figure 3. Influences of an increase in nanoparticle concentration in a base fluid on nanofluid prop-
erties. 

In Table 3, a summary of examples of the effects of the nanoparticle volume fraction 
on nanofluid properties is presented. Generally, it could be observed through the articles 
reviewed in this section that nanofluids’ main thermophysical properties were influenced 
by the modification of nanoparticle concentrations in the base fluids. With a concentration 
increase, thermal conductivity, density, and viscosity increased. Metal oxide nanoparti-
cles showed better behavior in thermal conductivity compared with metallic nanofluids. 
Metallic nanoparticles presented better improvements in density and viscosity. The 
nanofluid specific heat was not significant in the process because it resulted in lower per-
formance than the base fluid. It should be remembered that, with increasing temperature, 
nanofluid thermal conductivity increases and viscosity and density decrease. 

Table 3. Influences of the concentration of nanoparticles on nanofluid properties according to dif-
ferent studies. 

Base Fluid  Nanoparticles Particle Concen-
tration (%) 

Size 
(nm) 

Temperature 
Range (°C) Observation  Ref. 

Ethylene glycol 
MWCNT (multi-walled 

carbon nanotubes) 
0.02–0.10 12–30 30–60 

Thermal conductivity increased by 50% 
with a 0.06% concentration. 

Viscosity increased by 58% with a 0.1% 
concentration. 

[51] 

TH55 oil Al2O3 0.10–1.00 40–50 20–90 

Thermal conductivity was enhanced by 
8.44% at 65 °C with a 1.0% concentra-

tion. 
Density increased 3.31% at 20 °C with a 

1.00% concentration. 
Viscosity at 30 °C improved by 28%. 

[52] 

Figure 3. Influences of an increase in nanoparticle concentration in a base fluid on nanofluid properties.

3.2.2. Influences of Nanoparticle Size on Nanofluid Properties

Nanoparticle size is an important parameter that influences the main thermophysical
properties of nanofluids. Nanoparticles can be synthesized in various sizes ranging from
5 to 100 nm. Kim et al. experimentally studied the performance improvement of a U-tube
solar collector, depending on the nanoparticle size and the concentration of an Al2O3-water
nanofluid. A volume fraction of 1% and nanoparticles of three diameters (20, 50, and
100 nm) were used. It was observed that the thermal conductivity enhancement at a 20 nm
nanoparticle size was approximately 1.54% and 2.43% higher than those at 50 nm and
100 nm nanoparticle sizes, respectively. At the same nanofluid concentration, the maximum
efficiencies of the solar collector with 20, 50, and 100 nm nanoparticles in the nanofluid
were 24.10%, 20.40%, and 17.80%, respectively, higher than that with water. The overall
number of small nanoparticles was greater than that of large nanoparticles. An ultrasonic
oscillation apparatus (SHT 750S, 750 W power, 19.97 kHz frequency) and SEM were used
for the characterization and preparation of the nanofluids [53]. Then, Zhang et al. studied
the effects of particle size on the heat transfer performance of SiO2-water nanofluids. Good
suspension stability and dispersion were prepared, and their thermal conductivities were
measured using the transient hot wire method. The results showed that the SiO2−water
nanofluid thermal conductivities with particle sizes of 15, 30, and 80 nm were 7.80, 4.90, and
3.80% higher than those of water, respectively, which meant that the SiO2−water nanofluids
thermal conductivity was higher than water. It was also observed that smaller nanofluid
nanoparticle sizes obtained higher dynamic viscosity values than the base fluid. An FS-1200
ultrasonic processor and a Minizeta 03E laboratory horizontal grinder were the apparatus
for nanofluid preparation (Figure 4) [54]. Similarly, Main et al. experimentally assessed
the nanoparticle size effects on the density, viscosity, and thermal conductivity of ionic
liquid (IL)-based nanofluids. In that work, 1 wt.% aluminum oxide (Al2O3) nanoparticles
with different particle sizes (10 nm, 30 nm, 60 nm, and 90 nm) were mixed in base ionic
liquids with a working temperature range of 10 ◦C to 70 ◦C. It was noticed that the average
thermal conductivity enhancements were 9.73%, 6.53%, 6.41%, and 7.60% for 10 nm, 30 nm,
60 nm, and 90 nm nanoparticles, respectively. A Brookfield DV3T viscometer and a KD2
Pro thermal property analyzer were used for the measurement of nanofluid properties [55].

Nanoparticle size influences the viscosity, thermal conductivity, and density of nanoflu-
ids. Decreasing the nanoparticle size enhances nanofluid thermophysical properties [28,54].
Additionally, the main factors affecting nanofluid thermophysical properties include
nanoparticle morphology and concentration [26].

In this section, based on a review of previous research, it is clearly observed that the
smallest nanoparticles presented an improvement in thermal conductivity and viscosity
and no significant variation in density (Table 4). Next, nanoparticle shape’s influence on
nanofluid properties is analyzed.
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Table 4. Influences of nanoparticle size on nanofluid properties according to different studies.

Base
Fluid Nanoparticles

Particle
Concentration

(%)

Size
(nm)

Temperature
Range ◦C Observation about Nanofluids Properties Ref.

Water Al2O3 1.0%
20

10–50
Thermal conductivity of 20 nm was enhanced by 1.54% and 2.43% more than those of

50 nm and 100 nm, respectively.
No significant variation in density.

[53]50
100

Water SiO2 –
15

25–65
Thermal conductivity was improved by 3.80, 4.90, and 7.80%, respectively, compared

to the base fluid.
The viscosities increased by 6.10, 8.30, and 9.20% compared with those of pure water.

[54]30
80

Ionic
liquid Al2O3 1.0%

10

10–90

Thermal conductivity was enhanced by 9.73%, 6.53%, 6.41%, and 7.60% for 10 nm, 30
nm, 60 nm, and 90 nm nanoparticles, respectively.

Density and viscosity did not have significant differences based on the sizes of
nanoparticles.

[55]30
60
90

Water CuO 0.1%
20

20–70 Thermal conductivity of 25 nm (18%) was larger than the 50 nm size (15.60%) at 30 ◦C. [30]50

Engine
oil ZnO 7.5%

20

– Viscosity increased with an increase in nanoparticle size by
3.80%, 4.61% 5.30%, 6.90%, and 9.23%, respectively. [56]

40
60
80

100

3.2.3. Influences of Nanoparticle Shape on Nanofluid Properties

The nanoparticle shapes commonly used in base fluids (Figure 5) to form nanofluids
were shown to directly affect only the viscosity and thermal conductivity of the final
nanomaterials [28].
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Zahmatkesh et al. presented both formulas and different shape factors to determine
the thermal conductivity and viscosity of nanofluids (see Figure 6) [57].
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Figure 6. TiO2 nanoparticle SEM images of (a) spherical, (b) brick (cubic), and (c) cylindrical
(rod) shapes [57].

Cui et al. experimentally carried out a study on the thermal conductivity of nanofluids
with different nanoparticle shapes, as presented in Figure 7. The results showed that the rel-
ative thermal conductivity (RTC) of TiO2/water nanofluids with clubbed and sheet-shaped
nanoparticles is higher than other shapes, and TiO2 nanofluids with sheet nanoparticles
showed the highest RTC for a temperature of 60 ◦C and a nanoparticle concentration of 4%.
A transmission electron microscope (TEM, JEM-1200EX, Jeol Ltd., Tokyo, Japan) and an
ultrasonic bath were used to prepare the nanofluids [58].
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Elias et al. studied the effects of different forms of nanoparticles in nanofluids on
heat exchanger performance. The results showed an increase in both system heat transfer
and thermodynamic performance. Cylindrical nanoparticles showed better performance
in terms of the thermal conductivity, heat transfer coefficient, and overall heat transfer
coefficient (see Figure 8) [59].
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Later, Shahsavar et al., in a numerical study, evaluated the thermal and hydraulic
characteristics of a boehmite alumina nanofluid in a two-tube mini-channel heat exchanger
considering various nanoparticle shapes. It was observed that morphology influences
nanofluid thermal conductivity, where the cylindrical shape showed the best conductivity,
and the platelet shape corresponded to the lowest thermal conductivity [60].

In a numerical study, Saranya et al., Dehaj et al., and Hajabdollahi et al. also found
that the viscosity and thermal conductivity were influenced by nanoparticle shapes for
different volume concentrations. In general, the nanofluid viscosity and thermal conduc-
tivity increase with increasing volumetric concentrations of particles, and the slope of
the increase becomes higher with larger particle concentrations for different nanoparticle
shapes. Nanofluid conductivities with cylindrical and brick-shaped NPs were higher at a
fixed particle concentration compared to other forms of nanoparticles [61–63]. As can be
seen, a higher viscosity was obtained using cylindrical and platelet nanoparticle shapes at
a fixed particle concentration (Figure 9) [61].

In this section, the effects of nanoparticle shapes on the thermal conductivity and
dynamic viscosity, among other thermophysical properties of nanofluids, were presented.
Cylindrical nanoparticles always presented high performance for both properties men-
tioned above.
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4. Effects of Nanofluid Characteristics on Heat Transfer Rate and Pressure Drop

In this section, the main characteristics that affect the heat transfer rate and pressure
drop of a heat exchanger are presented. The equations below determine the heat transfer
rate and pressure drop in a double-pipe heat exchanger. Nanofluid would be considered
a working fluid. Each of the relevant nanofluid characteristics is analyzed, and its direct
effects on the heat transfer and pressure drop are observed.

Subsequently, in the present review, the authors mathematically analyze these param-
eters with data extracted from [62] and determine the main nanofluid characteristics that
influence both the heat transfer rate and pressure drop, thus further clarifying the context
of this work. Heat exchanger dimensions are presented in Table 5. The nanofluid to be
used is TiO2-water with 20 nm spherical nanoparticles. The nanofluid flows in the inner
tube of the heat exchanger. The equations were solved using MATLAB.

Table 5. Double-pipe heat exchanger dimensions.

Material Inner Diameter (m) Thickness (m) Length (m)

Inner tube Copper 0.007 0.00150 0.885
Annular Galvanized iron 0.022 0.00275 0.885

4.1. Data Analysis

The average heat transfer rate in the heat exchanger is calculated from Equation (1)
and presented with a

.
QHX term [41]:

.
QHX = UA·∆Tlm =

∆Tlm
RHX

(1)

where A is the surface area of the inner tube, U is overall heat transfer coefficient of a
double pipe, and ∆Tlm is the logarithmic mean temperature difference for counter-flow
conditions, and the thermal resistance is calculated according to Equation (2) [4,5]:

RHX =
1

UA
=

1
hnf Ai

+
R′′ fi
Ai

+
ln(do/di)

2πkLi
+

R′′ f o

Ao
+

1
ho Ao

(2)
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where k is the thermal conductivity of the tube material, and Ao and Ai are the inner and
outer areas of the inner tube, respectively. hnf and hw represent the convective heat transfer
coefficient of the nanofluid and water, respectively. R′′ f i and R′′ f o are fouling factors in the
inner tube and the annular, respectively.

For this analysis, the nanofluid circulates in the heat exchanger inner tube. Conse-
quently, it is enough to determine the nanofluid heat transfer coefficient because it affects
the overall heat transfer rate of heat exchanger. The coefficient is calculated according to
Equation (3):

hnf =
Nunf ·knf

di
(3)

The dimensionless Nusselt number pertaining to nanofluids is evaluated, as follows,
according to Equation (4) [4,64]:

Nunf= 3.66+
0.065(di/Li)Renf Prnf

1 + 0.04
[
(di/Li)Renf Prnf

]2/3 (4)

The values of the Prandtl and Reynolds numbers for the nanofluid are determined by
Equations (5) and (6). The Reynolds number is the factor that allows the determination of
the fluid flow regime type. It depends on the nanofluid velocity, density, and viscosity. In
this study, the flow regime is laminar.

Renf =
ρnf ·unf ·di

µnf
(5)

Prnf =
µnf ·Cpnf

knf
(6)

The pressure drop is directly related to the nanofluid velocity and the density and is
calculated according to Equation (7) [41]:

∆Pnf= f nf ·
ρnf ·u2

nf

2·di
·Li (7)

where ∆Pnf, ρnf, unf, fnf, and Li are the nanofluid pressure drop, density, friction factor,
velocity, and heat exchanger length, respectively. The friction factor is calculated by
Equation (8) [5]:

fnf =
64

Renf
(8)

The HTF pumping power (Ppump) depends directly on the fluid pressure drop and the
volumetric flow rate in the pipe and is required to calculate the amount of pump power to
use. It is given by Equation (9) [41,65]:

Ppump =

.
m·∆P

ρ
=

.
V·∆P (9)

Subramanian et al. experimentally analyzed the effects of the heat transfer and pres-
sure drop of TiO2–water nanofluids flowing in a double-tube counter-flow heat exchanger.
Their results showed that nanofluid heat transfer was greater than that of the base liq-
uid (water) and increased with increasing Reynolds number and particle concentrations.
The nanofluid pressure drop increased with an increment in volume concentration, being
slightly higher than the base fluid [66]. Moreover, Saleh et al. noticed that the pressure
drop is a function of the viscosity, volumetric flow rate, friction factor, and density as well
as heat exchanger geometry. A higher pressure drop is noted for nanofluids due to their
higher density [49].



Materials 2022, 15, 6879 13 of 22

In the next sections, thermophysical property effects are presented for the concentra-
tion and flow regime of a TiO2—water nanofluid. In addition, their influence on the heat
transfer coefficient and pressure drop in the double-pipe heat exchanger is determined.

4.2. Effects of Nanofluid Thermal Conductivity on Heat Transfer Rate and Pressure Drop

Nanofluid thermal conductivity plays a key role in thermal efficiency for the double-
pipe heat exchanger. Efficiency is influenced by several factors: the thermal conductivity,
concentration, size, and morphology of nanoparticles. Equation (10) is commonly used to
determine the nanofluid thermal conductivity of spherical nanoparticles [50].

knf= kbf ·

 knp+2·kbf − 2·ϕ·
(

kbf − knp

)
knp+2·kbf+ϕ·

(
kbf − knp

)
 (10)

Considering a nanoparticle concentration variation from 0.0 to 0.8% in a base fluid
with a constant flow of 0.4 L/min, according to Equation (10), the nanofluid thermal
conductivity increases up to 1.98% greater than in the base fluid. It directly affects the heat
transfer coefficient.

Depending on the nanofluid thermal conductivity enhancement and Equations (3) and (7),
with a 0.4% concentration and a 0.5 L/min velocity, the heat transfer coefficient results in
an improvement of 1.64%, and the pressure drop does not change (see Figure 10).
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4.3. Effects of Viscosity of Nanofluids on Heat Transfer Rate and Pressure Drop

Viscosity is described as the resistance of one fluid layer against another layer of
either fluid or solid [48]. Viscosity is considered another important factor for heat transfer
applications. The pressure drop and pump power depend on it [28,65]. Viscosity is
often determined experimentally. The nanofluid viscosity is inversely proportional to the
temperature. It is determined according to Equation (11) [57]:

µnf =
µbf

(1− ϕ)2.5 (11)

The nanofluid viscosity depends on some factors: the volume concentration, size, and
shape of nanoparticles and the base fluid viscosity. Likewise, the shear rate and temperature
affect the viscosity [28] as previously described in Section 4.1.
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Considering a nanoparticle concentration variation from 0.0 to 0.8% in the base fluid
according to Equation (11), the nanofluid viscosity increased up to 2.03% with respect to
the base fluid.

Thus, depending on the nanofluid viscosity enhancement and Equations (3) and (7),
with a 0.4% concentration and a 0.5 L/min velocity, the heat transfer coefficient stayed
constant. The pressure drop was affected by an increase of up to 2.03% (see Figure 11).
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4.4. Effects of Nanofluid Density on Heat Transfer Rate and Pressure Drop

In order to evaluate nanofluid heat transfer performance, density plays a key role. It
directly affects the Reynolds number, friction factor, pressure drop, and Nusselt number [28].

Asokan et al. concluded that properties such as the pressure drop, friction factor,
and Reynolds number depend on fluid density [47]. The nanofluid density is inversely
proportional to the temperature. Very few researchers have studied this nanofluid property.
The density is calculated using Equation (12). The nanofluid density is influenced by
factors such as the size and concentration of nanoparticles and the temperature [28]. It also
depends on the base fluid and the nanoparticle density. It influences both the heat transfer
and the pressure drop.

ρnf = (1− ϕ)·ρfb+ϕ·ρnp (12)

In this data analysis, a nanoparticle concentration variation from 0.0 to 0.8% in the
base fluid is considered. According to Equation (12), the nanofluid density results in an
increase up to 2.61% greater than the base fluid.

Depending on the nanofluid density change percentage and Equations (3) and (7),
with a 0.4% concentration and 0.5 L/min velocity, the heat transfer coefficient and pressure
drop remain constant with their results unchanged.

4.5. Effects of Nanofluid Heat Capacity on Heat Transfer Rate and Pressure Drop

The specific fluid heat capacity determines the amount of heat absorbed to increase
the temperature of 1 g of fluid by 1 ◦C. This is an important aspect of nanofluids used as
refrigerants, as it affects heat transfer rate. The specific nanofluid heat capacity depends on
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the nanoparticle specific heat capacity [47]. The specific base fluid heat capacity is always
greater than that of the nanofluid. It is determined according to Equation (13):

Cp,nf =

 ϕ·
(
ρnp·Cp,np

)
+ (1− ϕ)·

(
ρfb·Cp,fb

)
ρnf

 (13)

The analysis shows that the nanofluid specific heat affects the heat transfer coefficient
and does not affect the pressure drop. However, the influence is in a negative way because it
results in a lower heat capacity than the base fluid. Thus, it is not significant for this process.
Studies related to nanofluid specific heat capacity are not very advanced. However, fluid
specific heat capacity is more important for thermal energy storage (TES) applications [47].

4.6. Effects of Nanoparticle Concentration on Heat Transfer Rate and Pressure Drop

The nanoparticle concentration is a basic and essential characteristic that influences
nanofluid thermophysical properties. In addition, it affects the heat transfer rate and
pressure drop. When the concentration increases, the nanofluid pressure drop and pumping
power increase slightly, and the heat transfer coefficient can be enhanced.

Kavitha et al. experimentally studied the impacts of different concentrations of CuO
nanoparticles in water as a base fluid on the heat transfer characteristics of a double-
pipe heat exchanger with parallel flow. As a result, the average heat transfer coefficient
achieved an increment of 2.12% with a volume concentration of CuO nanoparticles close to
0.004% [7]. Osman et al. experimentally investigated convection heat transfer in a transition
flow regime of Al2O3–water nanofluids in a rectangular channel. The authors found that
the heat transfer coefficient enhancement for the volume concentrations of 0.3%, 0.5%, and
1.0% nanofluids were 15%, 29%, and 54%, respectively. The pressure drop increase was
significant in the transition flow regime, with values of 7.90%, 14%, and 61% for those
nanofluid volume concentrations, respectively [46].

Considering nanoparticle volume concentration variations from 0.0 to 0.8% in the
base fluid, with a constant volumetric flow of 0.5 L/min, the nanofluid thermophysical
properties were affected by concentration, improving thermal conductivity by 1.98%,
density by around 2.61%, and viscosity by 2.03%, while the specific heat decreased in
by 2.80% compared to the base fluid. Hence, depending on nanofluid thermophysical
properties percentage and Equations (3) and (7), it was observed that the heat transfer
coefficient and pressure drop resulted in increases of up to 1.25% and 2.03%, respectively
(see Figure 12 and Table 6).

Table 6. Summary of nanoparticle volume concentration variation effects on nanofluid thermophysi-
cal properties, heat transfer, and pressure drop of heat exchanger.

Concentration 0% (Base Fluid) 0.2% 0.4% 0.6% 0.8% Observation

knf (W/m. ◦C) 0.6150 0.6180 0.6211 0.6241 0.6272 Increased up to 1.98%

µnf (10−4 Pa. s) 7.98 × 10−4 8.02 × 10−4 8.06 × 10−4 8.10 × 10−4 8.14 × 10−4 Increased up to 2.03%

cpnf (J/kg. ◦C) 4178 4148 4119 4090 4061 Decreased up to 2.80%

ρnf (kg/m3) 996 1002 1009 1015 1022 Increased up to 2.61%

Flow rate (L/min) 0.5 0.5 0.5 0.5 0.5 One flow rate considered

Renf 1891.10 1893.90 1896.70 1899.40 1901.90 Laminar regime

hnf (W/m2. ◦C) 586.66 588.43 590.28 592.12 594.04 Increased up to 1.25%

∆Pnf (Pa) 99.86 100.33 100.83 101.34 101.89 Increased slightly up to
2.03%
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According to the summary in Table 6, we can observe that with concentration (0.0–0.8%)
variation, the heat transfer coefficient obtains an improvement of up to 1.25% accompanied
by a 2.03% pressure drop increment. This increase in pressure drop is due to nanofluid
viscosity, and the heat transfer is due to nanofluid thermal conductivity.

4.7. Effects of Nanofluid Flow Regime on Heat Transfer Coefficient and Pressure Drop

Flow regimes are classified into laminar (Re < ∼2100), transitional (∼2100 < Re < ∼4000),
and turbulent (∼4000 < Re) based on fluid movements. This is determined according to
Equation (5) by calculating the Reynolds number. The Reynolds number (Re) depends
on three nanofluid characteristics, the density, dynamic viscosity, and velocity, defining
the sort of flow regime. The Nusselt number is proportional to the Reynolds number, and
the heat transfer coefficient increases directly with the Nusselt number (see Equation (4)).
Additionally, the pressure drop also depends on the Reynolds number.

Bahmani et al. conducted a numerical study on forced convection in a double-tube
heat exchanger using nanofluids (alumina–water) considering Reynolds numbers from
10,000 to 100,000. The results indicated that the Reynolds number caused an enhancement
of the Nusselt number and the convection heat transfer coefficient. The maximum rate of
the average Nusselt number and the thermal efficiency enhancement were 32.70% and 30%,
respectively [67]. Later, Bahmani et al. carried out a study on forced convection in a double-
tube heat exchanger using nanofluids with constant thermophysical properties, considering
Reynolds numbers between 100 and 1500 and employing the finite volume method for
solving the governing equations. They found that heat transfer rate could be enhanced by
increasing the nanoparticle volume fraction and the Reynolds number [68]. Poongavanam
et al. experimentally performed research on heat transfer and pressure drop using nanofluid
multiwalled carbon nanotubes (MWCNT–Solar glycol) in a double-pipe heat exchanger.
They observed that the average convection heat transfer coefficient of a nanofluid containing
0.6% MWCNT nanoparticles when the mass flow rate varied between 0.04 and 0.08 kg/s
improved by ~21%, and average pressure drop increased up to 100% [41]. Similarly,
Zhen et al. separately studied the use of different nanofluids (CuO–water, Al2O3–water,
Fe3O4–water, ZnO–water, SiC–water, and SiO2–water) to improve a double-tube heat
exchanger with Reynolds numbers in the range of 4500—14,500. Based on test results
of heat transfer performance and flow resistance, the 1% CuO–water nanofluid showed
a great advantage due to a relatively high heat transfer performance (44.3%) and a low
friction factor (24.9~32.7%). The 0.5% SiO2–water nanofluids also presented a low friction
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factor (26.0~28.3%) with an enhancement of heat transfer of up to 32.5% [69,70] (here, the
friction factor is proportional to the pressure drop). In another study, Subramanian et al.
experimentally analyzed the heat transfer performance of a TiO2–water nanofluid in a
double-pipe counter-flow heat exchanger for various flow regimes, laminar, transition, and
turbulent cases, with Reynolds numbers between 1350 and 4650 and with a 0.5% volume
concentration. It turned out that the heat transfer increased by 77%, and a 72% pressure drop
increase was observed [66]. The heat transfer rate and pressure drop evolution along the
inner tube are presented with respect to the Reynolds number for different concentrations of
nanoparticles in Figure 13. The heat transfer and pressure drop increased with the nanofluid
mass flow rate. Based on the flow, it can be seen that the heat transfer and pressure drop
are affected by the Reynolds number, with a high percentage increment [39,45,66].
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In the mathematical study of this work, with volumetric flow rate variation (0.2–0.8 L/min)
and a fixed concentration of nanoparticles (0.4%), the Reynolds number was augmented, as
it was in laminar and transition regimes. In Figure 14, an increase in the Reynolds number
was observed, which implied an increase of 17.20% in heat transfer and a 60% pressure
drop. The pressure drop enhancement was much larger compared to the heat transfer rate
increase, as presented in detail in the summary of Table 7. There, the pressure drop resulted
in more than three times the percentage of the heat transfer coefficient.
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Table 7. Summary of nanofluid flow rate variation effects on flow regime, heat transfer coefficient,
and pressure drop.

Nanofluid Flow Variation in Double-Pipe Heat Exchanger (TiO2–Water) Observation

Concentration 0.4% 0.4% 0.4% One percentage
considered

Flow rate (L/min) 0.2 0.5 0.8 Variation

Renf 758.68 1896.70 3034.70 Increased by
59.90%

Nunf 5.14 6.65 7.80 Increased by
17.20%

hnf (W/m2. K) 456.60 590.28 692.10 Increasing
up to 17.20%

∆Pnf (Pa) 40.33 100.83 161.33 Increasing
up to 60%

In Table 8, a global summary of different influencing factors on nanofluid thermo-
physical properties and performance for a double-pipe heat exchanger is presented. All
studies carried out in this review showed that increasing the nanoparticle volume frac-
tion enhanced the thermal conductivity, dynamic viscosity, density, and heat transfer rate,
with an increment in pressure drop. It was necessary to avoid a significant percentage of
nanoparticle concentration to avoid heat exchanger leaks.

Table 8. Overall summary of analysis of factors influencing nanofluid thermophysical properties and
double-tube heat exchanger performance.

Affecting Factors Analysis Nanofluid Thermophysical
Property Remarks

Double-Tube Heat Exchanger
Performance Remarks

Concentration of
nanoparticles

Increment in volume
fraction

Improved thermal conductivity,
density, and viscosity.

Decreased specific heat.

Enhanced heat transfer rate.
Increased pressure drop.

Size of nanoparticles Various sizes analyzed
Smaller ones enhanced thermal

conductivity.
Viscosity slightly increased.

Smaller ones provided better heat
transfer and high efficiency.

Shape of nanoparticles
Blades, platelets,
cylindrical, cubic,

spherical

Cylindrical and bricks (cubic)
enhanced thermal conductivity.

Cylindrical and platelets
enhanced viscosity.

Cylindrical and platelets present
better heat transfer but increase

pressure drop.
Spherical shape presented lower

percentage of pressure drop.

Flow regime of nanofluids Increasing the flow Classification of the regime flow:
Laminar, transition, and turbulent

Heat transfer rate enhanced when
Reynolds number increased.

Obtained a high pressure drop.

Thermophysical
properties of nanofluids
(density, viscosity, and
thermal conductivity)

Experimental and
mathematical model –

Thermal conductivity enhanced
heat transfer coefficient.

Viscosity increased pressure drop.

For the particle size, smaller nanoparticles enhanced the nanofluid thermal conductiv-
ity and viscosity. They provided improved heat exchanger heat transfer and high efficiency.
They also allowed for easier nanofluid circulation, avoiding high pressure drop.

Cylindrical and brick shapes presented better conductivity. Cylindrical and platelet
shapes of nanoparticles enhanced the viscosity and provided improvements in heat transfer.
However, they resulted in a pressure drop increase. The flow regime depends directly on
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the flow velocity. Thus, when the velocity increases, the Reynolds number increases and
enhances the heat transfer rate, with a pressure drop increase.

Finally, according to the data analyzed with the mathematic model, the nanoparticle
volume concentration could improve the nanofluid density, viscosity, thermal conductivity,
and heat transfer coefficient, while this is associated with an increase in pressure drop.
Thus, it is clearly observed that nanofluid thermal conductivity is directly associated with
the heat transfer coefficient, and viscosity is associated with pressure. The nanofluid density
did not affect the heat transfer coefficient or the pressure drop; it did not cause any change
in them.

5. Conclusions

This review is based on the analyses of various factors of nanoparticles on nanofluid
properties, and the influences of nanofluid characteristics on the performance of the double-
pipe heat exchanger are discussed.

The nanoparticle volume concentration affects each thermophysical property of the
nanofluids, improves the heat transfer coefficient, and increases the pressure drop. The
smallest nanoparticles improve the thermal conductivity and increase the dynamic viscosity
of the nanofluids. The shapes of nanoparticles, such as cylindrical and platelets, allow an
increase in the thermal conductivity of a nanofluid and improve the heat transfer coefficient
of a heat exchanger. However, the cylindrical and platelet shapes cause a large pressure
drop, while spherically shaped nanoparticles present a lower percentage pressure drop.
The data analysis was realized for a double-pipe heat exchanger using the mathematical
model. The 20 nm diameter spherical nanoparticles with water as the base fluid were
considered. The TiO2-water nanofluid was used as a working fluid. The results show that
the nanoparticle volume concentration displayed a significant influence on the nanofluid
thermophysical properties. For a volume concentration of 0.8% nanoparticles, the thermal
conductivity, viscosity, and density of the nanofluids increased by 1.98%, 2.03%, and 2.61%,
respectively, compared to the base fluid. An impact on heat exchanger performance was
achieved, with a constant volumetric flow rate of 0.5 L/min, obtaining an improvement
in the heat transfer coefficient close to 1.25% and an increment in the pressure drop of
2.03%. Furthermore, with a constant volume concentration of 0.4% and a volumetric flow
rate variation from 0.2 to 0.8 L/min, a high percentage in the pressure drop (60%) and an
enhancement of 17.20% in the heat transfer coefficient were observed.

As a recommendation, it is advisable to select nanoparticles of high thermal conductiv-
ity, cylindrical shape, and small sizes. The concentration must adjust with the volumetric
flow rate in order to avoid a large pressure drop. The percentage of pressure drop should
not be greater than the percentage of improvement in the heat transfer rate.
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