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Abstract: The presented research is focused on the complex assessment of three different types of
diatomaceous earth and evaluation of their ability for application as pozzolana active admixtures ap-
plicable in the concrete industry and the production of repair mortars applicable for historical masonry.
The comprehensive experimental campaign comprised chemical, mineralogical, microstructural, and
physical testing of raw materials, followed by the analyses and characterization of pozzolanic activity,
rheology and heat evolution of fresh blended pastes, and testing of macrostructural and mechanical
parameters of the hardened 28-days and 90-days samples. The obtained results gave evidence of the
different behavior of researched diatomaceous earth when mixed with water and Portland cement.
The differences in heat evolution, initial and final setting time, porosity, density, and mechanical
parameters were identified based on chemical and phase composition, particle size, specific surface,
and morphology of diatomaceous particles. Nevertheless, the researched mineral admixtures yielded
a high strength activity index (92.9% to 113.6%), evinced their pozzolanic activity. Three fundamental
factors were identified that affect diatomaceous earth’s contribution to the mechanical strength of
cement blends. These are the filler effect, the pertinent acceleration of OPC hydration, and the
pozzolanic reaction of diatomite with Portland cement hydrates. The optimum replacement level of
ordinary Portland cement by diatomaceous earth to give maximum long-term strength enhancement
is about 10 wt.%., but it might be further enhanced based on the properties of pozzolan.

Keywords: diatomaceous earth; pozzolanic activity; Portland cement substitution; heat release;
rheology; strength activity index; improvement of mechanical parameters

1. Introduction

In the production of repair mortars, materials compatible with those initially inbuilt
should find helpful. However, today’s building practice applies to the renewal of masonry
repair mortars based mostly on cement, hydrophobic agent, modifying polymer-origin
additives, and different fillers. Based on our previous research on mortars for the restoration
of historical buildings [1], pure cement mortar should be avoided due to their incompatible
porosity, mechanical strength, rigidity, and low water vapor permeability [2]. Therefore,
lime-, natural hydraulic lime-, and blended cement-based mortars have been developed
within the last decade and are increasingly applied in reconstruction treatments [3,4].

Together with compatibility and functionality issues, there is a rising interest in pro-
ducing composite cement due to increasing ecological awareness and diminishing natural
resources [5]. As global manufacturing of Portland cement contributes to approx. 7% of the
total anthropogenic CO2 emissions, the mounting attention on environmental aspects of
material conversion has influenced research towards possible modifications of Portland
cement to meet better demands for sustainability in the construction sector [6]. This is
done by using different types of low-carbon additives and admixtures and changing the
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composition and, thus, the performance of cement [7,8]. It is usually replaced in composite
cement as part of clinker by supplementary cementitious materials (SCMs) [9,10]. They can
be used by blending Portland cement at the cement plant or replacing Portland cement
at the concrete plant. In most cases, the SCM can improve the durability and mechanical
properties of conventional binders, especially if SCM are pozzolans, siliceous, or silico-
aluminous mineral admixtures. The pozzolanic reaction involves two main parameters:
the maximum calcium hydroxide consumption and the rate of hydration. These parame-
ters depend mainly on the nature of pozzolanic material, its chemical and mineralogical
composition, and its particle size [11].

The most widespread used SCMs have been fuel ash [12–14] and ground granulated
blast furnace slag [15–17]. Metakaolin [18–20] was also applied to reduce the amount of
cement produced and thus bring environmental and economic benefits. However, the avail-
ability of these materials becomes increasingly problematic, which will be further worsened
in the near future. For this reason, there is a need to find and assess other alternatives to
reduce Portland cement production and its harmful environmental impact [21].

Considering the necessity to find alternatives to well-established SCMs, three types
of diatomaceous earth were investigated and assessed as prospective partial cement sub-
stitutes in a blended binder for repair mortars. In the case of pyramid stones in Egypt,
it is believed that the fine limestone particles were bound together with calcium silicates
produced from a reaction between diatomaceous earth and lime [22]. Diatomaceous earth
deposits were found in Fayoum, roughly 70 km south of Cairo, Egypt [23].

The diatomaceous earth or diatomite is a lightweight rock of sedimentary origin,
mainly consisting of the fossilized skeletal remains of diatom, a unicellular aquatic plant
related to the algae skeleton fragments of diatom algae (Diatomea and Radiolaria), called
frustules, with a wide variety of shape and size, which ranges from 0.75 µm to 1500 µm [24].
It is a highly porous structure containing up to 80–90% voids, constituting mainly amor-
phous silica with minor amounts of alumina and ferric oxide, followed by crystalline quartz,
muscovite, feldspar [25], and characterized by a specific surface area up to 200 m2 [26].

The low cost, abundance, easy availability, excellent biocompatibility, non-toxicity,
thermal stability, and chemical inertness make diatomite an intriguing material for applica-
tions ranging from filtration to pharmaceutics [27,28]. The unique combination of physical
and chemical properties of diatomite makes it applicable for several industrial uses, as a fil-
tration media for chemicals, various beverages, drinking water, sugar, etc., without altering
their natural properties or for the removal of inorganic and organic pollutants. Because of
its high porosity, diatomaceous earth is used not only as a beverage filter material but also
as a mildly abrasive or mechanical pesticide. Usually, diatomite mined from geological
deposits must be purified before being used; thermal pre-calcination and HCl washing
are the treatments generally used to increase powder quality and to make the biomaterial
inert as filter support [29]. In the construction industry, diatomite finds use in lightweight
brick manufacturing [30,31] to produce ceramics [32–34] for the improvement of MOC
composites [35] and as a part of shape-stabilized phase change materials [36,37]. It is also
applied in designing and developing high-temperature resistant and thermal insulation
materials [38,39] and as lightweight aggregate manufacturing mortar and concrete [40,41].

Different types of mineral admixtures are added to increase the cementitious material
content, improve the workability of harsh cement blends, and achieve high strength with-
out causing high internal temperatures. Aruntas and Tokyay [42] indicated that adding
diatomite in Portland cement significantly affects grain size, i.e., increasing fineness. When
diatomaceous earth is blended with ordinary Portland cement, it undergoes strength in-
creases or simply acts as a filler while maintaining similar strength development [43,44].
Kastis [45] reported on the pozzolanic activity of diatomite, leading to the formation of
higher amounts of hydrated products. Similarly, dos Santos and Cordeiro [46] observed
enhancement of the pozzolanic activity of diatomite by grinding, i.e., by an increase of
specific surface area. On the other hand, Aydin and Gül [47] indicated that the rise in
diatomite content in concrete resulted in a sudden drop in its compressive strength. Due
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to the high specific surface area, ordinary Portland cement blended with diatomaceous
earth requires more water, leading to inferior concretes [48,49]. Similarly, Lemons [26]
reported that the high porosity of diatomite leads to increased water demand, limiting
the substitution level of untreated diatomite earth [50,51]. As the use of diatomite as SCM
brings some apparent advantages, and also drawbacks, there is a need to extend the present
state of knowledge in the field of diatomaceous earth application in Portland cement blends
and to conduct additional, comprehensive analyses of their effect on the final properties of
the hardened products. In relation to high amorphous silica content, diatomite is assumed
to be an environmentally friendly and cost-effective SCM. The up to now reported data
on the application of diatomaceous earth as pozzolans are often contradictory, pointing
out some adverse effects on the performance and properties of diatomite-cement blends.
Therefore, research on the effectiveness of reactive SiO2-rich materials is highly actual
and necessary to contribute to developing less energy-demand blended binders and, thus,
construction materials. Moreover, the diatomaceous earth must be studied case by case
due to its variation in mineralogical and chemical composition, morphology, fineness,
pre-processing, etc. In this respect, the objective of the presented work was to investigate
diatomite-Portland cement blends in the form of pastes with a constant water/binder ratio.
Three types of diatomaceous earth were incorporated in cement paste mixtures as SCMs.
The experimental campaign comprised the characterization of raw materials, behavior,
and properties of fresh and hardened blended cement pastes. A broad set of experimental
techniques was used to analyze the effects of material conversion in the diatomite-Portland
cement system. Laboratory tests and measurements showed that the diatomite samples ex-
hibited good pozzolanic activity and could substitute the currently used natural pozzolans.
The best compressive strength values at later ages were obtained using the diatomaceous
earth with the highest amorphous silica content. The late compressive strength of most
pastes modified with diatomite was improved compared to that of reference cement paste
which agrees with previously published reports [43,51,52].

2. Materials and Methods
2.1. Raw Materials

CEM I 42.5 R produced in the cement factory in Radotín, Czech Republic, was used
as a primary binder. This hydraulic binder is made in accordance with the standard EN
197-1 [53]. The diatomaceous earth used in prepared pastes, denoted as BOR, is quarried in
the Miocene Mydlovary formation in the South Bohemian basins. There is located at the
biggest quarry in the Třeboň (Czech Republic) basin in the region between Ledenice and
Borovany. The diatomaceous earth quarried here is pale-colored, grey to ochre, earthy or
loosely cemented, and placed nearly horizontally. In some upper parts of this diatomite
location, the spongo–diatomite layer is present. In the middle part of the quarry, the
diatomite layer achieved about 100 m of thickness, whereas the average thickness is about
5.85 m. During sedimentation processes of Mydlovary formation, several ingressions of the
sea onto land took place. The Borovany profile was opened in 1909 and belonged to the
Schwarzenberg demesne. Diatomite mining continued after World War Two, and the new
fabric named Colofrig was discovered in 1961. The tested diatomite (commercially labeled
F4) is produced in LB MINERALS, s.r.o.(Horní Bříza, Czech Republic), a member of the
LASSELSBERGER group, as a powder useful for filtration processes. For the comparison,
two different types of calcined diatomaceous earth originating from Italy (Dal Cin Gildo S.
p. a., Concorezzo, Italy), denoted as ENO3 and ENO7 (commercially EnorandallTM 3 and
EnorandallTM 7), were tested.

2.2. Chemical and Physical Analysis of Raw Materials

The ability of SCMs to take part in the hydration reaction of blended binders depends
on their chemical and physical properties. The total chemical composition of tested raw
materials was determined using classical chemical analysis according to the Czech standard
ČSN EN ISO 11885 and ČSN 720101. In the first step, the analyzed materials were melted
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together with LiBO2 and then dissolved in the solution. The solution composition was
analyzed with ICP-OES (Inductively Coupled Plasma Atomic Emission Spectroscope)
Jobin Yvon ULTIMA 2, Horiba Scientific. The total chemical composition of examined raw
materials is presented in Table 1.

Table 1. Chemical composition of base materials.

Parameter, Substance
CEM I 42.5 R ENO3 ENO7 BOR

Content (Mass %)

Annealing loss at 105 ◦C 0.40 0.05 82.58 3.30
Insoluble fraction 1.63 2.00 1.20 2.48

SiO2 19.00 89.70 90.90 82.90
Al2O3 4.31 3.40 3.20 13.20
Fe2O3 2.40 2.10 3.10 1.50
TiO2 0.28 0.60 0.60 0.60
CaO 62.90 0.60 0.57 0.30
MgO 1.80 0.20 0.20 0.20
K2O 0.82 0.30 0.30 0.90

Na2O 0.14 2.70 0.20 0.10
P2O5 0.16 0.10 0.80 0.10
SO3 3.24 0.00 0.00 0.10

The content of four main clinker phases in PC calculated based on Bogue’s equa-
tions [54] was the following: C3S 65.9 wt.%, C2S 4.7 wt.%, C3A 7.4 wt.%, and C4AF 7.3 wt.%,
respectively. The differences in the chemical composition in the case of diatomaceous earth
are caused due to their origin. The powders ENO3 and ENO7 are of seawater origin, and
the diatomite BOR has a freshwater origin, see the mass content of alkalis in Table 1.

The complete chemical analysis does not say anything about the reactivity of tested
diatomaceous earth in an alkaline environment. In that case, there is essential to know the
content of reactive amorphous phases. According to the standard ASTM C618-91 [55], the
total content of the hydraulic oxides (SiO2 + Al2O3 + Fe2O3) in pozzolana active materials is
recommended at 70 wt.% and the content of active SiO2 no less than 25 wt.%. For that reason,
the XRD (X-Ray Diffraction) analysis of diatomite samples was performed. It was done
using the Siemens D-5000 X-Ray diffractometer with Bragg-Brentano configuration (CuKα

source, λ = 1.5405 Å). The phase identification was performed with Crystallographica
Search Match (Version 2.0.3.1, Oxford Cryosystems, Oxford, UK) according to the Whole
Pattern Fitting Structure Refinement invented by Rietveld [56]. The results of the XRD
analysis are introduced in Table 2.

Table 2. XRD data of diatomites.

Substance
ENO3 ENO7 BOR

Content (wt.%)

amorphous phase 37.70 66.10 53.90
Opal CT 22.05 0.00 0.00

SiO2 quartz 0.00 17.00 6.00
SiO2 tridymit 1.10 0.00 0.00

SiO2 cristobalite 39.20 16.10 0.00
Al2(Si2O5)(OH)4 Kaolinite 0.00 0.00 32.70

K2(Al4FeO)(Si6Al2O20)(OH)4 illite 0.00 0.00 7.30

The differences in mineral and phase composition of the examined minerals are visible.
The amount of amorphous was the highest for ENO7. The other two materials have about
43.0% (ENO3) and 22.6% (BOR) lower content in the amorphous phase. The presence
of cristobalite, which anneals at high temperatures, declares the method of raw material
processing. While diatomite BOR is produced only mechanically, the other two, ENO3
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and ENO7, are calcination processed. The opal content in the sample ENO3 indicates the
compacting rate because opal is replaced with quartz in compacted rocks. The presence of
kaolinite and illite in the case of diatomite BOR is adequate for the quarry composition.

The chemical composition of raw materials was also examined with IR (infrared)
analysis (see Figure 1a,b). Infrared spectra were measured using FTIR spectrometer Nicolet
6700 (Thermo Scientific, Waltham, MA, USA). Spectra were collected after 32 scans at 4 cm−1

resolution in absorbance mode. The samples were prepared by the standard KBr pellets
method, the sample powders were dispersed in KBr (1/150 mg), and the transparent pellets
were tested with a transmission accessory. The spectral regions were normalized to enable
comparison of individual samples. Peak deconvolution using Gaussian peak fitting was
performed to evidence the stretching mode contribution of the different functional groups.
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Tables 3 and 4 show the assignment of the major absorption bands of the tested
raw materials.
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Table 3. Assignments of the major absorption bands of CEM I 42.5 R, Radotín [57].

Wavenumbers (cm−1) Assignment

3641 ν (O-H) in portlandite (Ca(OH)2)

3552 ν (O-H) in water, chemisorption of water on the surface
of molecules

3420 ν (H-O-H) in water, chemisorption of water on the surface
of molecules

2513, 1426, 876, 715 ν (C=O) in calcite (CaCO3)
1617 ν2 (O-H) in water
1384

1152, 1114, 1095
ν (C=O) in CO3

2− compounds
ν3 (SO4

2−) in gypsum, basanite, and anhydrite [58]
970, 924 ν3 (Si-O) in C3S

902, 780, 516, 509, 421 ν (Al-O) in C3A
845 ν4 (Si-O) in β−C2S
522 ν4 (Si-O) in C3S

700–500
459

ν (Fe-O) in C4AF
ν4 (Si-O-Si)

Table 4. Assignments of the major absorption bands of tested diatomaceous earth [59].

Wavenumbers (cm−1) Assignment

3696
3651
3620

ν (H-O-H) free
ν (O-H) inner surface [60]

ν (O-H) in crystalline molecules

~3436
1631

ν (H-O-H) in water, chemisorption of water on the surface
of molecules

ν (H-O-H) in water in minerals
1385 ν (C=O) in CO3

2− compounds
1099 ν (Si-O-Si) asymmetric in plane vibration
950

797, 695
650–500

538
470

ν (Si-OH)
ν (Si-O)

ν (Si-O-AlIV)
ν (Fe-O) in Fe2O3

ν4 (Si-O-Si)

FTIR spectra of siliceous materials exhibit peaks in two distinct regions [61]: peaks
at >2500 cm−1 and <1300 cm−1. The first region is typical for O-H stretching vibration of
absorbed or molecular water, while the second occurs due to several silica modes. The
peak at 400–500 cm−1 can be assigned to the rocking motion of oxygen atoms bridging
silicon atoms in siloxane bonds Si-O-Si. The symmetric vibrations of silicon atoms in
siloxane bonds occur at ~800 cm−1. The most prominent peak in the spectrum presented at
~1100 cm−1 is dominated by the antisymmetric motion of silicon atoms in siloxane bonds.
It consists of three components: a broad shoulder centered at 1115–1130 cm−1 assigned
to longitudinal optical mode (LO νas -Si-O-Si), a strong peak centered at 1035–1045 cm−1

(transverse optical mode TO νas -Si-O-Si) and weak absorption at 950 cm−1 due to silanol
(Si-OH) stretching vibrations [62].

The microstructure and morphology of diatomaceous earth particles are well apparent
in Figure 2. The microstructural analysis was conducted using a scanning electron micro-
scope (SEM) JSM-840, JEOL, Ltd., Equipped with a LaB6 cathode, thus providing a very
high resolution.

Also visible, the sedimentary rock called diatomite or diatomaceous earth is composed
of fossil SiO2-based cells of dead organisms called Diatomacea. In our case, all samples
shove the centric genera [63]. These organisms have properties of both plants and animals,
and for that reason, they create the fifth alone kingdom of Eukaryotes named Chromista [64].
The oldest fossils of Diatomacea come from the older Cretaceous period of Mesozoic, i.e.,
they date back to 120 million years ago. About 11 million cells form 1 cm3 of diatomaceous
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earth. The frustules are the hard and porous cell wall or external layer of Diatomacea,
composed almost purely of polymerized SiO2. They are coated with a layer of organic
substance, the acid polysaccharide Diatotepin [65]. The double-layered cell grows due to
the active catching of siliceous acid from the environment with the speed of 4–18 molecules
per second [66].
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Physical parameters tested characterize raw materials from the view of size, shape,
distribution, and especially specific surface of particles. The specific density of analyzed
powders was also researched.

The particle size distribution of cement and diatomaceous earth was determined by
a laser diffraction working device, Analysette 22 Micro Tec plus, Fritsch. The calculated
values of particle volume fraction 10, 50, and 90% corresponding to the particle size are
presented in Table 5. The particle size distribution curves of tested diatomaceous earth
compared to PC CEMI 42.5 R are introduced in Figure 3.
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Table 5. Particle size distribution parameters.

Material Size (µm)
Freq d10

Size (µm)
Freq d50

Size (µm)
Freq d90

CEMI 42.5R 5.8 23.4 35.5
ENO3 22.3 37.5 63.5
ENO7 19.6 29.0 43.0
BOR 9.5 23.0 32.5
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A comparison with cement CEM I 42.5 R (the main peak at the particle size distribution
curve was recorded for a pore diameter of 30.2 µm) showed that the powders of tested
diatomaceous particles in the case of ENO 3 and ENO7 were coarser, nominally 39.8 µm
and 32.7 µm, respectively. On the other side, the sample labeled BOR is slightly finer
(26.8 µm). However, their particle size is sufficient for the intended application of the
analyzed diatomaceous earth as a partial cement replacement.

Another parameter for describing the fineness of the tested materials is the specific
surface area because most of the surface area comes from the smallest particles. The most
common method for characterizing the surface area is the Blaine air permeability test for
cement testing described in EN 196-6 [67]. The test is based on the fact that the rate at which
air can pass through a porous bed of particles under a given pressure gradient is a function
of the surface area of the powder. The metal chamber of known cross-sectional area and
volume is filled with a known mass of fine powder, and then the time required to pass a
known volume of air through the powder is measured. The surface area is determined
through an empirical equation developed by measuring a standard, the powder of a known
surface area, using the same instrument. The resulting values, called the Blaine fineness,
are presented in Table 6.

The other way to explore the specific surface area is a measurement based on ph-
ysisorption (physical adsorption). Applying inert gases, such as nitrogen, enables the
determination of specific surface, total pore surface, total pore volume, and pore size distri-
bution. For the measurement, apparatus Sorptomatic 1990 (Thermo Scientific, Waltham,
MA, USA) was used. The equipment consists of two main parts: control and analytical
sections. Common coolant for the analyses is liquid nitrogen (−192 ◦C); different ovens
are available to perform analyses from room temperature up to 450 ◦C. The measured data
were calculated according to the BET theory to obtain the values in Table 6.
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Table 6. Physical properties of cement and diatomaceous earth.

Material Blaine Fineness
(m2·kg−1)

BET Specific Surface Area
(m2·kg−1)

Specific Density
(kg·m−3)

CEMI 42.5R 360 5 500 2 860
ENO3 785 2 494 2 334
ENO7 1 865 2 007 2 399
BOR 2 095 18 312 2 416

As other fundamental physical characteristics of each material were tested, also specific
density was experimentally determined using a fully automatic helium pycnometer Pycno-
matic ATC (POROTEC). The instrument works under isothermal conditions, monitored
with Peltier’s thermocouples, and the analytical process is controlled with a micropro-
cessor. The tested sample’s maximum volume up to 62 cm3 guarantees precise density
determination, which is presented in Table 6.

The reactivity of cement and pozzolana active materials is related to their Blaine
fineness and specific surface area. In this case, the explored diatomaceous earth exhibit
much higher Blaine fineness than measured for PC. For ENO3, ENO7, and BOR, the Blaine
fineness values increased by 118%, 418%, and 482%, respectively. It is generally accepted
strength of PC increases with its fineness [68]. It means the activity of mineral admixtures
might also be enhanced by higher Blaine fineness. Similarly, mineral admixture, which is
softer than PC in given fineness, results in improved durability of blended mortar [69].

The specific surface area is a better parameter for describing the fineness of powder
materials. Still, it is difficult to pin down because most materials have features at different
lengths, so the more sensitive the measurement, the more surface area will be found.
Different measuring techniques thus give different values. As Taylor [70] reported, the gas
sorption technique gives results a minimum of 2–3 times higher than the Blain value.

The analyzed powder materials were also specified by their physicochemical char-
acteristics and performance, namely pH value, chemical reactivity, solubility, or content
of soluble ions. The pH of the leached solution (1:10), which means 90 g of analyzed
diatomaceous earth powder was immersed in 900 mL3 of distilled water for 24 h, was
tested according to EN 12457-2 [71]. The analysis was performed with a pH glass electrode
using the potentiometric method. A device inoLab pH/ION 740 (WTW) was used for the
pH measurement. Before the measurement, the most important step was to calibrate the pH
electrode with corresponding standard pH solutions. The pH values of the tested solutions
are presented in Table 7. The different pH values declare the diverse origin of the tested
diatomaceous earth that can influence the conditioning of reaction products.

Table 7. Physico-chemical properties of tested materials.

Material pH Value
(-)

Pozzolanic Activity
(mg Ca(OH)2 Fixed by 1 g)

CEM I 42.5R 12.45 1147
ENO3 9.34 246
ENO7 7.11 1349
BOR 6.49 1614

The pozzolanic activity was determined using the Frattini test, specified in EN 196-5 [72].
The tested blends were prepared using CEM I 42.5 R (Radotín, Czech Republic) that was
replaced by 5, 10, 20, and 30 wt.% with the researched diatomaceous earth. The tested
cement/diatomite blends were mixed with 100 mL3 of boiled distilled water. Then, the
samples were put in a sealed plastic bottle and placed in an oven at 40 ◦C. After 8 days,
samples were filtered with a Buchner funnel. The filtrate was firstly analyzed to determine
[OH−] concentration with titration of HCl using a bromophenol blue indicator. Then, pH
was adjusted to 12.5 by NaOH, and titration with EDTA using Murexide indicator [Ca2+ ]
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concentration was assessed. The calculated average values from the three measurements
present one point in the pozzolanicity diagram. The test result is satisfactory if the con-
centration of dissolved Ca(OH)2 in suspension is lower than that of the saturated solution.
The analyzed sample is pozzolana active as the point lies under the isotherm of Ca(OH)2
saturation, which is visible in Figure 4 a–c. Based on the Frattini test and PC substitution
ratio, powders ENO7 and BOR were pozzolana active.

A modified Chapelle test was used to verify the Frattini test based on determining
residual Ca(OH)2. This method is described in the French standard NF P18-513 [73]. The
principle of the method is based on the reaction of 1 g of tested powder material with 2 g
of CaO in 250 mL of water at 80 ◦C for 24 h. The amount of remaining CaO was analyzed
using the same titration method as in the case of the Frattini test. The results were expressed
in mg Ca(OH)2 fixed by the 1g of tested powder and gave straight information about the
pozzolanic activity of the tested sample. Raverdy et al. [74] initially proposed that the
mineral admixture is pozzolana active if 1 g of the tested sample absorbs more than 650 mg
of Ca(OH)2. Results of the Chapelle test are summarized in Table 7.

Based on the amount of fixed Ca(OH)2, the lowest pozzolanic activity exhibited ENO3.
It bonded by 81% and 98.5% less of Ca(OH)2 than ENO7 and BOR, respectively. However,
all tested silica-based powders exhibited certain reactivity in the presence of hydrated CaO.
The chemical reactivity of pozzolanic activity depends mainly on the size of pozzolana
particles and the content of active components; it means the amount of amorphous siliceous
and aluminous compounds. Jun-Yuan et al. [75] reported that pozzolana active material
with a high percentage of the amorphous phase tends to be more reactive than those with a
lower percentage of the amorphous phase. This indicates that diatomaceous earth has a
smaller particle size and higher amorphous content and has a larger surface area to provide
the silica and alumina compounds for higher pozzolanic activity. In this respect, the poor
pozzolanic activity of diatomite ENO3 can be assigned to its lowest a-SiO2 and high pH
content. ENO7 is richer in amorphous content than BOR. However, its Blaine fineness and
BET-specific surface are much lower because of the lesser content of fixed Ca(OH)2.

2.3. Blended Pastes—Preparation and Characterization

The researched mineral admixtures were used as partial cement replacements in the
paste mixtures. The dosage of diatomaceous earth was 5, 10, 15, and 20% of cement
mass. Due to the high specific surface of diatomaceous earth, the water/binder ratio was
0.5 and was similar for all tested pastes. The consistency of fresh mixtures was studied
in accordance with EN 1015-3 [76]. Initial and final setting times were measured by an
automatic Vicat apparatus B 26600 (Form Test) in accordance with EN 196-3 [77]. The
measurement was conducted in a 40 mm standard mold using a cylindrical needle with a
flat tip area of 1 mm2. The workability tests were done at a constant laboratory temperature
of (23 ± 1) ◦C.

Mineral admixtures are usually applied to reduce the overall heat of hydration, par-
ticularly the heat release rate, which controls the temperature rise in hardening blended
cement paste. The calorimetric curves of tested mixtures were explored using isothermal
calorimeter TAM air (TA Instruments) under the constant temperature of 25 ◦C. The control
paste was prepared Portland cement CEMI 42.5 R (Radotín) with a water/cement ratio
of 0.5. Diatomaceous earth was used as a partial PC replacement in modified pastes, 10%
by cement mass. The used water/binder ratio was maintained, similar to in the case of
reference cement paste.

XRD and IR analyses were conducted to explore the formation of hydration products,
and details on these methods are introduced in Section 2.2. In IR analysis, the researched
paste mixtures were analyzed in the chosen time intervals which corresponded to the
progress of calorimetric curves of the relevant mixture. The hydration process was stopped
by rinsing with ethanol on a glass frit filter.
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Figure 4. The pozzolana activity analysis of Diatomaceous earth using Frattini test, (a) ENO3,
(b) ENO7, (c) BOR.

Properties of the hardened cement pastes were tested on standard 40 mm× 40 mm× 160 mm
prisms. The samples were continuously cured in water and tested after 28 days and 90 days,
respectively. The measured structural parameters were bulk density, specific density, and
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total open porosity. These were assessed on dried samples; the samples were thoroughly
dried at 60 ◦C before testing. The dry bulk density ρb (kg/m3) was obtained using a
gravimetric principle in accordance with the standard EN 1015-10 [78]; specific density
was measured by the automatic helium pycnometer Pycnomatic ATC (Thermo Scientific).
The expanded combined uncertainties of these tests were 1.4% and 1.2%, respectively.
The total open porosity ψ (%) was calculated from the obtained bulk density and specific
density, with the expanded combined uncertainty equaling 2.0%. Flexural ff (MPa) and
compressive fc (MPa) strength were determined in compliance with EN 1015-11 [79]. A free
point bending test was arranged and conducted for flexural strength assessment. Young’s
modulus was measured on a dynamic principle using ultrasound working device DIO 562
(Starmans). The uncertainty in determining mechanical parameters was 1.4% for ff and fc,
and 2.3% for Ed.

3. Results and Discussion
3.1. Properties of Fresh Pastes

The values of spreading and data on the initial and final setting time of the analyzed
pastes prepared with the constant water/binder ratio of 0.5 are summarized in Table 8.
Here, data for pastes with 30% PC replacement are also introduced.

Table 8. The values of spreading and setting time of tested pastes.

Paste Mixture Value of Spreading
(mm)

Initial Setting Time
(min.)

Final Setting Time
(min.)

RP >300 400 690
ENO3/5 280 × 280 355 635
ENO3/10 240 × 245 330 635
ENO3/15 210 × 210 280 500
ENO3/20 180 × 180 245 375
ENO3/30 150 × 145 240 350
ENO7/5 255 × 260 380 680
ENO7/10 210 × 210 315 640
ENO7/15 175 × 175 225 410
ENO7/20 140 × 140 215 395
ENO7/30 140 × 140 215 390

BOR/5 260 × 260 375 670
BOR/10 210 × 210 350 640
BOR/15 165 × 165 250 450
BOR/20 145 × 145 240 355
BOR/30 140 × 140 220 350

The highest value of spreading was recorded for reference paste RF. Typically, with
the higher dosage of diatomaceous earth in a paste mixture, the spreading dropped, and
workability was reduced, whereas the lower values of spreading were recorded for pastes
with ENO3. However, the relative differences in spreading were for all three analyzed
diatomaceous earth low. The Vicat setting began after 215 min. and 400 min. in the case of
ENO7 enriched pastes and reference paste. It was completed after 350 to 690 min for BOR
modified pastes and reference paste, respectively. It is apparent that the initial and final
setting times significantly depended on the amount of applied diatomaceous admixtures.
This occurs well after the sulfate reactions have stopped. However, the C-S-H formation in
the acceleration phase of C3S dissolution displays the exact time dependence of the setting
process [58]. It seems the investigated diatomaceous earth supports the hydration process
and plays a micro-filler role.

The calorimetric curves of the investigated mixtures are presented in Figures 5 and 6.
In the initial phase of hydration, during the first 15 min after mixing with water, the
fast development of a high amount of hydration heat took place, which is caused due
to hydrolysis and dissolution of ions [80]. It follows a period of relative inactivity, the
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induction or dormant period. The cement mixture states plastic for several hours, it
continues dissolution of ions, and the initial set can be determined. In the case of diatomite
BOR, the gypsum reaction is influenced, accompanied by a higher value of hydration
heat after one hour of hydration (Table 9) and a shortening of the dormant period, which
finished after 1.4 h. The dormant period of other tested pastes ended after approx. 2.3 h
from mixing. Then the silicates continued to hydrate rapidly, reaching a maximum rate
at the end of the acceleration period, which corresponds with the maximum rate of heat
evolution. For reference, cement paste is 11.15 h, for pastes enriched with diatomaceous
earth ENO3, ENO7, and BOR, 11.1 h, 10.66 h, and 9.96 h, respectively. By this time, the
final set has been passed, and early hardening has begun, corresponding to the values of
setting time measured by the Vicat apparatus. The rate of reactions, thereafter, slows down
until reaching a steady state. After 24 h, the development of hydration heat of diatomite
enriched pastes was comparable with the value of hydration heat of reference paste, except
for cement paste with ENO3, whose hydration heat was the lowest (see Table 9).
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Table 9. Hydration heat of tested pastes relative to cement weight.

Paste Mixture 1 h
(J·g−1)

24 h
(J·g−1)

RP 7.56 203.15
ENO3/10 1.04 161.87
ENO7/10 1.63 202.08
BOR/10 11.77 202.08

The type of phase precipitating during the hydration of blended binder is conditioned
by chemistry, initially the hydrolysis/dissolution chemistry of the primary solid binder.
Subsequently, the tendency for product growth means product crystallization and poly-
merization. XRD and IR analyses were conducted to explore the formation of hydration
products. The XRD analysis of pastes performed after 1 h of hydration and the formed
substances are presented in Table 10.
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Table 10. Results of XRD analysis of cement pastes after 1 h of hydration.

Substance
ENO3/10 ENO7/10 BOR/10

Content (Mass %)

Amorphous phase 70.00 65.90 66.90
Aluminum oxide

chloride 0.10 0.30 0.30

Cristobalite 1.30 0.90 -
Quartz 0.60 1.30 1.00

Hatrurit 5.40 3.90 4.60
Portlandite 13.00 15.80 16.90
Ettringite 1.00 2.10 1.10

Calcium carbonate 8.60 10.00 9.30

The primary pozzolanic reaction can be simply described as

CH + S + H → C− S− H (1)

Its kinetics is more similar to the slow rate of C2S hydration. The heat of this reaction is
about −12 kJ/mole of CH compared to—43 kJ/mole of C2S. Thus, the addition of pozzolan
(in this case, diatomaceous earth) has a similar effect to raising the C2S content of cement,
thereby lowering the amount of early heat evolution and reducing early strength, but not
long-term strength [80]. This was confirmed for PC blends with ENO3 and ENO7, whose
hydration heat and overall heat development were lower and slower than that of reference
paste RP. On the other hand, considering the results of heat evolution testing and values
of 1-h hydration heat, diatomaceous BOR acted as a highly reactive pozzolan. With very
reactive pozzolans content, the C/S ratio is significantly different, being close to 1.0, and
the H/S ratio is slightly lower. This can be indicated as the secondary pozzolanic reaction
with C-S-H, which can be written as

C3S + 2S + 10.5H → 3[C− S− H3.5] (2)
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As diatomaceous earth BOR contains a significant amount of Al2O3, which might be
potentially reactive, separate secondary reactions occur, which leads to the formation of
calcium aluminate hydrates

CH + A + H → C− A− H (3)

The hydration process of tested cement pastes with 10% mass replacement of cement
with diatomaceous earth was also monitored using IR analysis. The FTIR spectra are
graphed in Figure 7, and Table 11 shows the assignment of the major absorption bands of
tested mixtures.
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Table 11. Assignments of the major absorption bands of hydrated mixtures.

Wavenumber (cm−1) Assignment

3641, 3642 ν (O-H) crystalline hydroxyl [81], e.g., portlandite (Ca(OH)2) [82]

3424–3553 ν (H-O-H) in liquid water, chemisorption of water on the surface
of molecules [83]

1617–1653 ν2 (H-O-H) in water [84]
1426, 1384, 875–873 ν (C=O) in CO3

2− compounds, calcite [85]
1095–1098 ν3 (SO4

2−) ettringite
925–968 ν3 (Si-O) in the C-S-H phase [86]
917–925 ν4 (Si-O) in the C-S-H phase [86]
780–918 δ (O-H) linked to Al3+ [81]
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Table 11. Cont.

Wavenumber (cm−1) Assignment

599–601 ν (Al-O) in C3A [85]
520–523 ν4 (Si-O) in C3S, β-C2S, C3A [87]
700–500 ν (Fe-O, Al-O) in C4AF [88]
440–470 ν4 (Si-O-Si) in the C-S-H phase [87]

The intensity of absorption bands of hydrated mixtures assigned to portlandite
(~3641 cm−1), water (~3500–3400 cm−1 and ~ 1600–1650 cm−1), and calcite (1426, 1385,
and 875 cm−1) is increased in comparison with pure Portland cement paste. The maximum
absorption of O-H stretching vibration is moved to the higher wavenumbers, evincing
more intensive intermolecular water interactions in hydrated compounds. The formation of
the C-S-H phase (calcium silicate hydrate) is accompanied by the movement of maximum
stretching vibration of SiO4

4− (925 cm−1) of hatrurite (Ca3SiO5) to higher frequencies
(968 cm−1). The movement of stretching vibration of SiO4

4- (917 cm−1) to higher frequen-
cies (925 cm−1) is due to the hydration of larnite (β-Ca2SiO4). The ettringite formation
strongly affects the initial cement hydration [89]. Therefore, it is supposed that the behavior
of blended cement pastes might be different at early and later ages. In this respect, longtime
monitoring of PC/diatomaceous earth blends will be necessary for future research. The
slow rate of pozzolanic reaction requires a prolonged period of moist curing to exploit
the full benefits of adding a pozzolan. Without sufficient moist curing, pozzolan will act
mainly as a microfiller.

3.2. Properties of 28-Days and 90-Days Pastes

The structural parameters of hardened pastes are summarized in Table 12. Data for
28-days and 90-day samples are presented. Typically, due to the progress in hydration and
pozzolanic reactions, the increase in the bulk density values was observed over time which
was further reflected in the lowered porosity. The examined mineral admixtures affected
the structure of the hardened pastes differently. For ENO3, the drop in porosity exhibited
pastes ENO3/5 and ENO3/10. For mixtures with a higher dosage of diatomaceous earth
was, the porosity slightly higher than that of reference paste, and the redundant mineral
admixture served as filler only. ENO7 decreased the porosity of blended pastes for PC
replacement up to 15 wt.%. Contrary to that, using diatomaceous earth, BOR oppositely
affected the porosity. The porosity was slightly increased for cement replacement ratio
>15 wt.%. However, in this case, the diatomaceous earth also contributed to the cement
matrix’s densification, which was well apparent for pastes BOR/5 ad BOR/15. The porosity
results can be assigned to the increased fraction of CSH that provides a more homogeneous
and compact microstructure, particularly if highly reactive, finely powdered pozzolans
are used. In evaluating structural parameters, one must consider the differences in the
progress of hydration and pozzolanic reactions of blended pastes and reference PC paste.

The results of the mechanical parameters assessment and values of strength activity
index (SAI) are presented in Table 13. SAI was determined as a ratio of 28-days and 90-day
compressive strength of the chosen blended paste and that of reference paste RP [90].
Similarly, as in the case of structural parameters, the prolonged curing time led to the
densifying of studied pastes and, thus, an increase in the examined mechanical parameters.
For 28-day samples, the lowest SAI (92.9%) was obtained for BOR/20 and the highest
(113.6%) for ENO7/10. The 90-days SAI varied from 88.9% to 109.1%. The results of
the SAI assessment gave clear evidence of pozzolanic reactivity of researched mineral
admixtures. As SAI of 75% is usually considered as limiting value to classify mineral
admixture among pozzolans, this criterion was safely met for all analyzed diatomaceous
earth and cement blends. For ENO3, prolonged hydration was detected. Best mechanical
performance yielded blended paste with ENO7, which proved its high reactivity. For all
studied ENO7-enriched pastes, the compressive strength was higher or similar to that of
reference paste except for paste with 20% cement substitution. In the case of ENO3, the
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drop in mechanical parameters was recorded for diatomaceous earth dosage >10 wt.%, but
SAI was still satisfactory to rank this material as pozzolana active. The results of mechanical
parameters testing agree with those reported by Değimenci and Yilmaz [51]. They reported
that the compressive strength of mortars containing diatomite increases with age, and
the rate of increase depends upon the cement replacement level. Similarly, Jang-Hyun
and Chang-Bok [91] confirmed that diatomite could be used as an admixture to reinforce
concrete durability and increase strength efficiency.

Table 12. The basic material properties of tested mixtures.

Paste
Bulk Density

(kg·m−3)
Specific Density

(kg·m−3)
Open Porosity

(%)
28 Days 90 Days 28 Days 90 Days 28 Days 90 Days

RP 1558 ± 22 1589 ± 22 2181 ± 26 2159 ± 26 28.6 ± 0.6 26.4 ± 0.5
ENO3/5 1451 ± 20 1495 ± 21 2017 ± 24 2008 ± 24 28.1 ± 0.6 25.5 ± 0.5

ENO3/10 1422 ± 20 1460 ± 20 2007 ± 24 1991 ± 24 29.1 ± 0.6 26.7 ± 0.5
ENO3/15 1375 ± 19 1416 ± 20 1966 ± 24 1951 ± 23 30.1 ± 0.6 27.4 ± 0.5
ENO3/20 1319 ± 19 1364 ± 19 1925 ± 23 1907 ± 23 31.5 ± 0.6 28.5 ± 0.6
ENO7/5 1576 ± 22 1594 ± 22 2154 ± 26 2141 ± 26 26.8 ± 0.5 25.5 ± 0.5

ENO7/10 1610 ± 23 1623 ± 23 2163 ± 26 2149 ± 26 25.6 ± 0.5 24.4 ± 0.5
ENO7/15 1549 ± 22 1573 ± 22 2148 ± 26 2132 ± 26 27.9 ± 0.6 26.3 ± 0.5
ENO7/20 1473 ± 21 1488 ± 21 2083 ± 25 2069 ± 25 29.3 ± 0.6 28.1 ± 0.6

BOR/5 1492 ± 21 1517 ± 21 2078 ± 25 2072 ± 25 28.2 ± 0.6 26.8 ± 0.5
BOR/10 1434 ± 20.1 1456 ± 20 2021 ± 24 2008 ± 24 28.9 ± 0.6 27.5 ± 0.6
BOR/15 1411 ± 19.8 1425 ± 20 1996 ± 24 1981 ± 24 29.3 ± 0.6 28.1 ± 0.6
BOR/20 1349 ± 18.9 1371 ± 19 1936 ± 23 1922 ± 23 30.3 ± 0.6 28.7 ± 0.6

Table 13. Mechanical parameters of hardened pastes.

Paste Flexural Strength (MPa) Compressive Strength (MPa) SAI
(%)

Young’s Modulus
(GPa)

Days
28 90 28 90 28 90 28 90

RP 7.3 ± 0.1 8.2 ± 0.1 52.3 ± 0.7 58.4 ± 0.8 - - 14.5 ± 0.2 16.7 ± 0.2
ENO3/5 7.5 ± 0.1 8.7 ± 0.1 52.5 ± 0.7 59.2 ± 0.8 100.4 101.3 14.5 ± 0.2 17.1 ± 0.2

ENO3/10 7.2 ± 0.1 8.4 ± 0.1 50.0 ± 0.7 58.1 ± 0.8 95.6 99.5 14.2 ± 0.2 16.7 ± 0.2
ENO3/15 6.6 ± 0.1 7.8 ± 0.1 48.2 ± 0.7 54.7 ± 0.8 92.1 93.7 13.6 ± 0.2 15.1 ± 0.2
ENO3/20 6.0 ± 0.1 7.3 ± 0.1 43.1 ± 0.6 53.0 ± 0.7 82.4 90.8 12.1 ± 0.2 14.1 ± 0.2
ENO7/5 7.8 ± 0.1 9.0 ± 0.1 55.8 ± 0.8 60.6 ± 0.8 106.7 103.8 15.8 ± 0.2 17.2 ± 0.2

ENO7/10 8.4 ± 0.1 9.4 ± 0.1 59.4 ± 0.8 63.7 ± 0.9 113.6 109.1 16.8 ± 0.2 17.4 ± 0.2
ENO7/15 8.0 ± 0.1 8.5 ± 0.1 54.4 ± 0.8 58.4 ± 0.8 104.0 100.0 15.9 ± 0.2 17.0 ± 0.2
ENO7/20 6.9 ± 0.1 7.7 ± 0.1 50.2 ± 0.7 53.8 ± 0.8 96.0 92.1 14.0 ± 0.2 14.7 ± 0.2

BOR/5 7.6 ± 0.1 8.5 ± 0.1 52.6 ± 0.7 59.4 ± 0.8 100.6 101.7 14.9 ± 0.2 17.1 ± 0.2
BOR/10 7.4 ± 0.1 8.3 ± 0.1 52.3 ± 0.7 58.9 ± 0.8 100.0 100.9 14.7± 0.2 16.9 ± 0.2
BOR/15 7.0 ± 0.1 7.8 ± 0.1 50.4 ± 0.7 53.1 ± 0.7 96.4 90.9 14.3 ± 0.2 14.7 ± 0.2
BOR/20 6.7 ± 0.1 7.1 ± 0.1 48.6 ± 0.7 51.9 ± 0.7 92.9 88.9 13.70 ± 0.2 13.7 ± 0.2

4. Conclusions

The following main conclusions can be drawn from the conducted tests and analyzes:

(i) Three basic factors influence the contribution of diatomaceous earth to cement mixture
strength when partially replacing Portland cement. These are the filler effect, the
pertinent acceleration of ordinary Portland cement hydration, and the pozzolanic
reaction of diatomite with cement hydrates.

(ii) The filler effect is immediate. The acceleration of ordinary Portland cement hydration
has a significant impact within the first 24 h, leading to the shortening of both initial
and final setting time.
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(iii) Due to the chemical and phase composition, particle size, and morphology of diatoma-
ceous particles, the examined blended pastes exhibited distinct rheology, heat release,
the time evolution of hydration and pozzolanic reactions, structural parameters, and,
consequently, mechanical strength.

(iv) The progress in hydration and pozzolanic reactions was apparent from assessing
28-day and 90-day hardened samples.

(v) Based on received SAI values, the researched mineral admixtures were classified as
highly reactive pozzolans, which can be beneficially applied in the design and produc-
tion of potentially more durable repair mortars applicable also for historical masonry
with excessive moisture presence. However, the analyzed diatomaceous earth can
also find use in the production of blended cement, cement-based composites, or as a
part of multi-component binders. The ability to improve the reactivity of diatomite by
additional grinding must also be considered in the preparation of blended binders.

(vi) The optimum replacement level of ordinary Portland cement by diatomaceous earth to
give maximum long-term strength enhancement is about 10 wt.%. However, an even
higher dosage of diatomaceous earth provides materials of sufficient strength and
Young’s modulus. For example, in the case of ENO7, the improvement in mechanical
parameters was found to be up to 15% Portland cement replacement. With respect to
identified SAI, the safe value of Portland cement substitution is 20 wt.%.
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