Synthesis and Characterization of Maleic Anhydride-Methyl Methacrylate Co-Monomer Grafted Polyethylene Wax for Hot Waxed Wood Process
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Polyethylene Wax Modified by Grafted Maleic Anhydride-Methyl Acrylate (PEW-g-MAH-MMA)
2.3. Acid Value Tests
2.4. Mechanical Properties Tests
2.5. Thermal Stability Tests
2.6. Differential Scanning Calorimetry (DSC) Tests
2.7. Fourier Transform Infrared Spectroscopy (FTIR) Tests
2.8. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR) Tests
2.9. X-ray Diffraction (XRD) Tests
3. Results and Discussion
3.1. Chemical Structure Analysis
3.2. Acid Value Analysis
3.3. Mechanical Properties Analysis
3.4. Thermogravimetric Analysis
3.5. Melting Behavior Analysis
3.6. Crystallization Property Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maia, M.; Barros, A.I.; Nunes, F.M. A novel, direct, reagent-free method for the detection of beeswax adulteration by single-reflection attenuated total reflectance mid-infrared spectroscopy. Talanta 2013, 107, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, C.; Cao, J.; Zhu, Y. Improved properties of thermally modified wood (TMW) by combined treatment with disodium octoborate tetrahydrate (DOT) and wax emulsion (WE). Holzforschung 2018, 72, 243–250. [Google Scholar] [CrossRef]
- Brischke, C.; Melcher, E. Performance of wax-impregnated timber out of ground contact: Results from long-term field testing. Wood Sci. Technol. 2015, 49, 189–204. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Cao, J.; Guo, X. Thermal modification of Southern pine combined with wax emulsion preimpregnation: Effect on hydrophobicity and dimensional stability. Holzforschung 2015, 69, 405–413. [Google Scholar] [CrossRef]
- Humar, M.; Kržišnik, D.; Lesar, B.; Thaler, N.; Ugovšek, A.; Zupančič, K.; Žlahtič, M. Thermal modification of wax-impregnated wood to enhance its physical, mechanical, and biological properties. Holzforschung 2017, 71, 57–64. [Google Scholar] [CrossRef]
- Lesar, B.; Humar, M. Use of wax emulsions for improvement of wood durability and sorption properties. Eur. J. Wood Wood Prod. 2011, 69, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Lesar, B.; Pavlič, M.; Petrič, M.; Škapin, A.S.; Humar, M. Wax treatment of wood slows photodegradation. Polym. Degrad. Stab. 2011, 96, 1271–1278. [Google Scholar] [CrossRef]
- Hazer, B. Poly (β-hydroxynonanoate) and polystyrene or poly (methyl methacrylate) graft copolymers: Microstructure characteristics and mechanical and thermal behavior. Macromol. Chem. Phys. 1996, 197, 431–441. [Google Scholar] [CrossRef]
- Hazer, B.; Lenz, R.W.; Çakmaklı, B.; Borcaklı, B.; Koçer, H. Preparation of poly (ethylene glycol) grafted poly (3-hydroxyalkanoate) networks. Macromol. Chem. Phys. 1999, 200, 1903–1907. [Google Scholar] [CrossRef]
- Zhang, J.F.; Sun, X. Mechanical properties of poly (lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 2004, 5, 1446–1451. [Google Scholar] [CrossRef]
- Schwach, E.; Six, J.L.; Avérous, L. Biodegradable blends based on starch and poly (lactic acid): Comparison of different strategies and estimate of compatibilization. J. Polym. Environ. 2008, 16, 286–297. [Google Scholar] [CrossRef]
- Ma, P.; Cai, X.; Lou, X.; Dong, W.; Chen, M.; Lemstra, P.J. Styrene-assisted melt free-radical grafting of maleic anhydride onto poly (β-hydroxybutyrate). Polym. Degrad. Stab. 2014, 100, 93–100. [Google Scholar] [CrossRef]
- Zare, A.; Morshed, M.; Bagheri, R.; Karimi, K. Effect of various parameters on the chemical grafting of amide monomers to poly (lactic acid). Fibers Polym. 2013, 14, 1783–1793. [Google Scholar] [CrossRef]
- Peng, C.; Chen, H.; Wang, J.; Chen, Z.; Ni, M.; Chen, Y.; Zhang, J.; Yuan, T. Controlled degradation of polylactic acid grafting N-vinyl pyrrolidone induced by gamma ray radiation. J. Appl. Polym. Sci. 2013, 130, 704–709. [Google Scholar] [CrossRef]
- Luk, J.Z.; Rondeau, E.; Trau, M.; Cooper-White, J.; Grøndahl, L. Characterisation of amine functionalised poly (3-hydroxybuturate-co-3-hydroxyvalerate) surfaces. Polymer 2011, 52, 3251–3258. [Google Scholar] [CrossRef]
- Li, J.; Kong, M.; Cheng, X.J.; Dang, Q.F.; Zhou, X.; Wei, Y.N.; Chen, X.G. Preparation of biocompatible chitosan grafted poly (lactic acid) nanoparticles. Int. J. Biol. Macromol. 2012, 51, 221–227. [Google Scholar] [CrossRef]
- Choi, K.; Choi, M.C.; Han, D.H.; Park, T.S.; Ha, C.S. Plasticization of poly (lactic acid)(PLA) through chemical grafting of poly (ethylene glycol)(PEG) via in situ reactive blending. Eur. Polym. J. 2013, 49, 2356–2364. [Google Scholar] [CrossRef]
- Felthouse, T.R.; Burnett, J.C.; Horrell, B.; Mummey, M.J.; Kuo, Y.J. Maleic anhydride, maleic acid, and fumaric acid. Kirk-Othmer Encycl. Chem. Technol. 2000, 15. [Google Scholar]
- Wu, C.J.; Chen, C.Y.; Woo, E.; Kuo, J.F. A kinetic study on grafting of maleic anhydride onto a thermoplastic elastomer. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 3405–3415. [Google Scholar] [CrossRef]
- Machado, A.V.; Covas, J.A.; Van Duin, M. Effect of polyolefin structrure on maleic anhydride grafting. Polymer 2001, 42, 3649–3655. [Google Scholar] [CrossRef]
- Jung, W.C.; Park, K.Y.; Kim, J.Y.; Rong, Y. Evaluation of isocyanate functional groups as a reactive group in the reactive compatibilizer. J. Appl. Polym. Sci. 2003, 88, 2622–2629. [Google Scholar] [CrossRef]
- Russell, K.E. Free radical graft polymerization and copolymerization at higher temperatures. Progress Polym. Sci. 2002, 27, 1007–1038. [Google Scholar] [CrossRef]
- He, X.; Zheng, S.; Huang, G.; Rong, Y. Solution grafting of maleic anhydride on low-density polyethylene: Effect on crystallization behavior. J. Macromol. Sci. Part B 2013, 52, 1265–1282. [Google Scholar] [CrossRef]
- Shi, D.; Yang, J.; Yao, Z.; Wang, Y.; Huang, H.; Jing, W.; Yin, J.; Costa, G. Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: Mechanism melt grafting. Polymer 2001, 42, 5549–5557. [Google Scholar] [CrossRef]
- Ho, R.M.; Su, A.C.; Wu, C.H.; Chen, S.I. Functionalization of polypropylene via melt mixing. Polymer 1993, 34, 3264–3269. [Google Scholar] [CrossRef]
- Samay, G.; Nagy, T.; White, J.L. Grafting maleic anhydride and comonomers onto polyethylene. J. Appl. Polym. Sci. 1995, 56, 1423–1433. [Google Scholar] [CrossRef]
- Roover, B.D.; Devaux, J.; Legras, R. Maleic anhydride homopolymerization during melt functionalization of isotactic polypropylene. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 1195–1202. [Google Scholar] [CrossRef]
- Kelar, K.; Jurkowski, B. Preparation of functionalised low-density polyethylene by reactive extrusion and its blend with polyamide 6. Polymer 2000, 41, 1055–1062. [Google Scholar] [CrossRef]
- Moad, G. The synthesis of polyolefin graft copolymers by reactive extrusion. Progress Polym. Sci. 1999, 24, 81–142. [Google Scholar] [CrossRef]
- Lazár, M.; Hrčková, L.; Fiedlerová, A.; Borsig, E.; Rätzsch, M.; Hesse, A. Functionalization of isotactic poly (propylene) with maleic anhydride in the solid phase. Angew. Makromol. Chem. Appl. Macromol. Chem. Phys. 1996, 243, 57–67. [Google Scholar] [CrossRef]
- Rengarajan, R.; Vicic, M.; Lee, S. Solid phase graft copolymerization. I. Effect of initiator and catalyst. J. Appl. Polym. Sci. 1990, 39, 1783–1791. [Google Scholar] [CrossRef]
- Ma, P.; Jiang, L.; Ye, T.; Dong, W.; Chen, M. Melt free-radical grafting of maleic anhydride onto biodegradable poly (lactic acid) by using styrene as a comonomer. Polymers 2014, 6, 1528–1543. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.H.; Cartier, H. Styrene-assisted melt free radical grafting of glycidyl methacrylate onto an ethylene and propylene rubber. J. Appl. Polym. Sci. 1999, 71, 125–133. [Google Scholar] [CrossRef]
- Gaylord, N.G.; Mehta, R. Radical-catalyzed homopolymerization of maleic anhydride in presence of polar organic compounds. J. Polym. Sci. Part A Polym. Chem. 1988, 26, 1903–1909. [Google Scholar] [CrossRef]
- Gaylord, N.G.; Mehta, M. Role of homopolymerization in the peroxide-catalyzed reaction of maleic anhydride and polyethylene in the absence of solvent. J. Polym. Sci. Polym. Lett. Ed. 1982, 20, 481–486. [Google Scholar] [CrossRef]
- Dinker, A.; Agarwal, M.; Agarwal, G.D. Preparation, characterization, and performance study of beeswax/expanded graphite composite as thermal storage material. Exp. Heat Trans. 2017, 30, 139–150. [Google Scholar] [CrossRef]
- Beltran, V.; Salvadó, N.; Butí, S.; Cinque, G. Micro infrared spectroscopy discrimination capability of compounds in complex matrices of thin layers in real sample coatings from artworks. Microchem. J. 2015, 118, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Timar, M.C.; Varodi, A.M. A comparative study on the artificial UV and natural ageing of beeswax and Chinese wax and influence of wax finishing on the ageing of Chinese Ash (Fraxinus mandshurica) wood surfaces. J. Photochem. Photobiol. B Biol. 2019, 201, 111607. [Google Scholar] [CrossRef]
- Kim, K.J.; Eom, T.J. Chemical characteristics of degraded beeswax in the waxed volume of the annals of King Sejong in the Joseon Dynasty. J. Cult. Herit. 2015, 16, 918–921. [Google Scholar] [CrossRef]
- Svečnjak, L.; Baranović, G.; Vinceković, M.; Prđun, S.; Bubalo, D.; Gajger, I.T. An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. J. Apic. Sci. 2015, 59, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Baeten, J.; Romanus, K.; Degryse, P.; De Clercq, W.; Poelman, H.; Verbeke, K.; Luypaerts, A.; Walton, M.; Jacobs, P.; De Vos, D.; et al. Application of a multi-analytical toolset to a 16th century ointment: Identification as lead plaster mixed with beeswax. Microchem. J. 2010, 95, 227–234. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly (ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Hwang, S.W.; Lee, S.B.; Lee, C.K.; Lee, J.Y.; Shim, J.K.; Selke, S.E.M.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Grafting of maleic anhydride on poly (L-lactic acid). Effects on physical and mechanical properties. Polym. Test. 2012, 31, 333–344. [Google Scholar] [CrossRef]
- Bunkerd, R.; Molloy, R.; Punyodom, W.; Somsunan, R. Reactive Blending of Poly (l-lactide) and Chemically-Modified Starch Grafted with a Maleic Anhydride-Methyl Methacrylate Copolymer. Macromol. Symp. 2015, 354, 340–346. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, X.; Xia, M.; Luo, W.; Hu, H.; Wang, Z.; He, P.; Zhang, Y. The role of synthetic P (MMA-co-MAH) as compatibilizer in the preparation of chlorinated polyethylene/polysodium acrylate water-swelling rubber. Adv. Polym. Technol. 2018, 37, 3650–3658. [Google Scholar] [CrossRef]
- Popa, I.; Offenberg, H.; Beldie, C.; Uglea, C.V. Benzocaine modified maleic anhydride copolymers—I. Synthesis and characterization of benzocaine modified poly (maleic anhydride-co-vinyl acetate), poly (maleic anhydride-co-methyl methacrylate) and poly (maleic anhydride-co-styrene). Eur. Polym. J. 1997, 33, 1511–1514. [Google Scholar] [CrossRef]
- Liu, Q.; Qi, R.; Shen, Y.; Zhou, C. Solvothermal process for grafting maleic anhydride onto poly (ethylene 1-octene). J. Mol. Struct. 2007, 846, 42–48. [Google Scholar] [CrossRef]
- Diani, J.; Liu, Y.; Gall, K. Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym. Eng. Sci. 2006, 46, 486–492. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zhang, Y. Melt grafting of maleic anhydride onto low-density polyethylene/polypropylene blends. Polym. Test. 2003, 22, 191–195. [Google Scholar] [CrossRef]
- Drumright, R.E.; Gruber, P.R.; Henton, D.E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841–1846. [Google Scholar] [CrossRef]
- Qiu, W.; Endo, T.; Hirotsu, T. A novel technique for preparing of maleic anhydride grafted polyolefins. Eur. Polym. J. 2005, 41, 1979–1984. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y.; Zheng, S.; Park, Y.; Frost, R.L. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim. Acta 2013, 558, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Genovese, A.; Amarasinghe, G.; Glewis, M.; Mainwaring, D.; Shanks, R.A. Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material. Thermochim. Acta 2006, 443, 235–244. [Google Scholar] [CrossRef]
- Tiwan, G.B.; Srivastava, S.P.; Pandey, D.C.; Purohit, R.C.; Saxena, A.K.; Goyal, S.K.; Rawat, T.S. Thermally induced phase-transitions in petroleum waxes from some typical Indian crude oils. Petroleum Sci. Technol. 1997, 15, 335–346. [Google Scholar] [CrossRef]
- Motaung, T.E.; Luyt, A.S. Effect of maleic anhydride grafting and the presence of oxidized wax on the thermal and mechanical behaviour of LDPE/silica nanocomposites. Mater. Sci. Eng. A 2010, 527, 761–768. [Google Scholar] [CrossRef]
- Kim, D.; Park, I.; Seo, J.; Han, H.; Jang, W. Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films. J. Polym. Res. 2015, 22, 19. [Google Scholar] [CrossRef]
- Elnahas, H.H.; Abdou, S.M.; El-Zahed, H.; Abdeldaym, A. Structural, morphological and mechanical properties of gamma irradiated low density polyethylene/paraffin wax blends. Radiat. Phys. Chem. 2018, 151, 217–224. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, L.; Cao, J.; Peng, Y. Paraffin/wood flour/high-density polyethylene composites for thermal energy storage material in buildings: A morphology, thermal performance, and mechanical property study. Polym. Compos. 2018, 39, E1643–E1652. [Google Scholar] [CrossRef]
Samples Code | Formulation | Grafting Temperature (°C) | |||
---|---|---|---|---|---|
PEW | MAH | MMA | BPO | ||
1 | 100 | 0 | 0 | 0 | 150 |
2 | 100 | 4 | 0 | 2 | 150 |
3 | 100 | 4 | 2 | 2 | 150 |
4 | 100 | 4 | 4 | 2 | 150 |
5 | 100 | 4 | 8 | 2 | 150 |
6 | 100 | 4 | 16 | 2 | 150 |
7 | 100 | 2 | 2 | 2 | 150 |
8 | 100 | 8 | 8 | 2 | 150 |
9 | 100 | 16 | 16 | 2 | 150 |
10 | 100 | 4 | 4 | 1 | 150 |
11 | 100 | 4 | 4 | 3 | 150 |
12 | 100 | 4 | 4 | 4 | 150 |
13 | 100 | 4 | 4 | 2 | 130 |
14 | 100 | 4 | 4 | 2 | 140 |
15 | 100 | 4 | 4 | 2 | 160 |
Groups | Weight Ratio (MAH/MMA) | Total Monomer Content (%) | BPO Content (%) | Reaction Temperature (°C) | Acid Value (KOH mg/g) |
---|---|---|---|---|---|
Group 1 | 1/0 | 8 | 2 | 150 | 4 |
1/0.5 | 9.6 | ||||
1/1 | 18 | ||||
1/2 | 13.6 | ||||
1/4 | 1.6 | ||||
Group 2 | 1/1 | 4 | 2 | 150 | 2 |
8 | 18 | ||||
16 | 29 | ||||
32 | 24 | ||||
Group 3 | 1/1 | 8 | 1 | 150 | 6.4 |
2 | 18 | ||||
3 | 16 | ||||
4 | 13.6 | ||||
Group 4 | 1/1 | 8 | 2 | 130 | 4.8 |
140 | 11.2 | ||||
150 | 18 | ||||
160 | 13.6 | ||||
BW | - | - | - | - | 18 |
Standard | - | - | - | - | 16–23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, K.; Song, K. Synthesis and Characterization of Maleic Anhydride-Methyl Methacrylate Co-Monomer Grafted Polyethylene Wax for Hot Waxed Wood Process. Materials 2022, 15, 6962. https://doi.org/10.3390/ma15196962
Niu K, Song K. Synthesis and Characterization of Maleic Anhydride-Methyl Methacrylate Co-Monomer Grafted Polyethylene Wax for Hot Waxed Wood Process. Materials. 2022; 15(19):6962. https://doi.org/10.3390/ma15196962
Chicago/Turabian StyleNiu, Kangren, and Kuiyan Song. 2022. "Synthesis and Characterization of Maleic Anhydride-Methyl Methacrylate Co-Monomer Grafted Polyethylene Wax for Hot Waxed Wood Process" Materials 15, no. 19: 6962. https://doi.org/10.3390/ma15196962
APA StyleNiu, K., & Song, K. (2022). Synthesis and Characterization of Maleic Anhydride-Methyl Methacrylate Co-Monomer Grafted Polyethylene Wax for Hot Waxed Wood Process. Materials, 15(19), 6962. https://doi.org/10.3390/ma15196962