Multifunctional Coding-Feeding Metasurface Based on Phase Manipulation
Abstract
:1. Introduction
2. Designs and Methods
3. Results of Simulation and Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.J.; Li, Z.Y.; Huang, G.S.; Liu, X.B.; Li, R.Q.; Cao, X.Y. Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys. 2022, 17, 62501. [Google Scholar] [CrossRef]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Fan, P.; Hasman, E.; Brongersma, M.L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Li, Y.B.; Zhang, L.; Luo, Z.J.; Han, B.W.; Li, R.Q.; Cao, X.Y.; Cheng, Q.; Cui, T.J. Programmable Controls to Scattering Properties of a Radiation Array. Laser Photonics Rev. 2021, 15, 2000449. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Ergin, T.; Stenger, N.; Brenner, P.; Pendry John, B.; Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 2010, 328, 337–339. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Huang, G.S.; Li, S.J.; Li, Z.Y.; Liu, X.B.; Ji Di, L.R.; Cao, X.Y. Coding-Feeding Metasurface for Diffusion and Dual-Band Emission. Adv. Theory Simul. 2022, 5, 2200006. [Google Scholar] [CrossRef]
- Wang, H.; Prasad Sivan, V.; Mitchell, A.; Rosengarten, G.; Phelan, P.; Wang, L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 2015, 137, 235–242. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Li, L. Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting. Appl. Phys. Lett. 2017, 111, 071902. [Google Scholar] [CrossRef]
- Han, B.; Li, S.; Li, Z.; Huang, G.; Tian, J.; Cao, X. Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Opt. Express 2021, 29, 19643–19654. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Li, S.J.; Han, B.W.; Huang, G.S.; Guo, Z.X.; Cao, X.Y. Quad-Band Transmissive Metasurface with Linear to Dual-Circular Polarization Conversion Simultaneously. Adv. Theory Simul. 2021, 4, 2100117. [Google Scholar] [CrossRef]
- Della Giovampaola, C.; Engheta, N. Digital metamaterials. Nat. Mater. 2014, 13, 1115–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Han, B.W.; Li, Z.Y.; Liu, X.B.; Huang, G.S.; Li, R.Q.; Cao, X.Y. Transmissive coding metasurface with dual-circularly polarized multi-beam. Opt. Express 2022, 30, 26362–26376. [Google Scholar] [CrossRef]
- Cui, T.J.; Liu, S.; Bai, G.D.; Ma, Q. Direct Transmission of Digital Message via Programmable Coding Metasurface. Research 2019, 2019, 2584509. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Cao, X.Y.; Xu, L.M.; Zhou, L.J.; Yang, H.H.; Han, J.F.; Zhang, Z.; Zhang, D.; Liu, X.; Zhang, C.; et al. Ultra-broadband Reflective Metamaterial with RCS Reduction based on Polarization Convertor, Information Entropy Theory and Genetic Optimization Algorithm. Sci. Rep. 2016, 5, 37409. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, Z.; Han, B.; Huang, G.; Liu, X.; Yang, H.; Cao, X. Multifunctional Coding Metasurface with Left and Right Circularly Polarized and Multiple Beams. Front. Mater. 2022, 9, 854062. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.Q.; Shao, R.W.; Dai, J.Y.; Cheng, Q.; Castaldi, G.; Galdi, V.; Cui, T.J. Breaking Reciprocity with Space-Time-Coding Digital Metasurfaces. Adv. Mater. 2019, 31, e1904069. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Huang, G.; Liu, X.; Cao, X. Quad-OAM-beam based on a coding transmissive metasurface. Opt. Mat. Express 2022, 12, 3416–3428. [Google Scholar] [CrossRef]
- Abadal, S.; Cui, T.J.; Low, T.; Georgiou, J. Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and Architectures. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 6–19. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Q.; Nie, Q.F.; Hong, Q.R.; Cui, H.Y.; Ruan, Y.; Cui, T.J. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photon. Res. 2021, 9, 116–124. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.Z.; Tang, W.; Dai, J.Y.; Miao, L.; Zhou, X.Y.; Jin, S.; Cheng, Q.; Cui, T.J. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 2021, 4, 218–227. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J. Detection of cancer with graphene metasurface-based highly efficient sensors. Diam. Relat. Mater. 2022, 129, 109367. [Google Scholar] [CrossRef]
- Li, S.J.; Cui, T.J.; Li, Y.B.; Zhang, C.; Li, R.Q.; Cao, X.Y.; Guo, Z.X. Multifunctional and multiband fractal metasurface based on inter-metamolecular coupling interaction. Adv. Theory Simul. 2019, 2, 1900105. [Google Scholar] [CrossRef]
- Ma, H.F.; Wang, G.Z.; Kong, G.S.; Cui, T.J. Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt. Mater. Express 2014, 4, 1717–1724. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, Y.; Zhao, J.; Huang, C.; Wang, Z.; Jiang, T. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt. Express 2010, 18, 23196–23203. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Li, Y.B.; Li, H.; Wang, Z.X.; Zhang, C.; Guo, Z.X.; Li, R.Q.; Cao, X.Y.; Cheng, Q.; Cui, T.J. A Thin Self-Feeding Janus Metasurface for Manipulating Incident Waves and Emitting Radiation Waves Simultaneously. Ann. Phys. 2020, 532, 2000020. [Google Scholar] [CrossRef]
- Rajabalipanah, H.; Abdolali, A. Ultrabroadband Monostatic/Bistatic RCS Reduction via High-Entropy Phase-Encoded Polarization Conversion Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1233–1237. [Google Scholar] [CrossRef]
- Luo, X.Y.; Guo, W.L.; Qu, K.; Hu, Q.; Chen, K.; Tang, H.; Zhao, J.; Jiang, T.; Feng, Y. Quad-channel independent wavefront encoding with dual-band multitasking metasurface. Opt. Express 2021, 29, 15678–15688. [Google Scholar] [CrossRef]
- Han, B.; Li, S.; Cao, X.; Han, J.; Tian, J.; Jidi, L.; Li, Y. Dual-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously. AIP Adv. 2020, 10, 125025. [Google Scholar] [CrossRef]
- Wu, R.; Bao, L.; Wu, L.; Cui, T. Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning. Sci. China Phys. Mech. Astron. 2020, 63, 284211. [Google Scholar] [CrossRef]
- Gao, W.H.; Chen, M.; Cheng, Q.; Shao, R.W.; Liang, J.C.; Gao, Y.; Cui, T.J. 1-bit reconfigurable transmitarray with low loss and wide bandwidth. New J. Phys. 2021, 23, 065006. [Google Scholar] [CrossRef]
- Li, Q.; Pang, Y.; Li, Y.; Yan, M.; Wang, J.; Xu, Z.; Qu, S. Low radar cross section checkerboard metasurface with a transmission window. J. Appl. Phys. 2018, 124, 065107. [Google Scholar] [CrossRef]
- Amin, M.; Siddiqui, O.; Farhat, M. Metasurface supporting broadband circular dichroism for reflected and transmitted fields simultaneously. J. Phys. D Appl. Phys. 2020, 53, 435106. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, X.; Gao, J.; Li, S.J.; Yang, H.H.; Li, T.; Zhang, D. Shared aperture metasurface for bi-functions: Radiation and low backward scattering performance. IEEE Access 2019, 7, 56547–56555. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, Y.; Gao, J.; Cao, X.; Yang, H.; Li, S.; Xu, L.; Lan, J.; Jidi, L. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression. Sci Rep. 2017, 7, 16137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, R.Y.; Bai, G.D.; Wu, H.T.; Ma, Q.; Chen, X.Q.; Cui, T.J. Transmission-Reflection-Integrated Multifunctional Coding Metasurface for Full-Space Controls of Electromagnetic Waves. Adv. Funct. Mater. 2018, 28, 1870232. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.W.; Ma, H.F.; Wu, R.Y.; Xiao, Q.; Gou, Y.; Wang, M.; Wang, Z.X.; Bao, L.; Wang, H.L.; Qing, Y.M.; et al. Transmission-Reflection Controls and Polarization Controls of Electromagnetic Holograms by a Reconfigurable Anisotropic Digital Coding Metasurface. Adv. Opt. Mater. 2020, 8, 2001065. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.-S.; Li, S.-J.; Li, Z.-Y.; Liu, X.-B.; He, C.-Y.; Yang, H.-H.; Cao, X.-Y. Multifunctional Coding-Feeding Metasurface Based on Phase Manipulation. Materials 2022, 15, 7031. https://doi.org/10.3390/ma15197031
Huang G-S, Li S-J, Li Z-Y, Liu X-B, He C-Y, Yang H-H, Cao X-Y. Multifunctional Coding-Feeding Metasurface Based on Phase Manipulation. Materials. 2022; 15(19):7031. https://doi.org/10.3390/ma15197031
Chicago/Turabian StyleHuang, Guo-Shuai, Si-Jia Li, Zhuo-Yue Li, Xiao-Bin Liu, Cheng-Yuan He, Huan-Huan Yang, and Xiang-Yu Cao. 2022. "Multifunctional Coding-Feeding Metasurface Based on Phase Manipulation" Materials 15, no. 19: 7031. https://doi.org/10.3390/ma15197031
APA StyleHuang, G. -S., Li, S. -J., Li, Z. -Y., Liu, X. -B., He, C. -Y., Yang, H. -H., & Cao, X. -Y. (2022). Multifunctional Coding-Feeding Metasurface Based on Phase Manipulation. Materials, 15(19), 7031. https://doi.org/10.3390/ma15197031