Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method
Abstract
:1. Introduction
2. Theoretical Considerations
2.1. The Process of Creating and Propagating Microcracks in Marble
2.2. The Process of Cutting Brittle Materials with Abrasive Jet
3. Materials and Methods
4. Results and Discussion
5. Conclusions
- The increase of the pressure and of the stand-off distance, negatively influences the cracking of the marble;
- The diameter of the tube and the granulation of the abrasive have a smaller influence, which acts in the same way, by increasing them the possibility of cracking increases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Štefek, A.; Raška, J.; Hlaváč, L.M.; Spadło, S. Investigation of Significant Parameters during Abrasive Waterjet Turning. Materials 2021, 14, 4389. [Google Scholar] [CrossRef]
- Spadło, S.; Bańkowski, D.; Młynarczyk, P.; Hlaváčová, I.M. Influence of Local Temperature Changes on the Material Microstructure in Abrasive Water Jet Machining (AWJM). Materials 2021, 14, 5399. [Google Scholar] [CrossRef] [PubMed]
- Karmiris-Obrata’nski, P.; Karkalos, N.E.; Kudelski, R.; Papazoglou, E.L.; Markopoulos, A.P. On the Effect of Multiple Passes on Kerf Characteristics and Efficiency of Abrasive Waterjet Cutting. Metals 2021, 11, 74. [Google Scholar] [CrossRef]
- Melentiev, R.; Fang, F. Recent advances and challenges of abrasive jet machining. CIRP J. Manuf. Sci. Technol. 2018, 22, 1–20. [Google Scholar] [CrossRef]
- Arab, P.B.; Celestino, T.B. A microscopic study on kerfs in rocks subjected to abrasive waterjet cutting. Wear 2020, 448–449, 5–6. [Google Scholar]
- Torrubia, P.L.; Billingham, J.; Axinte, D.A. Stochastic modelling of abrasive waterjet footprints using finite element analysis. Proc. R. Soc. A 2016, 472, 20150836. [Google Scholar] [CrossRef] [Green Version]
- Pawar, P.J.; Vidhate, U.S.; Khalkar, M.Y. Improving the quality characteristics of abrasive water jet machining of marble material using multi-objective artificial bee colony algorithm. J. Comput. Sci. Eng. 2018, 5, 319–328. [Google Scholar] [CrossRef]
- Rao, R.V.; Rai, D.P.; Balic, J. A multi-objective algorithm for optimization of modern machining processes. Eng. App. Art. Int. 2017, 61, 103–125. [Google Scholar] [CrossRef]
- Perec, A. Multiple Response Optimization of Abrasive Water Jet Cutting Process using Response Surface Methodology (RSM). Proc. Comp. Sci. 2021, 192, 931–940. [Google Scholar] [CrossRef]
- Natarajan, Y.; Kumar Murugesan, P.; Mohan, M.; Khan, S.A.L.A. Abrasive Water Jet Machining process: A state of art of review. J. Manuf. Process. 2020, 49, 271–322. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Z.; Wen, G.; Yuan, X. Waterjet machining and research developments: A review. Int. J. Adv. Man Technol. 2019, 102, 1257–1335. [Google Scholar] [CrossRef]
- Zheng, Y.; He, L. TBM tunneling in extremely hard and abrasive rocks: Problems, solutions and assisting methods. J. Cent. South Univ. 2021, 28, 454–480. [Google Scholar] [CrossRef]
- Perec, A. Research into the Disintegration of Abrasive Materials in the Abrasive Water Jet Machining Process. Materials 2021, 14, 3940. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, D.; Zhou, X.; Xiao, N.; Guo, C. Rock Breaking Performance of TBM Disc Cutter Assisted by High-Pressure Water Jet. Appl. Sci. 2020, 10, 6294. [Google Scholar] [CrossRef]
- Hlaváč, L.M.; Annoni, M.P.G.; Hlaváčová, I.M.; Arleo, F.; Viganò, F.; Štefek, A. Abrasive Waterjet (AWJ) Forces—Potential Indicators of Machining Quality. Materials 2021, 14, 3309. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.; Oh, T.-M.; Hwang, H.-J.; Cho, G.-C. Simple Approach for Evaluation of Abrasive Mixing Efficiency for Abrasive Waterjet Rock Cutting. Appl. Sci. 2021, 11, 1543. [Google Scholar] [CrossRef]
- Llanto, J.M.; Tolouei-Rad, M.; Vafadar, A.; Aamir, M. Recent Progress Trend on Abrasive Waterjet Cutting of Metallic Materials: A Review. Appl. Sci. 2021, 11, 3344. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, F.; Li, H.; Chen, Y.; Wang, F.; Guo, C. Experimental Investigation of Hard Rock Breaking Using a Conical Pick Assisted by Abrasive Water Jet. Rock Mech. Rock Eng. 2020, 53, 4221–4230. [Google Scholar] [CrossRef]
- Hlaváč, L.M. Revised Model of Abrasive Water Jet Cutting for Industrial Use. Materials 2021, 14, 4032. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Pandey, P.M.; Garg, M.P.; Khann, R.; Batra, K.N. Minimization of kerf taper angle and kerf width using Taguchi’s method in abrasive water jet machining of marble. Proc. Mater. Sci. 2014, 6, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Joel, C.; Jeyapoovan, T. Optimization of machinability parameters in abrasive water jet machining of AA7075 using Grey-Taguchi method. Mater. Today Proc. 2021, 37, 737–741. [Google Scholar] [CrossRef]
- Perumal, A.; Kailasanathan, C.; Wilson, V.H.; Kumar, T.S.; Stalin, B.; Rajkumar, P.R. Machinability of Titanium alloy 6242 by AWJM through Taguchi method. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Balaji, K.; Siva Kumar, M.; Yuvaraj, N. Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel. Appl. Soft. Comput. 2021, 102, 107075. [Google Scholar] [CrossRef]
- Barabas, B.; Deaconescu, T. Researches regarding influence of traverse speed and stand-off distance to the roughness in AWJ process. Matec. Web Conf. 2017, 121, 03002. [Google Scholar] [CrossRef]
- Anstis, G.R.; Chantikul, P.; Lawn, B.R.; Marshall, D.B. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness I, Direct Crack Measurements. J. Am. Ceram. Society 1981, 64, 534–536. [Google Scholar] [CrossRef]
- Lawn, B. Fracture of Brittle Solids, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Le, H.; Wang, H.; Tang, L.; Ren, X.; Cai, Y. Fracture of brittle solid material containing a single internal crack of different depths under three-point bending based on 3D-ILC. Eng. Fract. Mech. 2021, 248, 10–12. [Google Scholar]
- Conti, P. Microstructures, textures and material properties of marble rocks; an introduction. In Proceedings of the Geological Setting, Mineral Resources and Ancient Works of Samos and Adjacent Islands of the Aegean Sea, Karlovassi, Samos Island, Greece, 26–30 August 2013. [Google Scholar]
- Nguyen, T.; Wang, J. A review on the erosion mechanisms in abrasive waterjet micromachining of brittle materials. Int. J. Extrem. Manuf. 2019, 1, 012006. [Google Scholar] [CrossRef] [Green Version]
- Jafar, R.H.M. Erosion and Roughness Modeling in Abrasive Jet Micro-Machining of Brittle Materials; University of Toronto: Toronto, ON, Canada, 2013. [Google Scholar]
- Jafar, R.H.M.; Nouraei, H.; Emamifar, M.; Papini, M.; Spelt, J.K. Erosion modeling in abrasive slurry jet micro-machining of brittle materials. J. Manuf. Process. 2015, 17, 127–140. [Google Scholar] [CrossRef]
- Dun, L.; Thai, N.; Wang, J.; Huang, C. Mechanisms of enhancing the machining performance in micro abrasive waterjet drilling of hard and brittle materials by vibration assistance. Int. J. Mach. Tools Manuf. 2020, 151, 8–10. [Google Scholar]
- Slikkerveer, P.J.; Bouten, P.C.P.; Veld, F.H.; Scholten, H. Erosion and Damage by Sharp Particles. Wear 1998, 217, 237–250. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, R.; Fu, Y.; Qi, Y.; Kong, F.; Li, H.; Tangwarodomnukun, V. Investigation on particle motions and resultant impact erosion on quartz crystals by the micro-particle laden waterjet and airjet. Powder Technol. 2020, 360, 452–461. [Google Scholar] [CrossRef]
- Qu, H.; Wu, X.; Liu, Y.; Feng, Y.; Tang, S.; Zhang, S.; Hu, Y. Effect of shale mineralogy characteristics on the perforation performance and particle fragmentation of abrasive waterjet. Powder Technol. 2020, 367, 427–442. [Google Scholar] [CrossRef]
- Hutchings, I.; Shipway, P. Tribology, Friction and Wear of Engineering Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Taguchi, G.; Chowdhury, S.; Wu, Y. Taguchi Quality Engineering Book; Wiley Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Deaconescu, A.; Deaconescu, T. Response Surface Methods Used for Optimization of Abrasive Waterjet Machining of the Stainless Steel X2 CrNiMo 17-12-2. Materials 2021, 14, 2475. [Google Scholar] [CrossRef] [PubMed]
Inclusion-ASTM E112/E45-97 | ||||
---|---|---|---|---|
Original image | Processed image 1 | Processed image 2 | ||
Inclusion types | Fine | Thick | Fine | Thick |
Type A Analysis | 0.00 | 0.00 | 0.00 | 0.00 |
Type B Analysis | 0.00 | 1.00 | 1.00 | 0.00 |
Type C Analysis | 0.50 | 2.00 | 0.50 | 2.00 |
Type D Analysis | 1.50 | 6.50 | 1.50 | 4.50 |
Pressure P [MPa] | Stand-Off Distance d [mm] | Abrasive Granulation G [Mesh] | Tub Diam. D [mm] |
---|---|---|---|
180 | 1 | 80 | 0.25 |
220 | 1.5 | 120 | 0.75 |
250 | 2 |
Pressure P [MPa] | Stand-Off Distance h [mm] | Abrasive Granulation G [Mesh] | Tub Diam. D [mm] | Number of Cracks | ||
---|---|---|---|---|---|---|
Test | ||||||
1 | 2 | |||||
180 | 1 | 80 | 0.75 | 4 | 4 | 4 |
180 | 1.5 | 80 | 0.75 | 4 | 5 | 4.5 |
180 | 2 | 80 | 0.75 | 6 | 5 | 5.5 |
220 | 1 | 80 | 0.75 | 6 | 5 | 5.5 |
220 | 1.5 | 80 | 0.75 | 7 | 6 | 6.5 |
220 | 2 | 80 | 0.75 | 8 | 8 | 8 |
250 | 1 | 80 | 0.75 | 9 | 9 | 9 |
250 | 1.5 | 80 | 0.75 | 9 | 10 | 9.5 |
250 | 2 | 80 | 0.75 | 10 | 11 | 10.5 |
Pressure P (Mpa) | Stand-Off Distance h (mm) | Abrasive Granulation G (Mesh) | Tub Diam. D (mm) | Number of Cracks | ||
---|---|---|---|---|---|---|
Test | ||||||
1 | 2 | |||||
180 | 1.5 | 80 | 0.75 | 4 | 5 | 4.5 |
180 | 1.5 | 120 | 0.75 | 6 | 6 | 6 |
220 | 1.5 | 80 | 0.75 | 7 | 6 | 6.5 |
220 | 1,5 | 120 | 0.75 | 8 | 7 | 7.5 |
250 | 1.5 | 80 | 0.75 | 9 | 10 | 9.5 |
250 | 1.5 | 120 | 0.75 | 10 | 10 | 10 |
Pressure P (Mpa) | Stand-Off Distance d (mm) | Abrasive Granulation G (Mesh) | Tub Diam. D (mm) | Number of Cracks | ||
---|---|---|---|---|---|---|
Test | ||||||
1 | 2 | |||||
180 | 1.5 | 80 | 0.25 | 4 | 3 | 3.5 |
180 | 1.5 | 80 | 0.75 | 4 | 5 | 4.5 |
220 | 1.5 | 80 | 0.25 | 6 | 5 | 5.5 |
220 | 1.5 | 80 | 0.75 | 7 | 6 | 6.5 |
250 | 1.5 | 80 | 0.25 | 7 | 9 | 8 |
250 | 1.5 | 80 | 0.75 | 9 | 10 | 9.5 |
Level | Pressure P [MPa] | Stand-Off Distance d [mm] | Abrasive Granulation G [Mesh] | Tub Diam. D [mm] |
---|---|---|---|---|
A | B | C | D | |
1 | 250 | 1 | 120 | 0.25 |
2 | 180 | 2 | 80 | 0.75 |
Pressure P [MPa] | Stand-Off Distance d [mm] | Abrasive Granulation G [Mesh] | Tub Diam. D [mm] | Number of Cracks | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Test | |||||||||||
A | B | C | D | 1 | 2 | 3 | 4 | s | S/N | ||
1 | 1 | 1 | 1 | 1 | 7 | 6 | 7 | 8 | 7 | 0.81650 | −16.9461 |
2 | 1 | 1 | 2 | 2 | 8 | 7 | 9 | 9 | 8.25 | 0.95743 | −18.3727 |
3 | 1 | 2 | 1 | 2 | 12 | 11 | 13 | 11 | 11.75 | 0.95743 | −21.4223 |
4 | 1 | 2 | 2 | 1 | 10 | 11 | 10 | 8 | 9.75 | 1.25831 | −19.8340 |
5 | 2 | 1 | 1 | 2 | 4 | 5 | 3 | 4 | 4 | 0.81650 | −12.1748 |
6 | 2 | 1 | 2 | 1 | 3 | 3 | 4 | 4 | 3.50 | 0.57735 | −10.9691 |
7 | 2 | 2 | 1 | 1 | 5 | 6 | 7 | 5 | 5.75 | 0.95743 | −15.2827 |
8 | 2 | 2 | 2 | 2 | 6 | 7 | 5 | 7 | 6.25 | 0.95743 | −15.9934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barabas, S.; Florescu, A. Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method. Materials 2022, 15, 486. https://doi.org/10.3390/ma15020486
Barabas S, Florescu A. Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method. Materials. 2022; 15(2):486. https://doi.org/10.3390/ma15020486
Chicago/Turabian StyleBarabas, Sorin, and Adriana Florescu. 2022. "Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method" Materials 15, no. 2: 486. https://doi.org/10.3390/ma15020486
APA StyleBarabas, S., & Florescu, A. (2022). Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method. Materials, 15(2), 486. https://doi.org/10.3390/ma15020486