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Abstract: Thermo-mechanical controlled processing (TMCP) is employed to obtain the required
level of mechanical properties of contemporary HSLA steel plates utilized for gas and oil pipeline
production. The strength and crack resistance of pipeline steels are mainly determined by its mi-
crostructure and crystallographic texture. In this study, the influence of the structural and textural
states of industrially produced API-5L X70-X80 pipeline steels on tensile mechanical properties was
analyzed. TMCP routes with different hot rolling temperatures and cooling rates were employed.
The texture of steel was assessed using the Taylor factor, which was calculated based on electron
backscatter diffraction (EBSD). The decrease in rolling temperature resulted in the sharper texture
characterized by {001} planes banding (cleavage planes in the bec lattice) parallel to rolling direction.
The tensile deformation behavior at the stage of necking was determined by the crystallographic
and morphological texture of the material and demonstrated significant anisotropy. Rupture of
all investigated samples was accompanied by the development of splitting on the fracture surface.
The splitting was localized in the rolling plane similar to the splitting in standard Charpy tests of
pipeline steels.

Keywords: TMCP; HSLA steel; deformation anisotropy; EBSD; Taylor factor; texture; necking
ellipticity; splitting

1. Introduction

Quality of life improvement and intensive industrial manufacturing development
require large amounts of energy carriers, such as hydrocarbons. Trunk pipelines are often
employed to deliver hydrocarbons from distant reservoirs often distinguished by adverse
climatic conditions [1,2]. One of the most promising ways to increase cost efficiency of
trunk pipelines is to increase their operation pressure by using high-strength steel capable
of operating in adverse climatic conditions [3-8]. High-strength pipelines have thinner
walls; therefore, their utilization decreases metal consumption [4,9,10].

Contemporary low-carbon steels and a specific industrial method of their process-
ing, that comprises controlled hot-rolling and adjustable accelerated cooling (thermo-
mechanical controlled processing—TMCP), are used to obtain the required levels of me-
chanical properties in steel plates designed for natural gas and crude oil pipeline produc-
tion [4,8-16]. Increased resistance to the localization of plastic deformation and failure
resistance are characteristic features of pipeline products manufactured by means of TMCP.
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Strength and crack resistance of pipeline steel are predominantly determined by its
textural and structural state. A transition from ferrite-pearlite microstructures (average
ferrite grain size ~5 pm) to structures with prevailing products of diffusionless transforma-
tion (primarily bainite; average grain size ~1 pm [6]) obtained by austenite overcooling by
means of alloying and rapid cooling has allowed to carry out a transition from X52-X65
to X70-X80 and subsequently to X100 grades [11,15-17]. In [18], grain refinement is stated
to be the only factor that ensures a simultaneous increase in strength and toughness of
a material.

Running fracture formation poses the greatest threat in the operation of pipelines [19,20].
The state of plates for the production of pipelines plays a crucial role in pipeline resistance to
so-called ductile running fracture. Enhancement of steel strength characteristics (for grades
X70, X80 and higher) has had a considerably negative effect on the ability of semi-finished
and finished pipeline products to arrest running ductile fracture [21-23].

Pipeline plates exhibit anisotropy of their mechanical properties due to their specific
structural and textural states [5,21-24]. Texture can affect steel strength and crack resis-
tance in different ways, depending on the direction. Both theoretical calculations and
experimental data provide reliable evidence to conclude that the propagation of a brittle
crack in «-Fe, i.e., in a metal material with BCC lattice, occur along {001} crystallographic
planes [22,25-27]. Texture formation during TMCP was thoroughly studied in [23]. The
results of these studies demonstrate that elongated structural fields with a texture con-
taining a “dangerous” {001} plane parallel to an axis of a pipe are formed in pipeline steel
after TMCP.

Pipeline steel impact toughness is commonly investigated by Charpy tests. However,
the plane of a notch for standard Charpy specimens cut from pipeline semi-products do
not coincide with the planes in which the major fraction of {001} lies. These planes are
parallel to the direction of the main crack propagation in pipeline products. Therefore,
impact toughness is not measured in the most brittle, i.e., most “dangerous” direction.

Splitting often occurs on the fracture surface of the Charpy specimens [21,22,28]. This
splitting can be described as brittle cracks perpendicular to the main surface of the ductile
fracture. They form in the vicinity of a propagating crack tip as a result of a triaxial
stress state and due to the fact that under certain conditions a material can be ductile
in one direction and brittle in another, thus exhibiting anisotropy of brittleness [23,24].
In [29], it was demonstrated that splitting does not have a significant influence on main
crack propagation, i.e., they do not directly affect material fracture itself. However, the
occurrence of splitting in a fracture surface serves as evidence of the abnormality of a
material structure, since it indicates the presence of the relatively extensive fields with a
homogenous texture, i.e., the regions where cracks can readily propagate in one direction
(regions of the lowest fracture energy).

The advantage of the tensile testing in comparison with the other standard mechanical
properties investigations is conditioned by the guaranteed specimen break. Moreover,
contemporary methods of fracture initiation (necking) monitoring should provide valu-
able data on the characteristics of the ductile fracture of the analyzed textured materials
(provided that the rolling direction and plane are precisely established).

This paper investigates the pipeline HSLA steel grade X70 plates produced at different
TMCP controlled rolling temperatures and cooling rates. The crystallographic texture of the
central regions of the pipeline steel plates after TMCP was evaluated. Based on EBSD data,
the Taylor factor has been calculated for the studied specimens of pipeline semi-products in
order to evaluate the effect of crystallographic texture on yield strength, uniform elongation
and neck ellipticity, which were determined after tensile testing. Finally, we examine the
effect of TMCP parameters on the features of resulting texture and the development of
splitting during fracture of tensile specimens.
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2. Materials and Methods
2.1. Material

The study was conducted on specimens separated from the central regions of the
plates (Figure 1a), which were obtained by pilot industrial TMCP (Figure 1b). HSLA steel,
containing 0.05 wt. % C, 0.1 wt. % Si, 1.5 wt. % Mn, 0.2 wt. % Mo, 0.06 wt. % Nb, and
0.04 wt. % Al (the remainder comprising Fe and unavoidable impurities), was smelted
in an oxygen converter and casted into 300 mm thick slabs, which were preheated at
1200 °C prior to TMCP. The total strain after rough rolling was 66.7%. The final rough
rolling temperature measured on the surface of the plates was 970-990 °C. The finishing
temperature of isothermal controlled rolling was controlled by the strain per pass, the
number of passes and the dwell time between the passes. The total strain after controlled
rolling was 86.7% and the finishing controlled rolling temperatures (TcR) at the last pass
are shown in Table 1. The plates were cooled in a continuous controlled cooling unit. The
cooling rates were controlled by the pressure and the flow rate of the water in a cooling
unit. Table 1 shows the estimates of cooling rates for the central region of the plates in
the temperature range from the Tcr to Ay for all 5 processing routes. Acz = 850 °C
and Ac; = 670 °C were calculated using Thermo-Calc. The efficient non-recrystallization
temperature Tnr = 976 °C was evaluated according to [30].

Temperature

| Rough rolling I
Acs

Controlled rolling

SEM, EBSD

Time (b) 53 421

Figure 1. Schematic illustrations of cutting out of specimens for SEM and EBSD (a) and of the TMCP
routes (b).

Table 1. Processing parameters, average grain size and tensile mechanical properties for five routes
of TMCP.

o o Average Non-Uniform Total
Route Terl"C Ver/"Cls Grain/ﬁm YS/MPa UTS/MPa Elongation/% Elongation/%
1 920 25-45 40408 445+ 15 560 + 18 175+ 1.0 30.0+1.0
2 840 20-30 3.0+04 515+ 11 610+ 12 140+ 1.0 23.0+1.0
3 840 25-35 27+04 515+9 660 £+ 11 16.5 £ 0.7 270407
4 760 15-20 2.6 £04 545+ 9 620 + 10 150+ 05 24.0£0.5
5 770 20-30 29 +04 515+ 7 685+ 13 150+ 0.6 26.0 £ 0.6

YS—yield strength, UTS—ultimate tensile strength, Vcr—controlled cooling rate range, Tcr—controlled rolling
final temperature.

2.2. Specimen Preparation and Microstructure Orientation Analysis

A coordinate system (X, Y, Z) with X—parallel to the rolling direction (RD), Y—parallel
to the normal direction (ND) and Z—parallel to the transverse direction (TD) was used in
both the structural and textural analysis of the pipeline steel plates as shown in Figure 1a.
The metallography was conducted on the samples separated 11-13 mm away from the
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surface of the plate. A scanning electron microscopy (SEM) investigation was conducted
across the thickness of each specimen.

Sample surface preparation for electron backscatter diffraction (EBSD) analysis was
carried out according to the method presented in [31]. Grinding was carried out on 3 types
of sandpaper with particle sizes of 28-40, 18-14 and 10-14 pm for 15 min per sandpaper
type. An electrolytic polishing of the samples in a solution of 15% HCIO, (perchloric acid),
85% CH3COOH (acetic acid) was performed at 21 V voltage after the grinding.

SEM was carried out on a Tescan Mira 3 (Tescan Orsay Holding, Brno—Kohoutovice,
Czech Republic) with an auto-emission cathode at an accelerating voltage of 20 kV. An
EBSD HKL Inca system with an Oxford Instruments analyzer (Carl Zeiss NTS, Oberkochen,
Germany) was used for local texture analysis and to determine the orientations of individ-
ual grains (crystallites). The scanning step was 0.1 um (100 nm). Orientation estimation
inaccuracy did not exceed £1° (£0.6° on average). The area under EBSD analysis was
100 x 100 um?. Orientation distribution function (ODF) analysis and Taylor factor evalua-
tion were performed for 4 neighboring areas of investigation in order to increase reliability
of the data.

2.3. EBSD Study of the Average Grain Size

The average size of all grains (crystallites) was determined in the microstructure of
all specimens by means of EBSD, utilizing Oxford Instruments Channel 5 software. The
average size was calculated as a diameter of a circle equivalent to an average area of
crystallites. A crystallite was considered as an object circumscribed by boundaries with at
least 7° misorientation angles. All of the crystallites, with the exception of the ones smaller
than 1 um, were analyzed (Figure 2).
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Figure 2. EBSD analysis of grain structure of the pipe steel specimens after TMCP.
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2.4. Tensile Testing

Tensile testing ASTM E8/E8M-21 was carried out on standard cylindrical specimens
(Figure la) with a diameter of 5 mm and a gauge length of 25 mm on an Instron 3382
testing machine (Instron, High Wycombe, UK) at a 5 mm/s test rate at room temperature.
The specimen axis was parallel to RD, and the rolling plane was marked on a grip surface.
Strain at the stage of necking was measured according to the method described in [32].

2.5. Taylor Factor Determination

Taylor factors were calculated for a uniaxial tension by means of Oxford Instruments
software. Taylor factors serve as means to estimate yield stress of a polycrystalline sam-
ple, while taking into account the orientation hardness of each grain (oy = Mt*, where
M—Taylor factor, T*—critical resolved shear stress [33]). Taylor factors were calculated for
all orientations identified on orientation maps and then averaged with the consideration of
the orientation fraction.

3. Results
3.1. Microstructure

SEM microstructure demonstrates areas elongated in RD (Figures 2 and 3) for all
TMCP routes with the exception of a high-temperature route 1. These up to 30 um thick
areas are significantly larger than the length of the investigated area and correspond to
the prior austenite grains that have been elongated in RD during controlled rolling. They
are characterized by a relatively homogenous internal microstructure and are indicated
with red dotted lines in (Figure 3b,c). These crystallites typically represent displacive
transformation products, in this case, bainite, according to [34]. Bainite crystallite size
varies from 1 to 30 pum. Relatively small (1-5 um) light areas marked with red arrows in
Figure 3a,d,e can be observed on the bainite grain boundaries. These areas are distinguished
by their own fine, often lamellar substructure consisting of several phases, which can be
observed at higher magnification (Figure 3d,e). According to [35], these areas are classified
as tempered lath martensite that were formed from carbon-rich austenite. In fact, tempered
lath martensite contains extremely small and uniformly dispersed cementite particles
embedded within a continuous ferrite lath.

Thin (less than 5 um thick) regions elongated parallel to RD with poorly distinguish-
able internal structure can be observed for specimens 3, 4 and 5 (Figure 3c,f). Presumably,
these areas correspond to ferrite, that has been formed during hot-rolling, i.e., has been
deformed, recrystallized and preserved during cooling.

Decreasing the hot-rolling temperature to approximately Acz and/or increasing ac-
celerated cooling intensity lead to a substantial refinement of the bainite microstructure
(Table 1). In the case of the higher intensity cooling (route 3), fineness of the microstruc-
ture in the central areas of the plates increases by approximately 10 %. At the same time,
decreasing hot-rolling temperature below Acj introduces ferrite grains elongated in the
rolling direction (Figures 2b—d and 3c,f), which complicates the integral estimation of the
average grain size. Settings of the TMCP routes 2 and 3, as well as 4 and 5 contained similar
controlled hot-rolling temperatures. The resulting shapes and sizes of crystallites obtained
according to these routes were similar as well.

3.2. Crystallographic Texture

EBSD analysis reveals a pronounced crystallographic texture of all specimens that have
been subjected to TMCP. Crystallographic directions <111> and <100>; <112> and <110> of
most of the crystallites are parallel to ND and RD, respectively (Figure 4). This coincides
with the TMCP texture presented in [21,36-38]. All preferred orientations of specimen 1 are
significantly more scattered than those of other specimens. This is apparently due to ferrite
recrystallization during controlled cooling from the finishing hot-rolling temperature.
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Figure 3. Scanning electron microscopy-backscattered electron (SEM-BSE) images of the central areas
of the pipe steel plates after TMCP subjected to five routes: (a,d) route 1; (b,e) route 2; (c,f) route 4.
Tempered martensite is marked with red arrows. Deformed ferrite grains are marked with yellow
arrows. Red dotted lines indicate prior austenite grains.

According to the analysis of ODF, the crystallographic texture of the plates subjected
to all 5 TMCP routes is quite similar (Figure 5). Central area texture of all specimens
determined by means of EBSD comprise a discrete set of scattered orientations (001)[1—10],
(114)[1-10], (112)[1—-10], (223)[2—52], (221)[—1—14]. Such texture is typical of HSLA steels
after hot deformation [21,36-38] and develops due to the phase vy — a-transformation,
which occurs according to the orientation relationship by Kurdyumov-Sachs (K-S) or
Nishiyama-Wassermann (N-W). A discrete set of orientations obtained as a result of the
multivariant phase transformation (1 — 24 for K-S and 1 — 12 for N-W) is explained in [21]
by the nucleation of bainite at crystallographically ordered boundaries between austenite
grains, which are characterized by the development of stable orientations of the FCC lattice
after rolling.

For sample 1, all orientations are more scattered and two orientations (223)[2—52],
(221)[-1—14] have significantly lower intensity compared with samples 2-5. This is ap-
parently due to the recrystallization of «-phase resulted from the highest Tcr for Route 1.
For samples 2-5, the orientations resulting from the y — o transformation are observed
alongside with the orientations typical of deformed and recrystallized ferrite grains, which
according to [39] correspond to {hhl}<110>-type orientations. Such orientations of the
a-phase develop during controlled rolling below Acs.
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Figure 4. EBSD analysis of central regions of pipe steel plates obtained according to different TMCP
routes: (a,b) route 1; (d,e) route 2; (f,g) route 3; (h,i) route 4; (j k) route 5; (c) stereographic triangle with
color-differentiated crystallographic directions; (a,d,f h,j) orientation maps (coloring from ND| |Y);
(b,d,f,h,j) orientation maps (coloring from RD | | X).

The obtained values of the Taylor factor for a uniaxial stressed state are presented in
Table 2. Specimens 2-5 have significantly different values of Taylor factor in all directions
in comparison with those of specimen 1. Specimen 1 has a more uniform Taylor factor
distribution, whereas in specimens 2-5 the center of gravity of orientation fraction shifts to
the higher values of Taylor factor (Figure 6).
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Figure 5. ODF cross-sections for @, = 45° from central area of pipeline steel plates after different
TMCP routes (a—e), (f) standard ¢, = 45° ODF cross-section.

Table 2. Averaged Taylor factors of the central areas of the pipeline steel plates after TMCP.

Route X (RD) Y (ND) Z (TD)
1 3.00 324 3.04
2 3.04 3.19 3.26
3 3.02 3.16 3.27
4 3.02 3.16 3.32
5 3.01 3.13 3.28

3.3. Tensile Testing

Deformation behavior varies significantly depending on the TMCP route (Figure 7a),
even though the fracture of all specimens occurred at almost identical stresses. Specimens
3 and 5, which have been cooled more intensively, simultaneously demonstrate higher
uniform elongation and ultimate tensile strength in comparison with specimens 2 and 4,
which have been cooled at lower rates after controlled rolling (Table 1). The cross-section of
tensile specimens in the neck acquired an ellipsoid shape; major ellipse axes almost exactly
coincided with RD and minor axes coincided with ND (Figures 7b and 8a—c). Maximum
ellipticity does not exceed 5% for specimen 4 at the uniform strain stage, while it can exceed
30% at the localized strain stage (necking), namely for specimen 5. Moreover, specimen
1, in which TMCP settings have included the highest finishing hot-rolling temperature, is
distinguished by the minimal ellipticity.
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Figure 6. Taylor factors in TD for the central areas of the pipeline steel plates after TMCP.

Stress,
d./d,;
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Elongation, [%] Elongation,[%]
(a) (b)

Figure 7. Stress—strain curves of the pipeline steel specimens after different TMCP routes (a) variation
of elliptic semi-minor axis to semi-major axis ratio in specimen reduced cross-sections after tensile
testing (b). Specimen axis was parallel to TD.

Splitting appeared in the fracture surface of all the specimens despite the fact that
fractures occurred at room temperature. Similar splitting often appeared in the fracture
surfaces of the Charpy impact specimens of pipeline steels [21,27]. The plane in which
the splitting occurred (especially in the central area of the reduced sections) is almost
parallel to the TMCP rolling plane. Singular splitting was typical of specimens 1-4, while
specimen 5 contained numerous separations (Figure 8c,f). It is also important to note that
even though the nature of all the fractures is ductile, the surfaces of the metal at separation
sites correspond to brittle fracture (Figure 8).
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Figure 8. Fracture surfaces of cylindrical specimens of pipeline steel after standard tensile testing:
(a,d) route 1; (b,e) route 3; (c,f) route 5.

4. Discussion

Observed anisotropy of deformation and fracture during tensile testing results in the
elliptical shape of the fracture area and in the development of splitting on the fracture
surface of the specimens separated in the TD of the plate made of HSLA steel.

We demonstrate the influence of crystallographic texture on deformation anisotropy
by evaluating the integral Taylor factor of central area for HSLA steel processed with
different TMPC parameters. The difference between Taylor factors demonstrates the
difference between the resistances of crystallographic orientation to the initiation of plastic
deformation. The analysis of Taylor factor distribution indicates a perceptible correlation
with the yield stress determined by means of tensile testing (Figure 9). This confirms that
the yield strength along TD is mainly attributed to the specimen texture state that has been
developed during hot-rolling.

M YS, [MPa]
3.35 - - 560
3.30 - 540
3.25 - [ 520
3.20 - 500
- 480
3.15 - | 460
3.10 7 L 440
3.05 - 420
3.00 T T T T T - 400
1 2 3 4 5
[ -vs; 8-m

Figure 9. Comparison of yield stress with the averaged Taylor factors for pipeline steel specimens
in TD.
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Tensile testing was carried out at samples separated parallel to TD. The texture in TD
is described by the following set of orientations (001)[-1—10], (114)[—-2—-21], (112)[-1-11],
(223)[-1—-22], (221)[-1-10]. According to [40], the last three of the above orientations
appear to be substantially harder in TD, i.e., a new coordinate system rotated at 90° about
ND. In addition to a coarser grain size (Table 1), this explains the substantially lower
yield stress for sample 1, for which the intensities of the orientations (223)[-1—22] and
(221)[-1—10] were considerably weaker.

Uniaxial tension along the TD during mechanical testing should tend to the reorienta-
tion of grains and the development of texture with the <110> axis parallel to the direction
of tension, i.e., TD in this case. The uniform elongation was equal to 9-12% for all studied
samples. Such low strain at this stage of tensile testing should not result in significant
changes in the texture according to [41]. However, at non-uniform stage of tensile testing
the crystal lattice rotation transforms texture by dislocations gliding (in at least 5 indepen-
dent slip systems) [42] in a crucially different way for the samples initially having different
crystallographic and morphological textures.

A more isotropic state of sample 1 (Figures 5 and 10) is due to the following factors: the
scattering of preferred orientations, a relatively uniform distribution of the Taylor factor in
TD (Figure 6) and a more equiaxial shape of the grains (Figure 11). These factors increase the
uniform elongation, decrease the ultimate tensile strength and provide a rounder shaped
residual fracture area in the tensile specimens for the TMPC route 1.
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Figure 11. Dependence of tensile specimen fracture area ellipticity from crystallite shape in the central
layers of pipeline steel plates.
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The combination of the hard (221)[-1—10] orientation in TD (Figure 10) with a finer
grain size for samples 2-5, as well as an increased fraction of dispersed precipitates of
tempered martensite, especially for which vy — «-the transformation took place at lower
Tcr and higher cooling rates, is responsible for the high values of YS (Table 1). However,
the specimens 2 and 4 with similar microstructure and texture were characterized by
a 10% difference in YS. This might be due to strain ageing, which took place during
controlled cooling.

The crystallographic texture, namely the pronounced {001}<110> orientation, which is
soft in TD, RD and hard in ND, apparently results in a slightly higher ductility of samples
2-5in TD (Figure 7a). This texture effect along with the grain aspect ratio results in a more
elliptical shape of the fracture area in comparison with sample 1 (Figure 11).

The location of splitting on the fracture surface of tensile specimens remains constant
for all specimens and TMCP routes; however, the nature of the splitting varies somewhat.
The lower the rolling final temperature, the wider (the more grains are involved in) the
separations (Figure 8). We have demonstrated that deformed ferrite grains elongated in
RD are characterized by the {hhl} <110>-orientation. Moreover, the lower the Tcr the
more fraction of such ferrite grains is observed. According to [23], the plane, in which
splitting occurs during a standard Charpy test, corresponds to the {001}<110> orientation.
In this study, we observed an increase in the intensity of this orientation for specimens 2-5
(Figure 5) with one of the {001} crystallographic planes parallel to the rolling plane and
with one of the <110> crystallographic directions parallel to the RD.

5. Conclusions

1.  The texture of the specimen central layers after all investigated TMCP routes was
comprised of a number of scattered, and thus overlapping orientations: (001)[1—10],
(114)[1-10], (112)[1—-10], (223)[2—52], and (221)[-1—14]. Lowering the controlled
rolling temperature and increasing the cooling rate were accompanied by a significant
sharpening of the (223)[2—52], (221)[—1—14] orientations;

2. Orientation-averaged Taylor factor correlates with the plate yield stress measured in
the transverse direction. The lowest YS was observed due to the greater grain size
and increased fraction of soft {hhl}<110>-type orientations for the TMPC route with
the highest finishing controlled rolling temperature above Acs;

3. Elongation to fracture of tensile specimens is determined by a combination of soft
{hhl}<110> and hard (223)[2—52], (221)[—1—14] orientations relative to tension axis—
TD. Ellipticity of the fracture area of tensile specimens decreases with a higher finish-
ing rolling temperature and less pronounced texture;

4. The fracture of all studied specimens was accompanied by the development of split-
ting on the specimen fracture surface, similar to those that formed during the standard
Charpy testing. More intense splitting was observed on the fracture surface of tensile
specimens with a lower finishing controlled rolling temperature due to an increase
in the fraction of ferrite deformed below Acs, which is characterized by {001}<110>-
orientation.
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