Recycling of Mining Waste in the Production of Masonry Units
Abstract
:1. Introduction
- comprehensive review on integrating mining waste used for masonry unit’s production (clay masonry units, autoclaved aerated concrete units, and geopolymers masonry units);
- using the “SWOT” model to conduct a critical evaluation framework;
- overall, this review article may represent a preliminary study for academics, scientific researchers, and industry to further identify the feasibility parameters and limitations for exploiting mining waste as secondary raw materials in the production of masonry units.
- reasons for recycling mining waste;
- overview of the masonry units on the transition to the circular economy context in the brick industry to produce eco-responsible construction materials;
- discussions regarding the influence of the mining waste chemical and mineralogical composition on the manufacturing technological process of new construction materials;
- discussed the effect of incorporating mining waste into masonry unit’s production (clay masonry units, autoclaved aerated concrete units, and polymers masonry units);
- over 100 scientific papers were reviewed to present an overview of masonry developments over the time and to the discuss the role of mining waste as a raw material in the production of masonry units.
2. Masonry Units: An Overview
2.1. Clay Masonry Unit
2.2. AAC Masonry Units
2.3. Geopolymers Masonry Units
3. Mining Waste Used for Masonry Unit’s Production
3.1. Chemical Composition of Mining Waste
3.2. Mineralogical Composition of Mining Waste
3.3. Mining Waste for Clay Masonry Units
3.4. Mining Waste for AAC Units
3.5. Mining Waste for Geopolymer Masonry Units
4. Critical Assessment Discussions
5. Conclusions
6. Recommendations for Further Research
- necessity for additional examinations, research, and comparative analysis having as objective the concrete effect determination of the integration of mining waste in different proportions in the masonry units, in terms of resistance to aggressive environment, non-destructive testing, microstructural studies, etc.;
- Life cycle assessment and life-cycle cost analysis of production processes that integrate mining waste into masonry units vs. classical production technologies of masonry units;
- assessment of average energy consumption and transport cost needed for using different types of mining wastes for masonry units;
- large-scale validation on samples of real dimensions and in technological production conditions similar to those existing at the manufacturer, in order to ensure the research results transfer to the economic operator;
- elaboration of materials containing technical data to inform end users about the advantages of using waste-based masonry units;
- conducting surveys (social analysis) at the level of economic and administrative agents, communities in mining areas on the feasibility, opportunity and sustainability of recycling and environmentally responsible use of mining waste to create new value chains in the construction materials industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Global Status Report for Buildings and Construction. 2019. Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019 (accessed on 10 July 2021).
- Paris Agreement. UN Framework Convention on Climate Change–EUR-Lex. Available online: https://eur-lex.europa.eu/content/paris-agreement/paris-agreement.html (accessed on 10 July 2021).
- Communication from the Commission to the European Parliament; The European Council; The Council; The European Economic and Social Committee and the Committee of the Regions. The European Green Deal COM/2019/640 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52019DC0640&from=EN (accessed on 10 July 2021).
- Ellen MacArthur Foundation towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition. 2012. Available online: http://circularfoundation.org/sites/default/files/ (accessed on 10 July 2021).
- Communication from the Commission to the European Parliament; The Council; The European Economic And Social Committee and the Committee of the Regions a New Circular Economy. Action Plan for a Cleaner and More Competitive Europe COM/2020/98 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/uri=CELEX:52020DC0098&from=EN (accessed on 10 July 2021).
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Archer, S.A.; Gomes, H.I.; Christgen, B.; Lag-Brotons, A.J.; Purnell, P. Circular economy and the matter of integrated resources. Sci. Total Environ. 2019, 689, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Kulczycka, J.; Henclik, A.; Gorazda, K.; Wzorek, Z. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod. 2015, 95, 45–54. [Google Scholar] [CrossRef]
- Atta, I.; Bakhoum, E.S.; Marzouk, M.M. Digitizing material passport for sustainable construction projects using BIM. J. Build. Eng. 2021, 43, 103233. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament; The Council; The European Economic and Social Committee and the Committee of the Regions. Towards a Circular Economy: A Zero Waste Program for Europe/COM/2014/398 Final. Available online: https://www.oecd.org/env/outreach/EC-Circular-econonomy.pdf (accessed on 6 July 2021).
- Circle Economy the Circularity Gap Report: Closing the Circularity Gap in a 9% World. 2019, p. 56. Available online: https://www.circulareconomyclub.com/listings/the-circularity-gap-report-our-world-is-only-9-circular/ (accessed on 6 July 2021).
- European Commission. The Raw Materials Initiative—Meeting Our Critical Needs for Growth and Jobs in Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52008DC0699 (accessed on 16 July 2021).
- Available online: http://www.namr.ro (accessed on 16 July 2021).
- Marinescu, M.; Kriz, A.; Tiess, G. The necessity to elaborate minerals policies exemplified by Romania. Resour. Policy 2013, 38, 416–426. [Google Scholar] [CrossRef]
- The Ministry of Economy. Strategia Minieră a României 2017–2035 (Romania’s Mining Strategy 2017–2035). 2017. Available online: http://www.economie.gov.ro/images/resurse-minerale/STRATEGIE%20MINIERA%20draft%20final%2024%20OCT%202016.pdf (accessed on 16 July 2021).
- Eurostat Waste Generation by Economic Activity and Households. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 18 July 2021).
- National Agency for Environmental Protection. Raport Privind Starea Mediului in Romania 2019 (Annual Report on the State of the Environment in Romania for 2019). 2019. Available online: http://www.anpm.ro/ro/raport-de-mediu or http://www-old.anpm.ro/upload/181393_RSM%202019_final.pdf (accessed on 20 July 2021).
- Council Directive 75/442/EEC of 15 July 1975 on Waste Management. 1975. Available online: https://eur-lex.europa.eu/eli/dir/1975/442 (accessed on 20 July 2021).
- European Commission Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council. Off. J. Eur. Union 2014, 7, 44–86.
- Veiga Simão, F.; Chambart, H.; Vandemeulebroeke, L.; Cappuyns, V. Incorporation of sulphidic mining waste material in ceramic roof tiles and blocks. J. Geochem. Explor. 2021, 225, 106741. [Google Scholar] [CrossRef]
- Code P100-1/2013; Seismic Design Code—Part I—Provisions for the Design of Buildings. Indicative P100-1 (In Romanian) Elaborated by UTCB, Endorsed by MDRAP. Part I, n. 558 of 03. 09. 2013; Official Journal of Romania: Bucharest, Romania, 2013.
- Cod de Proiectare Pentru Structuri Din Zidărie, Indicativ CR6–2013 (Design Code for Masonry Structures, Indicative CR6–2013). 2013, pp. 2–285. Available online: https://www.mdlpa.ro/userfiles/consultari_publice/24_04_13/act_16.pdf (accessed on 24 July 2021).
- BDA Brick Development Association. Available online: https://brick.org.uk/ (accessed on 24 July 2021).
- Ceramie-Unie Ceramic Roadmap, Paving the Way to 2050. Available online: http://cerameunie.eu/topics/cerame-unie-sectors/cerame-unie/ceramic-industry-roadmap-paving-the-way-to-2050/ (accessed on 24 July 2021).
- Murmu, A.L.; Patel, A. Towards sustainable bricks production: An overview. Constr. Build. Mater. 2018, 165, 112–125. [Google Scholar] [CrossRef]
- Morales, M.P.; Juárez, M.C.; López-Ochoa, L.M.; Doménech, J. Study of the geometry of a voided clay brick using rectangular perforations to optimize its thermal properties. Appl. Therm. Eng. 2011, 31, 2063–2065. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.P.; Juárez, M.C.; Muñoz, P.; Gómez, J.A. Study of the geometry of a voided clay brick using non-rectangular perforations to optimise its thermal properties. Energy Build. 2011, 43, 2494–2498. [Google Scholar] [CrossRef]
- Sutcu, M.; del Coz Díaz, J.J.; Álvarez Rabanal, F.P.; Gencel, O.; Akkurt, S. Thermal performance optimization of hollow clay bricks made up of paper waste. Energy Build. 2014, 75, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.P.; Juárez, M.C.; López-Ochoa, L.M.; Muñoz, P. Influence of tongue and groove system on the thermal properties of large-format voided clay bricks for single-leaf walls. Constr. Build. Mater. 2012, 30, 169–173. [Google Scholar] [CrossRef]
- Pavlík, Z.; Jerman, M.; Fořt, J.; Černý, R. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions. Int. J. Thermophys. 2015, 36, 557–568. [Google Scholar] [CrossRef]
- Kočí, J.; Maděra, J.; Jerman, M.; Černý, R. Computational assessment of thermal performance of contemporary ceramic blocks with complex internal geometry in building envelopes. Energy Build. 2015, 99, 61–66. [Google Scholar] [CrossRef]
- Li, J.; Meng, X.; Gao, Y.; Mao, W.; Luo, T.; Zhang, L. Effect of the insulation materials filling on the thermal performance of sintered hollow bricks. Case Stud. Therm. Eng. 2018, 11, 62–70. [Google Scholar] [CrossRef]
- Zukowski, M.; Haese, G. Experimental and numerical investigation of a hollow brick filled with perlite insulation. Energy Build. 2010, 42, 1402–1408. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.K.; Maged, A.S.B. Study of Sawdust and Expanded Polystyrene as Cavity Filler Material on the Effect of Thermal Conductivity in Perforated Clay Brick. Mater. Sci. Forum 2017, 890, 411–414. [Google Scholar] [CrossRef]
- Salleh, S.Z.; Awang Kechik, A.; Yusoff, A.H.; Taib, M.A.A.; Mohamad Nor, M.; Mohamad, M.; Tan, T.G.; Ali, A.; Masri, M.N.; Mohamed, J.J.; et al. Recycling food, agricultural, and industrial wastes as pore-forming agents for sustainable porous ceramic production: A review. J. Clean. Prod. 2021, 306, 127264. [Google Scholar] [CrossRef]
- Heniegal, A.M.; Ramadan, M.A.; Naguib, A.; Agwa, I.S. Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Stud. Constr. Mater. 2020, 13, e00397. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Patnaikuni, I.; Wu, Y.F.; Fawad, U. Thermal performance enhancement of eco-friendly bricks incorporating agro-wastes. Energy Build. 2018, 158, 1117–1129. [Google Scholar] [CrossRef]
- Muñoz, P.; Mendívil, M.A.; Letelier, V.; Morales, M.P. Thermal and mechanical properties of fired clay bricks made by using grapevine shoots as pore forming agent. Influence of particle size and percentage of replacement. Constr. Build. Mater. 2019, 224, 639–658. [Google Scholar] [CrossRef]
- Anjum, F.; Naz, M.Y.; Ghaffar, A.; Shukrullah, S.; AbdEl-Salam, N.M.; Ibrahim, K.A. Study of thermal and mechanical traits of organic waste incorporated fired clay porous material. Phys. B Condens. Matter 2020, 599, 412479. [Google Scholar] [CrossRef]
- Demir, I.; Baspinar, M.S.; Orhan, M. Utilization of kraft pulp production residues in clay brick production. Build. Environ. 2005, 40, 1533–1537. [Google Scholar] [CrossRef]
- Marrocchino, E.; Zanelli, C.; Guarini, G.; Dondi, M. Recycling mining and construction wastes as temper in clay bricks. Appl. Clay Sci. 2021, 209, 106152. [Google Scholar] [CrossRef]
- Rehman, M.U.; Ahmad, M.; Rashid, K. Influence of fluxing oxides from waste on the production and physico-mechanical properties of fired clay brick: A review. J. Build. Eng. 2020, 27, 100965. [Google Scholar] [CrossRef]
- dos Reis, G.S.; Cazacliu, B.G.; Cothenet, A.; Poullain, P.; Wilhelm, M.; Sampaio, C.H.; Lima, E.C.; Ambros, W.; Torrenti, J.M. Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive. J. Clean. Prod. 2020, 258, 120733. [Google Scholar] [CrossRef]
- Cobîrzan, N.; Balog, A.-A.; Thalmaier, G.; Nasui, M.; Munteanu, C.; Babota, F. Microscopical and Macroscopical Analysis of Recovered Bricks for Assessing Their Reusability in Masonry Buildings. Procedia Manuf. 2020, 46, 144–149. [Google Scholar] [CrossRef]
- Saboya, F.; Xavier, G.C.; Alexandre, J. The use of the powder marble by-product to enhance the properties of brick ceramic. Constr. Build. Mater. 2007, 21, 1950–1960. [Google Scholar] [CrossRef]
- Cobo-Ceacero, C.J.; Cotes-Palomino, M.T.; Martínez-García, C.; Moreno-Maroto, J.M.; Uceda-Rodríguez, M. Use of marble sludge waste in the manufacture of eco-friendly materials: Applying the principles of the Circular Economy. Environ. Sci. Pollut. Res. 2019, 26, 35399–35410. [Google Scholar] [CrossRef]
- Menezes, R.R.; Ferreira, H.S.; Neves, G.A.; de L. Lira, H.; Ferreira, H.C. Use of granite sawing wastes in the production of ceramic bricks and tiles. J. Eur. Ceram. Soc. 2005, 25, 1149–1158. [Google Scholar] [CrossRef]
- Suárez-Macías, J.; Terrones-Saeta, J.M.; Iglesias-Godino, F.J.; Corpas-Iglesias, F.A. Retention of Contaminants Elements from Tailings from Lead Mine Washing Plants in Ceramics for Bricks. Minerals 2020, 10, 576. [Google Scholar] [CrossRef]
- Loutou, M.; Taha, Y.; Benzaazoua, M.; Daafi, Y.; Hakkou, R. Valorization of clay by-product from Moroccan Phosphate Mines for the Production of Fired Bricks. J. Clean. Prod. 2019, 229, 169–179. [Google Scholar] [CrossRef]
- Mendes, B.C.; Pedroti, L.G.; Fontes, M.P.F.; Ribeiro, J.C.L.; Vieira, C.M.F.; Pacheco, A.A.; de Azevedo, A.R.G. Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks. Constr. Build. Mater. 2019, 227, 116669. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Li, C.; Li, S.; Huang, Z. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity. Constr. Build. Mater. 2019, 213, 43–50. [Google Scholar] [CrossRef]
- Ettoumi, M.; Jouini, M.; Neculita, C.M.; Bouhlel, S.; Coudert, L.; Taha, Y.; Benzaazoua, M. Characterization of phosphate processing sludge from Tunisian mining basin and its potential valorization in fired bricks making. J. Clean. Prod. 2021, 284, 124750. [Google Scholar] [CrossRef]
- Bayoussef, A.; Oubani, M.; Loutou, M.; Taha, Y.; Benzaazoua, M.; Manoun, B.; Hakkou, R. Manufacturing of high-performance ceramics using clays by-product from phosphate mines. Mater. Today Proc. 2021, 37, 3994–4000. [Google Scholar] [CrossRef]
- Yang, C.; Cui, C.; Qin, J.; Cui, X. Characteristics of the fired bricks with low-silicon iron tailings. Constr. Build. Mater. 2014, 70, 36–42. [Google Scholar] [CrossRef]
- Vilela, A.P.; Eugênio, T.M.C.; de Oliveira, F.F.; Mendes, J.F.; Ribeiro, A.G.C.; de, S. Brandão Vaz, L.E.V.; Mendes, R.F. Technological properties of soil-cement bricks produced with iron ore mining waste. Constr. Build. Mater. 2020, 262, 120883. [Google Scholar] [CrossRef]
- Weishi, L.; Guoyuan, L.; Ya, X.; Qifei, H. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings. J. Clean. Prod. 2018, 204, 685–692. [Google Scholar] [CrossRef]
- da Silva, F.L.; Araújo, F.G.S.; Teixeira, M.P.; Gomes, R.C.; von Krüger, F.L. Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic. Ceram. Int. 2014, 40, 16085–16089. [Google Scholar] [CrossRef]
- Luo, L.; Li, K.; Weng, F.; Liu, C.; Yang, S. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings. Constr. Build. Mater. 2020, 232, 117250. [Google Scholar] [CrossRef]
- Wang, G.; Ning, X.; Lu, X.; Lai, X.; Cai, H.; Liu, Y.; Zhang, T. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks. Waste Manag. 2019, 93, 112–121. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Chen, T.; Zhao, Y.; Bao, S. Preparation of eco-friendly construction bricks from hematite tailings. Constr. Build. Mater. 2011, 25, 2107–2111. [Google Scholar] [CrossRef]
- Yonggang, Y.; Shenhong, Z.; Qiuyi, L.; Benju, Y.; Yu, C. Research on Making Fired Bricks with Gold Tailings. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China, 19–20 February 2011; pp. 1687–1690. [Google Scholar]
- Wei, Z.; Zhao, J.; Wang, W.; Yang, Y.; Zhuang, S.; Lu, T.; Hou, Z. Utilizing gold mine tailings to produce sintered bricks. Constr. Build. Mater. 2021, 282, 122655. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, H.; Liu, L.; Ji, R.; Wang, X. Preparation and characterization of permeable bricks from gangue and tailings. Constr. Build. Mater. 2017, 148, 484–491. [Google Scholar] [CrossRef]
- Kalpana, M.; Mohith, S. Study on autoclaved aerated concrete: Review. Mater. Today Proc. 2020, 22, 894–896. [Google Scholar] [CrossRef]
- Li, X.G.; Liu, Z.L.; Lv, Y.; Cai, L.X.; Jiang, D.B.; Jiang, W.G.; Jian, S. Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Constr. Build. Mater. 2018, 178, 175–182. [Google Scholar] [CrossRef]
- Qu, X.; Zhao, X. Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete—A review. Constr. Build. Mater. 2017, 135, 505–516. [Google Scholar] [CrossRef]
- Song, Y.; Li, B.; Yang, E.H.; Liu, Y.; Ding, T. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cem. Concr. Compos. 2015, 56, 51–58. [Google Scholar] [CrossRef]
- Drochytka, R.; Zach, J.; Korjenic, A.; Hroudová, J. Improving the energy efficiency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste. Energy Build. 2013, 58, 319–323. [Google Scholar] [CrossRef]
- Kurama, H.; Topçu, I.B.; Karakurt, C. Properties of the autoclaved aerated concrete produced from coal bottom ash. J. Mater. Process. Technol. 2009, 209, 767–773. [Google Scholar] [CrossRef]
- Serhat Baspinar, M.; Demir, I.; Kahraman, E.; Gorhan, G. Utilization potential of fly ash together with silica fume in autoclaved aerated concrete production. KSCE J. Civ. Eng. 2014, 18, 47–52. [Google Scholar] [CrossRef]
- El-Didamony, H.; Amer, A.A.; Mohammed, M.S.; El-Hakim, M.A. Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes. J. Build. Eng. 2019, 22, 528–538. [Google Scholar] [CrossRef]
- Różycka, A.; Pichór, W. Effect of perlite waste addition on the properties of autoclaved aerated concrete. Constr. Build. Mater. 2016, 120, 65–71. [Google Scholar] [CrossRef]
- Kunchariyakun, K.; Asavapisit, S.; Sombatsompop, K. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cem. Concr. Compos. 2015, 55, 11–16. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, Y.; Zhan, B.; Xu, G. Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source. Constr. Build. Mater. 2021, 267, 121792. [Google Scholar] [CrossRef]
- Huang, X.Y.; Ni, W.; Cui, W.H.; Wang, Z.J.; Zhu, L.P. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Constr. Build. Mater. 2012, 27, 1–5. [Google Scholar] [CrossRef]
- Fang, Y.; Gu, Y.; Kang, Q.; Wen, Q.; Dai, P. Utilization of copper tailing for autoclaved sand–lime brick. Constr. Build. Mater. 2011, 25, 867–872. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Chen, T.; Chen, Y.; Bao, S. Preparation of high strength autoclaved bricks from hematite tailings. Constr. Build. Mater. 2012, 28, 450–455. [Google Scholar] [CrossRef]
- Ma, B.; Cai, L.-X.; Li, X.; Jian, S. Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products. J. Clean. Prod. 2016, 127, 162–171. [Google Scholar] [CrossRef]
- Liang, X.; Wang, C.; Zhan, J.; Cui, X.; Ren, Z. Study on preparation of eco-friendly autoclaved aerated concrete from low silicon and high iron ore tailings. J. New Mater. Electrochem. Syst. 2019, 22, 224–230. [Google Scholar] [CrossRef]
- Cai, L.; Ma, B.; Li, X.; Lv, Y.; Liu, Z.; Jian, S. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness. Constr. Build. Mater. 2016, 128, 361–372. [Google Scholar] [CrossRef]
- Zhang, S.; Xue, X.; Liu, X.; Duan, P.; Yang, H.; Jiang, T.; Wang, D.; Liu, R. Current situation and comprehensive utilization of iron ore tailing resources. J. Min. Sci. 2006, 42, 403–408. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, J.; Liu, H. Autoclaved brick from low-silicon tailings. Constr. Build. Mater. 2009, 23, 538–541. [Google Scholar] [CrossRef]
- Wang, C.L.; Ni, W.; Zhang, S.Q.; Wang, S.; Gai, G.S.; Wang, W.K. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr. Build. Mater. 2016, 104, 109–115. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Youssef, N.; Lafhaj, Z.; Chapiseau, C. Economic Analysis of Geopolymer Brick Manufacturing: A French Case Study. Sustainability 2020, 12, 7403. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Mohsen, Q.; Mostafa, N.Y. Investigating the possibility of utilizing low kaolinitic clays in production of geopolymer bricks. Ceram.-Silik. 2010, 54, 160–168. [Google Scholar]
- Amin, S.K.; El-Sherbiny, S.A.; El-Magd, A.A.M.A.; Belal, A.; Abadir, M.F. Fabrication of geopolymer bricks using ceramic dust waste. Constr. Build. Mater. 2017, 157, 610–620. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Vlachou, A.; Bartzas, G.; Galetakis, M. Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv. Powder Technol. 2015, 26, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Madani, H.; Ramezanianpour, A.A.; Shahbazinia, M.; Ahmadi, E. Geopolymer bricks made from less active waste materials. Constr. Build. Mater. 2020, 247, 118441. [Google Scholar] [CrossRef]
- Kang, X.; Gan, Y.; Chen, R.; Zhang, C. Sustainable eco-friendly bricks from slate tailings through geopolymerization: Synthesis and characterization analysis. Constr. Build. Mater. 2021, 278, 122337. [Google Scholar] [CrossRef]
- Ahmari, S.; Zhang, L. Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr. Build. Mater. 2013, 44, 743–750. [Google Scholar] [CrossRef]
- Beulah, M.; Sudhir, M.R.; Mohan, M.K.; Gayathri, G.; Jain, D. Mine Waste-Based Next Generation Bricks: A Case Study of Iron Ore Tailings, Red Mudand GGBS Utilization in Bricks. Adv. Mater. Sci. Eng. 2021, 2021, 9499613. [Google Scholar] [CrossRef]
- Zhang, N.; Hedayat, A.; Bolaños Sosa, H.G.; González Cárdenas, J.J.; Salas Álvarez, G.E.; Ascuña Rivera, V.B. Damage evaluation and deformation behavior of mine tailing-based Geopolymer under uniaxial cyclic compression. Ceram. Int. 2021, 47, 10773–10785. [Google Scholar] [CrossRef]
- Ahmari, S.; Zhang, L. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr. Build. Mater. 2012, 29, 323–331. [Google Scholar] [CrossRef]
- Zhang, N.; Tang, B.; Liu, X. Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete. Constr. Build. Mater. 2021, 288, 123022. [Google Scholar] [CrossRef]
- Cicek, B.; Karadagli, E.; Duman, F. Valorisation of boron mining wastes in the production of wall and floor tiles. Constr. Build. Mater. 2018, 179, 232–244. [Google Scholar] [CrossRef]
- Yun-Ming, L.; Cheng Yong, H.; Mustafa, A.B.M.; Hussin, K. Structure and Properties of Clay-Based Geopolymer Cements: A Review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar]
- Muñoz Velasco, P.; Morales Ortíz, M.P.; Mendívil Giró, M.A.; Muñoz Velasco, L. Fired clay bricks manufactured by adding wastes as sustainable construction material–A review. Constr. Build. Mater. 2014, 63, 97–107. [Google Scholar] [CrossRef]
- Muñoz, P.; Letelier, V.; Zamora, D.; Morales, M.P. Feasibility of using paper pulp residues into fired clay bricks. J. Clean. Prod. 2020, 262, 121464. [Google Scholar] [CrossRef]
- Görhan, G.; Şimşek, O. Porous clay bricks manufactured with rice husks. Constr. Build. Mater. 2013, 40, 390–396. [Google Scholar] [CrossRef]
- Steinmann, Z.J.N.; Huijbregts, M.A.J.; Reijnders, L. How to define the quality of materials in a circular economy? Resour. Conserv. Recycl. 2019, 141, 362–363. [Google Scholar] [CrossRef]
- Elert, K.; Cultrone, G.; Navarro, C.R.; Pardo, E.S. Durability of bricks used in the conservation of historic buildings—influence of composition and microstructure. J. Cult. Herit. 2003, 4, 91–99. [Google Scholar] [CrossRef]
- García-Ten, J.; Orts, M.J.; Saburit, A.; Silva, G. Thermal conductivity of traditional ceramics. Ceram. Int. 2010, 36, 2017–2024. [Google Scholar] [CrossRef]
- De Bonis, A.; Cultrone, G.; Grifa, C.; Langella, A.; Leone, A.P.; Mercurio, M.; Morra, V. Different shades of red: The complexity of mineralogical and physico-chemical factors influencing the colour of ceramics. Ceram. Int. 2017, 43, 8065–8074. [Google Scholar] [CrossRef]
- Megyesi, E.; Brumaru, M.; Naghiu, G.S.; Felseghi, R.A. Choosing the optimal type of external wall constructions for application in the field of passive houses. In Proceedings of the 14th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 19–25 July 2014; pp. 65–72, ISBN 978-619-7105-21-6. [Google Scholar]
- Horckmans, L.; Nielsen, P.; Dierckx, P.; Ducastel, A. Recycling of refractory bricks used in basic steelmaking: A review. Resour. Conserv. Recycl. 2019, 140, 297–304. [Google Scholar] [CrossRef]
- Cretu, M.; Ceclan, A.; Czumbil, L.; Şteţ, D.; Bârgăuan, B.; Micu, D.D. Key performance indicators (KPIs) for the evaluation of the demand response in the Technical University of Cluj-Napoca buildings. In Proceedings of the 8th International Conference on Modern Power Systems (MPS), Cluj Napoca, Romania, 21–23 May 2019; pp. 1–4. [Google Scholar]
- European Commission. Closing the Loop–An EU Action Plan for the Circular Economy COM/2015/0614 Final. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 15 August 2021).
- Communication from the Commission to the European Parliament; The European Council; The Council; The European Economic and Social Committee; The Committee of the Regions and the European Investment Bank. A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy COM/2018/773. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0773 (accessed on 10 November 2021).
- Zhang, L. Production of bricks from waste materials–A review. Constr. Build. Mater. 2013, 47, 643–655. [Google Scholar] [CrossRef]
- Huysman, S.; Debaveye, S.; Schaubroeck, T.; De Meester, S.; Ardente, F.; Mathieux, F.; Dewulf, J. The recyclability benefit rate of closed-loop and open-loop systems: A case study on plastic recycling in Flanders. Resour. Conserv. Recycl. 2015, 101, 53–60. [Google Scholar] [CrossRef]
Authors | Mine Waste | Mineralogical Content | Ref. |
---|---|---|---|
Ettoumi et al., 2021 | Phosphate sludge | calcite, dolomite, bassanite, heulandite, vermiculite, quartz, hematite, fluorapatite | [52] |
Yang et al., 2014 | Iron tailings | quartz, calcite, hematite, clinochlore, pyrite, amphibole | [54] |
Wei et al., 2021 | Gold tailings | quartz, sanidine, mica, pyrite, montmorillonite | [62] |
Fang et al., 2011 | Copper tailings | andradite, quartz | [76] |
Zhao et al., 2012 | Hematite tailings | hematite, quartz, chlorite, calcite | [77] |
Ma et al., 2016 | Iron tailings | gypsum quartz, albite, muscovite, calcite, terranovaite | [78] |
Wang et al., 2016 | Coal gangue | quartz, siderite, illite, kaolinite, montmoriolite, anorthite, muscovite | [83] |
Authors | Material | Composition | Technology/ Firing/Curing Temperature | Origin of Waste | Ref. |
---|---|---|---|---|---|
Marrocchino et al., 2021 | bricks | plastic clay B (60–100%) a | extrusion/1000 °C | Italy | [41] |
metamorphic eluvium R (0–40%) a | |||||
Granitoid eluvium (0–20%) a | |||||
Granitoid tailings (0–20%) a | |||||
Albitite tailings (0–20%) a | |||||
Suarez-Marcias et al., 2020 | bricks | lead mine tailing (0–100%) | pressing 50 ± 1 MPa/950 ± 5 °C | Spain | [48] |
clay (100–0%) | |||||
Loutou et al., 2019 | bricks | red clay (100%) | molded <6 MPa/900 °C, 1000 °C, and 1100 °C | Morocco | [49] |
Mendes et al., 2019 | bricks | iron ore tailing (0–40%) b | pressing/extrusion 40–70 MPa/850 °C, 950 °C, and 1050 °C | Brazil | [50] |
grey clay (30–70%) b | |||||
yellow clay (30–70%) b | |||||
Li et al., 2019 | porous bricks | 100% iron tailing b | foam-gel casting/ 1070–1120 °C | China | [51] |
Ettoumi et al., 2021 | brick | 100% phosphate sludge | pressing 6 MPa/900 °C, 1000 °C, and 1100 °C | Tunisia | [52] |
Bayoussef et al., 2021 | bricks | red clay (70–100%) | pressing/1100 °C | Morocco | [53] |
fly ash (0–30%) | |||||
Yang et al., 2014 | bricks | Low silicon iron ore tailing (80–100%) a | pressing 20 MPa/900 °C, 950 °C, and 1000 °C | China | [54] |
fly ash (0–20%) a | |||||
Vilela et al., 2020 | soil-cement bricks | soil partial substituted with iron ore tailings 0–40% | pressing/curing 20 ± 2 °C (28 days) | Brazil | [55] |
Portland cement (10%) | |||||
ratio soil: cement (9:1) | |||||
Weishi et al., 2018 | brick | low-silicon iron ore tailings (75%) | molding pressure 50 MPa/curing 30–60 °C | China | [56] |
curing agent (fly ash, lime, gypsum) (25%) | |||||
stearic acid emulsion | |||||
da Silva et al., 2014 | red ceramic | iron tailings (0–5%)b | pressed 20 MPa/950 °C | Brazil | [57] |
clay (95–100%)b | |||||
Luo et al., 2020 | sintered brick | iron ore tailings (54%)b | pressing 20 MPa/950–1100 °C | China | [58] |
shale (10%) b | |||||
coal gangue powder (30%) b | |||||
sewage sludge (0–12%) b | |||||
Wang et al., 2019 | brick | Iron tailings (40–70%) a | Pressing 20 MPa/1000, 1050, 1100, 1150, or 1200 °C) | China | [59] |
Fly ash (20–50%) a | |||||
Kaolin (10%) a | |||||
Chen et al., 2011 | brick | hematite tailings (77–100%), | pressing 20–25 MPa/850, 900, 950, 980, 1000, 1030, and 1050 °C | China | [60] |
fly ash (0–8%) a | |||||
clay (0–15%) | |||||
Yonggang et al., 2011 | bricks | fine gold tailings (60–100%) b | pressed 5–20 MPa/900–1050 °C | NA | [61] |
medium gold tailings (10–30%) b | |||||
clays (10–40%) b | |||||
Wei et al., 2021 | sintered bricks | gold mine tailing (60–100%) | pressing/900–1050 °C | China | [62] |
+clay (0–40%) |
Authors | Materials | Composition | Origin of Waste | Ref. |
---|---|---|---|---|
Huang et al., 2012 | AAC | copper tailings (30%) a | China | [75] |
blast furnace slag (35%) a | ||||
quartz sand (20%) a | ||||
cement clinker (10%) a | ||||
gypsum (5%) a | ||||
Fang et al., 2011 | Autoclaved sand-lime brick | copper tailing (0–88%) b | China | [76] |
sand powder (0–15%) b | ||||
river sand (0–88%) b | ||||
lime (6.7–13.3%) b | ||||
Zhao, Y. 2012 | Autoclaved bricks | Optimum mixture: hematite tailings:lime:sand ratio (70:15:15) b | China | [77] |
Ma et al. 2016 | AAC blocks | iron tailings (0–68%) b | China | [78] |
cement (8%) b | ||||
quicklime (19–27%) b | ||||
silicon sand (0–68%) b | ||||
gypsum (3%) b | ||||
Al powder (0.14%) b | ||||
Liang et al., 2019 | AAC | iron tailing (30–55%) b | China | [79] |
silica sand (5–30%) b | ||||
lime (20–30%) b | ||||
ordinary Portland cement (5–15%) b | ||||
flue gas desulfurization gypsum (5%) b | ||||
Cai et al., 2016 | AAC blocks | iron tailings (0–68%) b | China | [80] |
cement (8%) b | ||||
quicklime (21%) b | ||||
silicon sand (0–68%) b | ||||
gypsum (3%) b | ||||
al powder (0.14%) b | ||||
Zhao et al., 2009 | autoclaved brick | low-silicon tailings (83%) b alkali-activated slag/fly ash | China | [82] |
Wang et al., 2016 | AAC | coal gangue (1–40%) b | China | [83] |
iron ore tailing (20–59%) b | ||||
lime (25%) b | ||||
cement (10%) b | ||||
gypsum (5%) b | ||||
Al powder (0.06%) b |
Authors | Materials | Composition | Technology/ Curing Temperature | Origin of Waste | Ref. |
---|---|---|---|---|---|
Ahmari, S. and Zhang, L., 2012 | geopolymer bricks | copper mine tailings NaOH solution (10–15 M) | forming pressure (0–35 MPa)/ 60 to 120 °C | Arizona | [95] |
Ahmari S. and Zhang, L., 2013 | geopolymer bricks | copper mine tailings, sodium hydroxide NaOH (15 M) | forming pressure (0–35 MPa)/ 60 to 120 °C | Arizona | [92] |
Beulah et al., 2021 | geopolymer bricks | iron ore tailings (50–90%); | NA | India | [93] |
GGBS (10–50%) | |||||
and red mud (50–90%) | |||||
GGBS (10–50%) | |||||
NaOH (8 M) | |||||
Zhang et al. 2021 | geopolymer | gold mine tailing NaOH solutions (4–12 M) | molding/75 °C | Peru | [94] |
Strengths | Weaknesses |
---|---|
S1. Technical strengths:
| W1. Technical weaknesses:
|
Opportunities | Threats |
O1. Technical opportunities:
| T1. Technical threats:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobîrzan, N.; Muntean, R.; Thalmaier, G.; Felseghi, R.-A. Recycling of Mining Waste in the Production of Masonry Units. Materials 2022, 15, 594. https://doi.org/10.3390/ma15020594
Cobîrzan N, Muntean R, Thalmaier G, Felseghi R-A. Recycling of Mining Waste in the Production of Masonry Units. Materials. 2022; 15(2):594. https://doi.org/10.3390/ma15020594
Chicago/Turabian StyleCobîrzan, Nicoleta, Radu Muntean, Gyorgy Thalmaier, and Raluca-Andreea Felseghi. 2022. "Recycling of Mining Waste in the Production of Masonry Units" Materials 15, no. 2: 594. https://doi.org/10.3390/ma15020594
APA StyleCobîrzan, N., Muntean, R., Thalmaier, G., & Felseghi, R. -A. (2022). Recycling of Mining Waste in the Production of Masonry Units. Materials, 15(2), 594. https://doi.org/10.3390/ma15020594