Localization Properties of a Quasiperiodic Ladder under Physical Gain and Loss: Tuning of Critical Points, Mixed-Phase Zone and Mobility Edge
Abstract
:1. Introduction
2. Non-Hermitian AAH Ladder, Decoupling Procedure and the Theoretical Framework
2.1. Two-Stranded NH AAH Ladder and the Tight-Binding Hamiltonian
2.2. Decoupling of Two-Stranded AAH Ladder into Two Effective 1D Chains
2.3. Theoretical Prescription
3. Numerical Results and Discussion
3.1. Two-Stranded AAH Ladders in Presence of Physical Gain and/or Loss
3.1.1. Eigenvalue Spectrum
3.1.2. Tuning of Critical Points, Mixed-Phase Zone and Mobility Edge
3.2. M-Stranded Ladder: A General Case
4. Closing Remarks
- For the first time, to the best of our knowledge, localization phenomena were investigated considering a multi-stranded ladder network in the presence of environmental interaction;
- A simple prescription for decoupling any arbitrary stranded ladder system was provided. This helped us detect the mixed-phase window(s) and the mobility edge(s);
- From a comparative analysis, we established that when the gain and loss terms are added in alternate sites, maximum scattering occurs which leads to a significant impact on the localization behavior. For the ladders with either gain or loss terms, there is no effect on localization. A minor effect was noticed for the balanced type-II ladder which is very easy to understand;
- The mixed-phase window(s), and thus, the mobility edge(s) can be monitored by means of the interaction factor . This is an interesting observation which might be helpful in deriving controlled transport properties;
- Our analysis is not specific to any particular system—rather, we can easily extend it to any other quasicrystals in the presence of a non-Hermitian factor that exhibits a fragmented and gapped spectrum.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492. [Google Scholar] [CrossRef]
- Lee, P.A.; Ramakrishnan, T.V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287. [Google Scholar] [CrossRef]
- Nandkishore, R.; Huse, D.A. Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annu. Rev. Comdens. Matter Phys. 2015, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Vosk, R.; Huse, D.A.; Altman, E. Theory of the Many-Body Localization Transition in One-Dimensional Systems. Phys. Rev. X 2015, 5, 031032. [Google Scholar] [CrossRef] [Green Version]
- Billy, J.; Josse, V.; Zuo, Z.; Bernard, A.; Hambrecht, B.; Lugan, P.; Clément, D.; Sanchez-Palencia, L.; Bouyer, P.; Aspect, A. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 2008, 453, 891. [Google Scholar] [CrossRef]
- Roati, G.; Errico, C.D.; Fallani, L.; Fattori, M.; Fort, C.; Zaccanti, M.; Modugno, G.; Modugno, M.; Inguscio, M. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 2008, 453, 895. [Google Scholar] [CrossRef] [Green Version]
- Harper, P.G. The General Motion of Conduction Electrons in a Uniform Magnetic Field, with Application to the Diamagnetism of Metals. Proc. Phys. Soc. Lond. Sect. A 1955, 68, 874. [Google Scholar] [CrossRef]
- Aubry, S.; Andŕe, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 1980, 3, 133. [Google Scholar]
- Ganeshan, S.; Sun, K.; Sarma, S.D. Topological Zero-Energy Modes in Gapless Commensurate Aubry-André-Harper Models. Phys. Rev. Lett. 2013, 110, 180403. [Google Scholar] [CrossRef] [Green Version]
- An, F.A.; Padavić, K.; Meier, E.J.; Hegde, S.; Ganeshan, S.; Pixley, J.H.; Vishveshwara, S.; Gadway, B. Interactions and Mobility Edges: Observing the Generalized Aubry-André Model. Phys. Rev. Lett. 2021, 126, 040603. [Google Scholar] [CrossRef]
- Dey, S.; Daw, D.; Maiti, S.K. Flux-driven circular current and near-zero field magnetic response in an Aubry ring: High-to-low conducting switching action. Europhys. Lett. 2020, 129, 47002. [Google Scholar] [CrossRef]
- Patra, M.; Maiti, S.K.; Sil, S. Engineering magnetoresistance: A new perspective. J. Phys. Condens. Matter 2019, 31, 355303. [Google Scholar] [CrossRef] [Green Version]
- Maiti, S.K.; Sil, S.; Chakrabarti, A. Phase controlled metal–insulator transition in multi-leg quasiperiodic optical lattices. Ann. Phys. 2017, 382, 150. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Maiti, S.K.; Karmakar, S.N. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport. Physica E 2016, 83, 358. [Google Scholar] [CrossRef] [Green Version]
- Dey, M.; Chakraborty, S.; Maiti, S.K. New Route to Enhanced Figure of Merit at Nano Scale: Effect of AAH Modulation. J. Phys. D Appl. Phys. 2022, 55, 085302. [Google Scholar] [CrossRef]
- Koley, A.; Maiti, S.K.; Pérez, L.M.; Silva, J.H.O.; Laroze, D. Possible Routes to Obtain Enhanced Magnetoresistance in a Driven Quantum Heterostructure with a Quasi-Periodic Spacer. Micromachines 2021, 12, 1021. [Google Scholar] [CrossRef]
- Koley, A.; Maiti, S.K.; Ojeda Silva, J.H.; Laroze, D. Spin Dependent Transport through Driven Magnetic System with Aubry-André-Harper Modulation. Appl. Sci. 2021, 11, 2309. [Google Scholar] [CrossRef]
- Sil, S.; Maiti, S.K.; Chakrabarti, A. Metal-Insulator Transition in an Aperiodic Ladder Network: An Exact Result. Phys. Rev. Lett. 2008, 101, 076803. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Maiti, S.K. Tight-binding quantum network with cosine modulations: Electronic localization and delocalization. Eur. Phys. J. B 2019, 92, 267. [Google Scholar] [CrossRef]
- Rossigonolo, M.; Dell’Anna, L. Localization transitions and mobility edges in coupled Aubry-André chains. Phys. Rev. B 2019, 99, 054211. [Google Scholar] [CrossRef] [Green Version]
- Maiti, S.K.; Nitzan, A. Mobility edge phenomenon in a Hubbard chain: A mean field study. Phys. Lett. A 2013, 377, 1205. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Maiti, S.K. Localization to delocalization transition in a double stranded helical geometry: Effects of conformation, transverse electric field and dynamics. J. Phys. Condens. Matter 2020, 32, 505301. [Google Scholar] [CrossRef] [PubMed]
- Mal, B.; Banerjee, M.; Maiti, S.K. Magnetotransport in fractal network with loop sub-structures: Anisotropic effect and delocalization. Phys. Lett. A 2020, 384, 126378. [Google Scholar] [CrossRef]
- Banerjee, M.; Mal, B.; Maiti, S.K. Unconventional localization phenomena in a spatially non-uniform disordered material. Physica E 2019, 106, 312. [Google Scholar] [CrossRef]
- Biddle, J.; Sarma, S.D. Predicted mobility edges in one-dimensional incommensurate optical lattices: An exactly solvable model of Anderson localization. Phys. Rev. Lett. 2010, 104, 070601. [Google Scholar] [CrossRef] [Green Version]
- Dities, F.M. The decay of quantum systems with a small number of open channels. Phys. Rep. 2000, 339, 215. [Google Scholar] [CrossRef]
- Amir, A.; Oreg, Y.; Imry, Y. Decays in quantum hierarchical models. Phys. Rev. A 2008, 77, 050101. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, V.V.; Zelevinsky, V.G. Collective dynamics of unstable quantum states. Ann. Phys. 1992, 216, 323. [Google Scholar] [CrossRef]
- Rotter, I. A continuum shell model for the open quantum mechanical nuclear system. Rep. Prog. Phys. 1991, 54, 635. [Google Scholar] [CrossRef]
- Sokolov, V.V.; Zelevinsky, V.G. Dynamics and statistics of unstable quantum states. Nucl. Phys. A 1989, 504, 562. [Google Scholar] [CrossRef]
- Sokolov, V.V.; Zelevinsky, V.G. On a statistical theory of overlapping resonances. Phys. Lett. B 1988, 202, 10. [Google Scholar] [CrossRef]
- Hatano, N.; Nelson, D.R. Localization Transitions in Non-Hermitian Quantum Mechanics. Phys. Rev. Lett. 1996, 77, 570. [Google Scholar] [CrossRef] [Green Version]
- Hatano, N.; Nelson, D.R. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 1997, 56, 8651. [Google Scholar] [CrossRef] [Green Version]
- Carmele, A.; Heyl, M.; Kraus, C.; Dalmonte, M. Stretched exponential decay of Majorana edge modes in many-body localized Kitaev chains under dissipation. Phys. Rev. B 2015, 92, 195107. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Boettcher, S.; Meisinger, P.N. PT-symmetric quantum mechanics. J. Math. Phys. 1999, 40, 2201. [Google Scholar] [CrossRef] [Green Version]
- Marinello, G.; Pato, M.P. Random non-Hermitian tight-binding models. J. Phys. Conf. Ser. 2016, 738, 012040. [Google Scholar] [CrossRef]
- Burke, P.C.; Wiersig, J.; Haque, M. Non-Hermitian scattering on a tight-binding lattice. Phys. Rev. A 2020, 102, 012212. [Google Scholar] [CrossRef]
- Liu, T.; Cheng, S.; Guo, H.; Gao, X. Fate of Majorana zero modes, exact location of critical states, and unconventional real-complex transition in non-Hermitian quasiperiodic lattices. Phys. Rev. B 2021, 103, 104203. [Google Scholar] [CrossRef]
- Ramezani, H.; Kottos, T.; El-Ganainy, R.; Christodoulides, D.N. Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 2010, 82, 043803. [Google Scholar] [CrossRef] [Green Version]
- Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity–time symmetry in optics. Nat. Phys. 2010, 6, 192. [Google Scholar] [CrossRef] [Green Version]
- Bendix, O.; Fleischmann, R.; Kottos, T.; Shapiro, B. Exponentially Fragile PT-Symmetry in Lattices with Localized Eigenmodes. Phys. Rev. Lett. 2009, 103, 030402. [Google Scholar] [CrossRef] [Green Version]
- Graefe, E.M.; Korsch, H.J.; Niederle, A.E. Mean-Field Dynamics of a Non-Hermitian Bose-Hubbard Dimer. Phys. Rev. Lett. 2008, 101, 150408. [Google Scholar] [CrossRef] [Green Version]
- West, C.T.; Kottos, T.; Prosen, T. PT-Symmetric Wave Chaos. Phys. Rev. Lett. 2010, 104, 054102. [Google Scholar] [CrossRef] [Green Version]
- Bendix, O.; Fleischmann, R.; Kottos, T.; Shapiro, B. Optical structures with local PT-symmetry. J. Phys. A Math. Theor. 2010, 43, 265305. [Google Scholar] [CrossRef] [Green Version]
- Oberthaler, M.K.; Abfalterer, R.; Bernet, S.; Schmiedmayer, J.; Zeilinger, A. Atom Waves in Crystals of Light. Phys. Rev. Lett. 1996, 77, 4980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.B.; Huang, J.H.; Zhong, H.H.; Qin, X.Z.; Xie, Q.T.; Kivshar, Y.S.; Lee, C.H. Pseudo-parity-time symmetry in optical systems. Phys. Rev. Lett. 2013, 110, 243902. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.D.; Ge, L.; Stone, A.D. PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems. Phys. Rev. Lett. 2011, 106, 093902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhorukov, A.A.; Xu, Z.; Kivshar, Y.S. Nonlinear suppression of time reversals in PT-symmetric optical couplers. Phys. Rev. A 2010, 82, 043818. [Google Scholar] [CrossRef] [Green Version]
- Klaiman, S.; Günther, U.; Moiseyev, N. Visualization of Branch Points in PT-Symmetric Waveguides. Phys. Rev. Lett. 2008, 101, 080402. [Google Scholar] [CrossRef] [Green Version]
- Levi, E.; Heyl, M.; Lesanovsky, I.; Garrahan, J.P. Robustness of Many-Body Localization in the Presence of Dissipation. Phys. Rev. Lett. 2016, 116, 237203. [Google Scholar] [CrossRef]
- Zeng, Q.B.; Chen, S.; Lü, R. Anderson localization in the non-Hermitian Aubry-André-Harper model with physical gain and loss. Phys. Rev. A 2017, 95, 062118. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D.J. Electrons in disordered systems and the theory of localization. Phys. Rep. 1974, 13, 93. [Google Scholar] [CrossRef]
- Wegner, F.J. Inverse participation ratio in 2+ϵ dimensions. Z. Phys. B 1980, 36, 209. [Google Scholar] [CrossRef]
- Ganeshan, S.; Pixley, J.H.; Sarma, S.D. Nearest Neighbor Tight Binding Models with an Exact Mobility Edge in One Dimension. Phys. Rev. Lett. 2015, 114, 146601. [Google Scholar] [CrossRef] [Green Version]
- Biddle, J.; Wang, B.; Priour, D.J., Jr.; Sarma, S.D. Localization in one-dimensional incommensurate lattices beyond the Aubry-André model. Phys. Rev. A 2009, 80, 021603. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Salamo, G.J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G.A.; Christodoulides, D.N. Observation of PT-Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett. 2009, 103, 093902. [Google Scholar] [CrossRef] [Green Version]
- Amir, A.; Hatano, N.; Nelson, D.R. Non-Hermitian localization in biological networks. Phys. Rev. E 2016, 93, 042310. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Ayache, M.; Huang, J.; Xu, Y.-L.; Lu, M.-H.; Chen, Y.-F.; Fainman, Y.; Scherer, A. Nonreciprocal light propagation in a silicon photonic circuit. Science 2011, 333, 729. [Google Scholar] [CrossRef] [Green Version]
- Regensburger, A.; Bersch, C.; Miri, M.-A.; Onishchukov, G.; Christodoulides, D.N.; Peschel, U. Parity-time synthetic photonic lattices. Nature 2012, 488, 167. [Google Scholar] [CrossRef]
- Bender, C.M.; Berntson, B.K.; Parker, D.; Samuel, E. Observation of PT-phase transition in a simple mechanical system. Am. J. Phys. 2013, 81, 173. [Google Scholar] [CrossRef] [Green Version]
- Mejia-Cortes, C.; Molina, M.I. Interplay of disorder and PT symmetry in one-dimensional optical lattices. Phys. Rev. A 2015, 91, 033815. [Google Scholar] [CrossRef]
- Jovic, D.M.; Denz, C.; Belic, M.R. Anderson localization of light in PT-symmetric optical lattices. Opt. Lett. 2012, 37, 4455. [Google Scholar] [CrossRef]
- Schindler, J.; Li, A.; Zheng, M.C.; Ellis, F.M.; Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 2011, 84, 040101. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T.; Helbig, T.; Schindler, F.; Salgo, N.; Brzezinska, M.; Greiter, M.; Kiessling, T.; Wolf, D.; Vollhardt, A.; Kabasi, A.; et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res. 2020, 2, 023265. [Google Scholar] [CrossRef]
- Zeng, Q.; Yang, Y.; Xu, Y. Topological phases in non-Hermitian Aubry-André-Harper models. Phys. Rev. B 2020, 101, 020201(R). [Google Scholar] [CrossRef] [Green Version]
- Yahyavi, M.; Hetényi, B.; Tanatar, B. Generalized Aubry-André-Harper model with modulated hopping and p-wave pairing. Phys. Rev. B 2019, 100, 064202. [Google Scholar] [CrossRef] [Green Version]
- Patra, M.; Maiti, S.K. Controlled charge and spin current rectifications in a spin polarized device. J. Magn. Magn. Mater. 2019, 484, 408. [Google Scholar] [CrossRef] [Green Version]
- Patra, M.; Maiti, S.K. Externally controlled high degree of spin polarization and spin inversion in a conducting junction: Two new approaches. Sci. Rep. 2017, 7, 14313. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, S.; Maiti, S.K.; Pérez, L.M.; Silva, J.H.O.; Laroze, D. Localization Properties of a Quasiperiodic Ladder under Physical Gain and Loss: Tuning of Critical Points, Mixed-Phase Zone and Mobility Edge. Materials 2022, 15, 597. https://doi.org/10.3390/ma15020597
Roy S, Maiti SK, Pérez LM, Silva JHO, Laroze D. Localization Properties of a Quasiperiodic Ladder under Physical Gain and Loss: Tuning of Critical Points, Mixed-Phase Zone and Mobility Edge. Materials. 2022; 15(2):597. https://doi.org/10.3390/ma15020597
Chicago/Turabian StyleRoy, Souvik, Santanu K. Maiti, Laura M. Pérez, Judith Helena Ojeda Silva, and David Laroze. 2022. "Localization Properties of a Quasiperiodic Ladder under Physical Gain and Loss: Tuning of Critical Points, Mixed-Phase Zone and Mobility Edge" Materials 15, no. 2: 597. https://doi.org/10.3390/ma15020597
APA StyleRoy, S., Maiti, S. K., Pérez, L. M., Silva, J. H. O., & Laroze, D. (2022). Localization Properties of a Quasiperiodic Ladder under Physical Gain and Loss: Tuning of Critical Points, Mixed-Phase Zone and Mobility Edge. Materials, 15(2), 597. https://doi.org/10.3390/ma15020597