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Abstract: The modulus of elasticity of some materials changes under tensile and compressive states
is simulated by constructing a typical material nonlinearity in a numerical analysis in this paper. The
meshless Finite Block Method (FBM) has been developed to deal with 3D semi-infinite structures in
the bimodular materials in this paper. The Lagrange polynomial interpolation is utilized to construct
the meshless shape function with the mapping technique to transform the irregular finite domain
or semi-infinite physical solids into a normalized domain. A shear modulus strategy is developed
to present the nonlinear characteristics of bimodular material. In order to verify the efficiency and
accuracy of FBM, the numerical results are compared with both analytical and numerical solutions
provided by Finite Element Method (FEM) in four examples.

Keywords: meshless method; finite block method; semi-infinite structure; bimodular material;
mapping technique; infinite element

1. Introduction

It has been shown that certain materials such as composites, porous materials, rocks,
cement concrete and asphalt concrete, etc., show significant differences in their strength
in tension and compression states. The modulus of elasticity as well as the Poisson’s ratio
of the material may also change under tensile and compressive states [1–3]. Take the
concrete material as an example; the compressive modulus is about 1.5~2 times the tensile
modulus [4–6]. So, for an accurate numerical simulation, this characteristic of material has
to be considered. It constructs a typical material nonlinear model.

In order to evaluate bearing capacity and stability, the civil structure with the
soil–foundation interaction is commonly investigated numerically, including airport run-
ways, highway pavement, stacking dock, mineral deposit, geotechnical slope and so on.
The soil medium is simplified as an infinite or semi-infinite domain. The most common
approach with FEM is to use massive elements to simulate an unbounded domain. The
application of large-scale finite element discretization could result in an increase in com-
putational burden [7]. Furthermore, the inaccurate results could be obtained due to the
truncated boundaries in the numerical procedure. To overcome this difficulty, the Boundary
Integral Equations Method (BIEM), also known as the Boundary Element Method (BEM), is
coupled with the FEM [8,9]. However, it is difficult to derive the fundamental solutions in
general cases, especially for non-homogeneous and nonlinearity of materials. Meanwhile,
the semi-analytical finite element method was developed to reduce the time cost of 3D
model simulation [10,11] and applied in pavement structural analysis [12,13], but it mainly
focuses on linear analysis or problems without complicated loads. The unbounded prob-
lems can be overcome by introducing mapped infinite elements, i.e., utilizing the infinite
element to extend the FEM to unbounded domain problems [14–17]. The shape function
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describes the far-field characteristic of the problem, which can be obtained using mapping
to transform the global infinite region into a local finite domain by Bettess et al. [17–20].
As an alternative, these issues can be solved with the meshless methods coupling with an
infinite-mapping technique [7].

In engineering analysis, the linear elasticity of material is not valid for general issue.
The material mechanical properties are closely related to their micro structure. The scanning
images of the building materials are shown in Figure 1 and present similar mottled patterns
at different scales. The heterogeneity is manifested in the micro-scale for the metal materials,
and its mechanical properties accord with the linear elastic hypothesis. For the rock or
concrete materials, their heterogeneity is displayed in the mesoscale and the assumption of
linear elasticity sometimes produces computational errors which cannot be ignored.
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Figure 1. Scanning images of solid materials at different scales: (a) twin structure of carbon steel;
(b) fine grain structure of granite; (c) meso structure of concrete.

Commercial numerical software in engineering, including ABAQUS, are widely used
in engineering and manufacturing. However, it is still a challenging task to solve bimodular
problems efficiently [21–26]. Nevertheless, the development of new numerical methods
is always attractive to solve difficult and complicated engineering problems. Unlike the
traditional numerical method, the computational framework of the meshless method was
based on the scattered nodes. In the 1990s, the meshless method was developed based
upon the Galerkin method. In 1992, the diffuse element method (DEM) was proposed by
Nayroles et al. [27]. The Moving-Least Square (MLS) method was introduced to construct
the meshless shape functions with Galerkin method in numerical discretization. In 1994,
Belytschkoet al. presented the Element-Free Galerkin method (EFGM) [28], in which
Lagrange was employed to ensure the boundary conditions were being satisfied. Since
then, the EFGM has been widely used to simulate the fracture failure of materials and to
show its superiority over the traditional FEM [29,30]. In 1996, Belytschko et al. published a
comprehensive review [31] which attracted exclusive attention in computational mechanics.
This can be regarded as the beginning of the meshless method in numerical engineering.
Another important development was the introduction of the local weak form methods. In
1998, Atluri et al. proposed the Meshless Local Petrov-Galerkin (MLPG) method [32]. The
discrete system equation is based on a nodal assembly with more conciseness in numerical
implementation. In 1995, Liu et al. proposed a Reproducing Kernel Particle Method (RKPM)
approximation [33–35]. Thereafter, several meshless methods were developed such as
the Method of Fundamental Solution (MFS) [36–38], the local Radial Point Interpolation
Method (RPIM) [39–41], the local Radial Basis Function (RBF) collocation method [42–44]
and the Meshless Intervention-Point (MIP) method [45], etc. In 2014, Wen et al. proposed
the meshless FBM [46]. In the finite block method, the mapping technique is implemented
numerically with the infinite elements for the infinite domain problems [7]. Afterwards,
the FBM is successfully applied to nonlinear elasticity problems, contact problems and
heat conduction problems [47–49]. It has been demonstrated in the analysis of bimodular
problems for two-dimensional problems [50].
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In this paper, the FBM is extended to three-dimensional semi-infinite structures in
bimodular materials. The infinite block mapping technique is introduced to present the
semi-infinite structure and implemented with the meshless finite block method to construct
the intrinsic constitutive equations in iterative analysis. The meshless finite block method
with the infinite block mapping technique is formulated for 3D bimodular problems. The
FEM solution is considered as a benchmark for numerical analysis, and the accuracy of
the proposed method is observed by ABAQUS with subroutine UMAT developed for
bimodular materials.

2. Bimodular Material Constitutive Equations

Suppose σα, σβ and σγ are principal stresses, as shown in Figure 2. The generalized
Hooke’s law, in matrix form, as

~
ε = A

~
σ · · · or · · · ~

σ = QI
~
ε (1)

where A is the flexibility matrix, QI is the elasticity matrix,
~
ε is the nodal strain vector in

the principal directions and
~
σ is the nodal stress vector in the principal directions, which

are defined as

A =



a11 a12 a13 0 0 0
a21 a22 a23 0 0 0
a31 a32 a33 0 0 0
0 0 0 a44 0 0
0 0 0 0 a55 0
0 0 0 0 0 a66

, QI = A−1 (2)

~
ε =

{
εα, εβ, εγ, εβγ, εαγ, εαβ

}T (3)

~
σ =

{
σα, σβ, σγ, σβγ, σαγ, σαβ

}T (4)
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With the analytical theory proposed by Ambartsumyan and complemented with shear
moduli [1,21,22], it is assumed that aij = −v−/E− = −v+/E+, ajj = 1/E+ or 1/E−,
(I = 1, j = 1, 2, 3), where E+ and E− present as the tensile and compressive moduli respec-
tively, v+ and v− are the tensile and compressive Poisson’s ratio, respectively; a44 = 1/Gβγ,
a55 = 1/Gαγ, a66 = 1/Gαβ, in which, Gβγ, Gαγ and Gαβ are the shear moduli. The shear
stresses or strains in the principal directions are zero. According to the shear moduli
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algorithm [13], it is assumed that the axes x, y and z tend to axes α, β and γ, respectively.
Then, we have

Gβγ = lim
l1, m2, n3 → 1
l2, l3, m1, m3, n1n2 → 0

Gyz = lim
l1, m2, n3 → 1
l2, l3, m1, m3, n1n2 → 0

τyz
γyz

Gαγ = lim
l1, m2, n3 → 1
l2, l3, m1, m3, n1n2 → 0

Gxz = lim
l1, m2, n3 → 1
l2, l3, m1, m3, n1n2 → 0

τxz
γxz

Gαβ = lim
l1, m2, n3 → 1
l2, l3, m1, m3, n1n2 → 0

Gxy = lim
l1, m2, n3 → 1
l2, l3, m1, m3, n1n2 → 0

τxy
γxy

(5)

There are three cases to obtain Gβγ, Gαγ and Gαβ,

(1) If all three principal stresses are equal, i.e., σα = σβ = σγ, we have

a. If σα ≤ 0, then

Gβγ= Gαγ= Gαβ= G− =
E−

2(1 + v−)
(6)

b. If σα > 0, then

Gβγ= Gαγ= Gαβ= G+ =
E+

2(1 + v+)
(7)

(2) If only two of the three principal stresses are equal, i.e., σα = σβ 6= σγ, we hold

Gαβ =
σα − σγ

2(εα − εγ)
= Gαγ = Gβγ (8)

(3) If all three principal stresses are not equal, i.e., σα 6= σβ 6= σγ, we have

Gβγ =
σβ − σγ

2(εβ − εγ)
, Gαγ =

σα − σγ

2(εα − εγ)
and Gαβ =

σα − σβ

2(εα − εβ)
(9)

In the Cartesian coordinate system, the directional cosines for each principal strain are
defined as

α = (l1, l2, l3)
β = (m1, m2, m3)
γ = (n1, n2, n3)

(10)

The strain vector in different coordinate systems is obtained, in matrix form, as

~
ε = Lε, (11)

where ε is the strain vector in Cartesian’s coordinate system and L is the transformation
matrix defined by

L =



l12 m1
2 n1

2 m1n1 l1n1 l1m1
l22 m2

2 n2
2 m2n2 l2n2 l2m2

l32 m3
2 n3

2 m3n3 l3n3 l3m3
2l2l3 2m2m3 2n2n3 m2n3 + m3n2 l2n3 + l3n2 l2m3 + l3m2
2l1l3 2m1m3 2n1n3 m1n3 + m3n1 l1n3 + l3n1 l1m3 + l3m1
2l1l2 2m1m2 2n1n2 m1n2 + m2n1 l1n2 + l2n1 l1m2 + l2m1

 (12)

The strain energy density U in terms of the principal strains and elastic matrix, at each
node, yields

U =
1
2

~
ε

T
QI

~
ε =

1
2
εTLTQILε (13)
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Therefore, the elastic matrix Q in Cartesian’s coordinate system is obtained by

Q = LTQIL (14)

3. The Meshless Finite Block Method
3.1. Lagrange Polynomial Interpolation

Consider a 3D square in normalized domain mapping to the physical domain, as
shown in Figure 3. The Lagrange polynomials in the coordinate system (ξ, η, ζ) are used to
interpolate function u

u(ξ, η, ζ) =
Nξ

∑
i=1

Nη

∑
j=1

Nζ

∑
k=1

F(ξ, ξi)G(η, ηj)H(ζ, ζk)up (15)

where up indicates the nodal value, subscript p denotes the number of node at P(ξi, ηi, ζi)
in the global system and functions

F(ξ, ξi) =
Nξ

∏
m = 1
m 6= i

ξ − ξm

ξi − ξm
, G(η, ηj) =

Nξ

∏
m = 1
m 6= j

η − ηm

ηj − ηm
, F(ζ, ζk) =

Nξ

∏
m = 1
m 6= k

ζ − ζm

ζk − ζm
(16)

where Nξ , Nη and Nζ denote the numbers of node distributed along the axes ξ, η and ζ,
respectively. The shape function is obtained simply as

ϕp(ξ, η, ζ) = F(ξ, ξi)G(η, ηj)H(ζ, ζk) (17)
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The partial differential with respect to axis ξ can be obtained directly

∂ϕp

∂ξ
=

∂F(ξ, ξi)

∂ξ
G(η, ηj)H(ζ, ζk) =

Nξ

∑
m=1

Nξ

∏
l=1,l 6=m

(ξ − ξl)

Nξ

∏
m=1,m 6=i

(ξi − ξm)

G(η, ηj)H(ζ, ζk) (18)
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3.2. Partial Differential Matrix

The partial derivative of function u in Equation (15) can be arranged in a vector. For
example, the nodal first order partial derivative of function u can be written, in the vector
form, as

u,α = Uα = Dαu, Dα =
{

ϕijk,α

}
M×M

p = p(i, j, k), (i = 1, 2, . . . , Nξ , j = 1, 2, . . . , Nη , k = 1, 2, · · · , Nς; α = ξ, η, ζ)
(19)

where p is the number of node P(i, j, k) in the global system; M(= Nξ × Nη × Nζ) indicates
the number of nodes in the local coordinate system,

u,α =
{

∂u
∂α

}
, u = {u1, u2, · · · , uM}T, up =

{
u(p)

x , u(p)
y , u(p)

z

}T
, α = ξ, η, ς (20)

and

Dα =

{
∂ϕ1

∂α
,

∂ϕ2

∂α
, · · · ,

∂ϕM
∂α

}
(21)

In addition, the L-th order partial derivative with respect to the coordinates ξ, η and ζ
can be approximated as

u(lmn)
,ξηζ =

∂l+m+nu
∂ξ l∂ηm∂ζn , l + m + n = L (22)

Therefore, the higher-order partial differentials in Equation (22) can be obtained, in
terms of the first-order partial derivative matrices Dξ , Dη and Dζ , as

u(lmn)
,ξηζ ≈ Dl

ξDm
η Dn

ζ u (23)

3.3. Mapping Differential Matrix

For three-dimensional problems, a hexahedron block with 20 seeds is selected in order
to transform the coordination (x, y, z) to (ξ, η, ζ) as shown in Figure 3. The mapping
function is expressed as

x =
20

∑
q=1

Nq(ξ, η, ζ)xq, y =
20

∑
q=1

Nq(ξ, η, ζ)yq, z =
20

∑
q=1

Nq(ξ, η, ζ)zq (24)

The partial differentials of function u(x, y, z) with subject to axis ξ, η or ζ can be written
as

∂u
∂ξ = ∂u

∂x
∂x
∂ξ + ∂u

∂y
∂y
∂ξ + ∂u

∂z
∂z
∂ξ ,

∂u
∂η = ∂u

∂x
∂x
∂η + ∂u

∂y
∂y
∂η + ∂u

∂z
∂z
∂η ,

∂u
∂ζ = ∂u

∂x
∂x
∂ζ + ∂u

∂y
∂y
∂ζ + ∂u

∂z
∂z
∂ζ

(25)

Then the partial differentials of the function u(x, y, z) with respect to x, y and z are
given by

∂u
∂x = 1

|J|

(
∂u
∂ξ β11 +

∂u
∂η β12 +

∂u
∂ζ β13

)
,

∂u
∂y = 1

|J|

(
∂u
∂ξ β21 +

∂u
∂η β22 +

∂u
∂ζ β23

)
,

∂u
∂z = 1

|J|

(
∂u
∂ξ β31 +

∂u
∂η β32 +

∂u
∂ζ β33

) (26)

in which βij express the terms in the cofactor of Jacobi matrix J, and

J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (27)
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Therefore, the first order partial differential in the physical domain can be written as

u,x =
(
∆11Dξ + ∆12Dη + ∆13Dζ

)
u = Dxu (28)

u,y =
(
∆21Dξ + ∆22Dη + ∆23Dζ

)
u,= Dyu (29)

u,z =
(
∆31Dξ + ∆32Dη + ∆33Dζ

)
u,= Dzu (30)

in which

∆ij =


β
(1)
ij

/
∣∣∣J(1)∣∣∣ 0 · · · 0

0 β
(2)
ij

/
∣∣∣J(2)∣∣∣ · · · 0

· · · · · · · · · · · ·
0 0 · · · β

(M)
ij

/
∣∣∣J(M)

∣∣∣

 (31)

where β
(1)
ij /

∣∣∣J(1)∣∣∣ can be determined from Equation (27) at each node in the normalized
domain, and the first order differentials matrix is determined by the Lagrange interpolation
functions in normalized domain (|ξ| ≤ 1, |η| ≤ 1, |ζ| ≤ 1).

3.4. Mapping Technology with 3D Blocks

For the semi-infinite structure shown in Figure 4a, the semi-infinite domain is divided
into several subdomains with two 20-seed-finite blocks, two 12-seed-one-infinite-edge
blocks, two 7-seed-two-infinite-edge blocks and two 8-seed-three-infinite-edge blocks as
shown in figures from Figure 4b–e. The infinite blocks in different directions can be obtained
by rotating the initial mapping function. The mapping function for the finite block and
infinite blocks in a general form is written as

Nq = Q(ξ, η, ζ, ξq, ηq, ζq) (32)

where q is the seed number shown in Figure 4. The details of the mapping function and
their partial differentials can be presented in Appendix A in different categories.
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4. Formulations for Bimodular Material with Meshless FBM

The equilibrium equation, in the domain, gives

∇ ·σ+ f = 0 (33)
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where ∇ = {∂/∂x, ∂/∂y, ∂/∂z}, and stress tensor

σ =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 and f =

 fx
fy
fz

 (34)

in which σαβ, (α, β = x, y, z) denotes stress; fα are body force. Substituting the constitutive
equation, Equation (1), into the kinematic equation in Equation (33) without body forces
yields

C11ux + C12uy + C13uz = 0,
C21ux + C22uy + C23uz = 0,
C31ux + C32uy + C33uz = 0,

(35)

where ux, uy, uz are vectors of nodal displacements, and Cij, (i, j = 1, 2, 3) are coefficients
by the constitutive and equilibrium equations, and given by

C11 = Q11D2
x + 2Q16DxDy + 2Q15DxDz + Q66D2

y + 2Q56DyDz + Q55D2
z ,

C22 = Q66D2
x + 2Q26DxDy + 2Q46DxDz + Q22D2

y + 2Q24DyDz + Q44D2
z ,

C22 = Q55D2
x + 2Q45DxDy + 2Q35DxDz + Q44D2

y + 2Q34DyDz + Q33D2
z ,

C12 = C21 = Q16D2
x + (Q21 + Q66)DxDy + Q26D2

y + (Q25 + Q46)DyDz + Q45D2
z ,

C13 = C31 = Q15D2
x + (Q14 + Q56)DxDy + (Q13 + Q55)DxDz + Q46D2

y + (Q36 + Q45)DyDz + Q35D2
z ,

C23 = C32 = Q56D2
x + (Q25 + Q46)DxDy + (Q36 + Q45)DxDz + Q24D2

y + (Q23 + Q44)DyDz + Q34D2
z ,

(36)

where Qij, (i, j = 1, 2, · · · , 6, Qij = Qji) are the terms in elasticity matrix Q and given by

Q =



Q11 Q12 Q13 Q14 Q15 Q16
Q22 Q23 Q24 Q25 Q26

Q33 Q34 Q35 Q36
Q44 Q45 Q46

Sym. Q55 Q56
Q66


. (37)

Consider the following boundary conditions defined as

t(x) =
¯
t (x), x ∈ Γt

u(x) =
¯
u(x), x ∈ Γu

(38)

where t(x) and u(x) are given traction and displacement on the boundary, t(x) =
{

tx, ty, tz
}T,

u(x) =
{

ux, uy, uz
}T. x is the collocation point on the boundary. Traction t(x) can be rewrit-

ten as
B11ux + B11ux + B11ux = tx,
B21ux + B22ux + B23ux = ty,
B31ux + B32ux + B33ux = tz

(39)

where matrix Bij, (i, j = 1, 2, 3) is associated with the boundary collocation point

B11 = Dx(Q11nx + Q16ny + Q15nz) + Dy(Q16nx + Q66ny + Q56nz) + Dz(Q15nx + Q56ny + Q55nz),
B22 = Dx(Q66nx + Q26ny + Q46nz) + Dy(Q26nx + Q22ny + Q24nz) + Dz(Q46nx + Q24ny + Q44nz),
B33 = Dx(Q55nx + Q45ny + Q35nz) + Dy(Q45nx + Q44ny + Q34nz) + Dz(Q35nx + Q34ny + Q33nz),
B12 = Dx(Q16nx + Q66ny + Q56nz) + Dy(Q12nx + Q26ny + Q25nz) + Dz(Q14nx + Q46ny + Q45nz),
B13 = Dx(Q15nx + Q56ny + Q55nz) + Dy(Q14nx + Q46ny + Q45nz) + Dz(Q13nx + Q36ny + Q35nz),
B21 = Dx(Q16nx + Q12ny + Q14nz) + Dy(Q66nx + Q26ny + Q46nz) + Dz(Q56nx + Q25ny + Q45nz),
B23 = Dx(Q56nx + Q25ny + Q45nz) + Dy(Q46nx + Q24ny + Q44nz) + Dz(Q36nx + Q23ny + Q34nz),
B31 = Dx(Q15nx + Q14ny + Q13nz) + Dy(Q56nx + Q46ny + Q36nz) + Dz(Q55nx + Q45ny + Q35nz),
B32 = Dx(Q56nx + Q46ny + Q36nz) + Dy(Q25nx + Q24ny + Q23nz) + Dz(Q35nx + Q34ny + Q33nz)

(40)
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where nα, (α = x, y, z) is the boundary outwards normal. Therefore, 3 ×M linear algebraic
equations are obtained in total from Equations (33) and (38). In addition, on the interfaces
between blocks, the following continued conditions should be taken into account

u(i)
α − u(j)

α = 0, t(i)α + t(j)
α = 0, (α = x, y, z) , (41)

where u(i)
α and t(i)α represent the displacement and traction on the interface between block i

and block j. Finally, a set of linear algebraic equations is established the in global system as
follows

K[3M×3M]U[3M×1] = F[3M×1], (42)

Where K is the stiffness matrix, U is the vector of displacements and F is the vector
consisting of the boundary value of the displacement, tractions and domain body forces.
The following nonlinear iterative algorithm is adopted in this paper.

Step 1: m = 0, take either tensile or compressive modulus at all collocation points.
Solve the global stiffness matrix to obtain the initial displacements, stresses and strains.

Step 2: Determine the principal stress σα, σβ, σγ and the direction at each node.
Then, determine the moduli, Poisson’s ratios (E+, E−), (v+, v−) and the constitutive matrix
according from Equations (6)–(14).

Step 3: Modify the stiffness matrix K and vector F based on the current step. Solve the
equations again to obtain the displacements, stresses and strains at each node.

Step 4: Calculate the average error from all collocation points

κ =
1
M

M

∑
i=1

∣∣∣Ui
(m) −Ui

(m−1)
∣∣∣ (43)

where Ui
(m) presents the displacement at step m. if κ < 10−6, terminate the iteration and

print out the result. Otherwise, let m = m + 1; go to step 2.

5. Numerical Examples

In this section, four examples are presented to demonstrate the accuracy of the mesh-
less FBM with bimodular materials. A 3D tensile column with gravity is investigated in the
first example. Then, FBM is applied to an arch bridge model, a single-layer semi-infinite
model and a multi-layer pavement foundation under different loadings. All codes were
written with Matlab (R2021b, The MathWorks, Inc., Natick, MA, USA).and Fortran in sub-
routine UMAT using ABAQUS (2019, Dassault Systèmes Simulia Corp., Vélizy-Villacoublay,
France).

5.1. Tensile Column with Gravity

Consider a gravitational column of the length l = 2; the dimension of the cross-section
is normalized as 1 × 1, and the mass density γ = 2 as shown in Figure 5a. It is fixed on the
bottom and a tensile force P of 2 units is applied to the top. It is assumed that a compression
modulus is 5000 units, and the Poisson’s ratios in tension and compression is zero. The
exact solution of the displacement [1] along the z-axis is given as

ω =


Pz
E− −

γ
E−

(
lz− 1

2 z2
)

, z < c

γ
2

[
(z−c)2

E+ − c2

E−

]
, z ≥ c

(44)
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where c = l − P/γ. The numbers of node in x-axis and y-axis are 9, and in the z-axis is 14.
The locations of node along different axes in the normalized domain are chosen

ξi = −cos π(i−1)
Nξ−1 , i = 1, 2, · · · , Nξ ;

ηj = −cos π(j−1)
Nη−1 , j = 1, 2, · · · , Nη ;

ζk = −cos π(k−1)
Nζ−1 , k = 1, 2, · · · , Nζ

(45)Materials 2022, 14, x FOR PEER REVIEW 12 of 28 
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Figure 5. Model with a tensile load and gravity: (a) front view of model with load and constraint;
(b) node distribution in physical domain for FBM.

The total number of nodes for the FBM is 1134 (= 9× 9× 14), and 396 C3D20R elements
are used in FEM. The node distribution of FBM is shown in Figure 5b. Comparison between
the exact solution and FBM solution at point z = 1.96 and the number of iterations for
convergence between FEM and FBM are presented in Table 1. With different ratios of
tensile and compression modulus, the vertical displacement changes along the z-axis and
exact solution are shown in Figure 6. Obviously, the FBM can give an accurate solution
for the problem and shows a similar convergence rate when compared with the FEM
method. To investigate the accuracy for different node density, the average relative errors
are defined as

ε =
1
M

M

∑
q=1
|ω−ω∗| (46)

Table 1. Comparison of precision and convergence.

E−/E+ z = 1.96 Number of Iterations for
Convergence

Exact Solution FBM Solution FEM FBM

1 1.59 × 10−5 1.59 × 10−5 2 2
5 7.21 × 10−4 7.20 × 10−4 2 2

10 1.6 × 10−3 1.60 × 10−3 2 2
50 9.0 × 10−3 8.9 × 10−3 2 2
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Figure 6. Vertical displacement variation along z-axis against with different ratios of tensile and
compression moduli, where “n×”: E−/E+ = n.

The numerical results presented in Table 2 demonstrate the average errors with iter-
ation numbers of convergence over all collocation points when E−/E+ = 10. Observing
the results in Table 2, it is evident that increasing the node density improves the degrees of
accuracy, and convergency is easily approached in iterations when the node number Nξ is
more than 3.

Table 2. Average errors ε for different node density with E−/E+ = 10.

Node Density (Nξ×Nη×Nζ) ε
Number of Iterationsfor

Convergence

(3 × 3 × 6) – –
(4 × 4 × 8) 5.20 × 10−5 2
(5 × 5 × 10) 1.29 × 10−5 2
(7 × 7 × 14) 6.24 × 10−6 2
(9 × 9 × 18) 3.65 × 10−6 2

(11 × 11 × 22) 2.39 × 10−6 2

5.2. Arch Bridge in Bimodular Materials

Consider a simplified arch bridge as shown in Figure 7. Due to the symmetry of the
structure, half of the model is taken for analysis. The radius of the arc is a = 1 unit. There is
a vertical pressure load p0 of 1 unit applied on the top, and the lengths in both y-axis and x-
axis are w(=2a). The displacement uy is fixed on the bottom face (y = 0), and ux is zero on the
surface x = 0. The ratios of Young’s moduli are selected as E−/E+ = 1, 2, 5, compression
modulus E− = 1 unit and Poisson’s ratio v− = 0.4 in the computation procedure.
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Figure 7. Half model of simplified arch bridge model for FBM.

The bridge is divided into three blocks using FBM shown in Figure 7, where blocks
I and II are finite blocks with 20-seed and block III is one semi-infinite block with a 12-
seed-one-infinite-edge. In the discretization of each block, there are 12 and 14 collocation
nodes along finite and infinite directions, respectively. The distribution of nodes along each
axis is the same as Equation (45) in Section 5.1, as shown in Figure 8a. Stresses along two
segments, AB and CD, shown in Figure 7 are plotted to illustrate the degree of accuracy.
Simulation with FEM is complemented with 90,912 C3D10 elements as shown in Figure 8b.
The length in the x-axis is w = 40 unit. The normalized stress σx along AB, CD and AC by
FBM and FEM is plotted in Figure 9 to show the difference between these two methods
with bimodular materials. Reasonable agreements can clearly be observed. It is also noticed
that there are several kinks in Figure 9 for stress distributions by the FEM due to the
discontinuity of the Young’s modulus.

5.3. A Semi-Infinite Solid with Bimodular Materials

The semi-infinite structures are introduced to simulate soil foundations. Consider
a semi-infinite body as shown in Figure 10a with the linear distributed vertical load in
a square area of width 1 unit on the surface. The linear distributed load is plotted in
Figure 10b with a unit maximum absolute value of q in compression and tension. Bimodular
materials are selected with three different ratios of tensile and compressive moduli, as
shown in Table 3. Due to the symmetry of the structure and loading, only a half model is
analyzed as shown in Figure 10a. To accurately capture the stress near the loading area,
the structure is subdivided into two layers. The first layer includes one 20-seed finite
block III, three 12-seed-one-infinite-edge blocks I, IV, V and two 7-seed-two-infinite-edge
block II and VI. However, in the second layer, one 12-seed-one-infinite-edge block, three
7-seed-two-infinite-edge blocks and two 8-seed-three-infinite-edges blocks are used. For
each block, 9 collocation points are used on the finite edge and 12 points for the infinite
edge. Normalized stress σx along AB and AC are presented to demonstrate the accuracy
of the FBM shown in Figure 11a,b versus the different ratios of tensile and compressive
moduli, and Poisson ratios. In this example, FEM simulation is complemented by use of
362,484 C3D10 elements with dimensions of 20 units in length and height and 10 units in
the width. A reasonable agreement was clearly achieved.
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FEM.

5.4. Multi-Layered Infinite Model with Bimodular Materials

Consider a multi-layered infinite structure, as shown in Figure 12, to simulate a
highway pavement structure under two symmetric circular pressure loads. The pressure
is assumed to be 0.7 MPa with a radius of 0.1065 m. The distance between two centers of
loads is 0.3195 m. The model contains four layers; the first and second layers are bimodulus
materials and the third and fourth layers are isotropic materials. The details of material
parameters and dimensions of each layer are listed in Table 4. Again, due to the symmetry
of the structure and load condition, quarter of the structure is analyzed as shown in
Figure 12. During the numerical process, each layer is divided into four blocks. For the
first layer, the top layer contains one 20-seed finite block, two 12-seed-infinite-edge blocks
II and III and one 7-node-two-infinite-edge block IV. In the second and third layers, the
same block distribution is applied as in the first layer. The bottom layer contains one
12-seed-one-infinite-edge block I, two 7-seed-two-infinite-edge blocks II and III and one
8-seed-three-infinite-edge block IV.
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Table 4. Dimensions, Young’s modulus and Poisson’s ratio for each layer.

Layer Height (m) Young’s Modulus E+/E− (MPa) Poisson’s Ratio v+/v−

a 0.18 6000/9000 0.2/0.3
b 0.2 5000/8000 0.15625/0.25
c 0.2 300/300 0.35/0.35
d ∞ 80/80 0.4
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Like the node distributions in Section 5.3, the 8 seeds are used on the finite edges and
14 seeds on the infinite edges. The total number of collocation nodes by FBM is 12288.
To validate the computational accuracy, the results of stresses σz by FBM and FEM along
segment AB and segment CD are compared in Figure 13. The contours of von Mises stress
with bimodular materials on y = 0 are presented by using FBM in Figure 14. FEM is also
used for analysis with no dimension of 20 × 20 × 20 and 127,760 C3D20R elements used in
this example. It can be seen that the position of the maximum von Mises stress with these
two methods is the almost the same, and the values are also very close to each other. In
addition, the FBM results are smoother.

Materials 2022, 14, x FOR PEER REVIEW 19 of 28 
 

 

 

Figure 12. Quarter of meshless FBM with infinite block modeling. 

 

(a) 

B 

C D 

A 

Figure 13. Cont.



Materials 2022, 15, 641 18 of 24Materials 2022, 14, x FOR PEER REVIEW 20 of 28 
 

 

 
(b) 

Figure 13. Stress z  distribution and comparison with FEM on: (a) AB; (b) CD. SM indicates sin-

gle Young’s modulus and BM indicates bimodular material. 

 

(a) 

 
(b) 

Figure 14. The contours of von Mises stress with bimodular materials for y = 0 by: (a) FBM; (b) 

FEM. 

6. Conclusions 

(P
a)

 

Figure 13. Stress σz distribution and comparison with FEM on: (a) AB; (b) CD. SM indicates single
Young’s modulus and BM indicates bimodular material.

Materials 2022, 14, x FOR PEER REVIEW 20 of 28 
 

 

 
(b) 

Figure 13. Stress z  distribution and comparison with FEM on: (a) AB; (b) CD. SM indicates sin-

gle Young’s modulus and BM indicates bimodular material. 

 

(a) 

 
(b) 

Figure 14. The contours of von Mises stress with bimodular materials for y = 0 by: (a) FBM; (b) 

FEM. 

6. Conclusions 

(P
a)

 

Figure 14. The contours of von Mises stress with bimodular materials for y = 0 by: (a) FBM; (b) FEM.

6. Conclusions

A meshless finite block method with infinite block analyzing three-dimensional solids
of bimodular materials was demonstrated in this paper. A mapping technique was applied
to determine the first order of derivatives. The 20-node finite block, 12-seed-one-edge-
infinite block, 7-seed-two-edge-infinite block and 8-seed-three-edge-infinite block were
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introduced to simulate all semi-infinite domains. An iterative process for the meshless
finite block method with a shear-modulus-complemented algorithm to solve bimodular
problems was proposed. The numerical algorithm was validated with four examples. The
finite element software ABAQUS was used for comparison. The following conclusions can
be summarized: (1) FBM easily tackles nonlinear problems with semi-infinite boundaries;
(2) a shear modulus algorithm efficiently and accurately describes the bimodular mechanical
behavior of materials; (3) the proposed method shows efficiency and accuracy for semi-
infinite problems with bimodular materials. Compared to FEM, FBM is more accurate with
the same computational effort; (4) FBM can be applied to more complicated problems, such
as 3D elastoplasticity, thermoelasticity and elastodynamics.

FE methods are rather general and efficient numerical tools to deal with complicated
problems in engineering. However, as an alternative, the meshless finite block method
with an infinite-mapping technique provides a new approach in solving unbounded bi-
modular material problems, with many advantages including efficiency and simplicity. As
ABAQUS is a commercialized package, the CPU times used by different approaches are
not comparable in this work. At present, dividing blocks is still a manual process in FBM;
the versatility needs to be further improved with complex regional models. In future work,
the FBM is expected to be extended to apply to more complicated problems, such as 3D
elastoplasticity, thermoelasticity and elastodynamics.
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Appendix A

1. 20-node finite block

For this type of finite element, the physical domain is mapped to a cube with 20 seeds
in coordination system (ξ, η, ζ) in the region |ξ| ≤ 1, |η| ≤ 1 and |ζ| ≤ 1, as shown in
Figure 4b. The mapping function can be written as follows [51]:

Ni =
1
8 (1 + ξiξ)(1 + ηiη)(1 + ζiζ)(ξiξ + ηiη + ζiζ − 2), i = 1, 2, 3, 4, 5, 6, 7, 8 , (A1)

Ni =
1
4 (1− ξ2)(1 + ηiη)(1 + ζiζ), i = 9, 11, 17, 19 , (A2)

Ni =
1
4 (1− η2)(1 + ζiζ)(1 + ξiξ), i = 10, 12, 18, 20 , (A3)

Ni =
1
4 (1− ζ2)(1 + ξiξ)(1 + ηiη), i = 13, 14, 15, 16 . (A4)
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Their partial differentials of the mapping function are listed below:

∂Ni
∂ξ = ξi

8 (1 + ηiη)(1 + ζiζ)(2ξiξ + ηiη + ζiζ − 1),
∂Ni
∂η = ηi

8 (1 + ξiξ)(1 + ζiζ)(ξiξ + 2ηiη + ζiζ − 1),
∂Ni
∂ζ = ζi

8 (1 + ξiξ)(1 + ηiη)(ξiξ + ηiη + 2ζiζ − 1), i = 1, 2, 3, 4, 5, 6, 7, 8

(A5)

∂Ni
∂ξ = − 1

2 ξ(1 + ηiη)(1 + ζiζ),
∂Ni
∂η = 1

4 ηi(1− ξ2)(1 + ζiζ),
∂Ni
∂ξ = 1

4 ζi(1 + ηiη)(1 + ξ2), i = 9, 11, 17, 19

(A6)

∂Ni
∂ξ = 1

4 ξi(1 + η2)(1 + ζiζ),
∂Ni
∂η = − 1

2 η(1 + ξiξ)(1 + ζiζ),
∂Ni
∂ξ = 1

4 ζi(1− η2)(1 + ξiξ), i = 10, 12, 18, 20

(A7)

∂Ni
∂ξ = 1

4 ξi(1− ζ2)(1 + ηiη),
∂Ni
∂η = 1

4 ηi(1− ζ2)(1 + ξiξ),
∂Ni
∂ξ = − 1

2 ζ(1 + ηiη)(1 + ξiξ), i = 13, 14, 15, 16

(A8)

2. 12-seed-one-edge-infinite block

In the normalized domain, the face of the upper side (ζ = 1) is mapped to infinite
area as shown in Figure 4c. The mapping functions [17] are

Ni =
1
2 (1 + ξiξ)(1 + ηiη)(ξiξ + ηiη − ζ − 2)/(1− ζ), i = 1, 3, 5, 7 , (A9)

Ni = (1− ξ2)(1 + ηiη)/(1− ζ), i = 2, 6 , (A10)

Ni = (1 + ξiξ)(1− η2)/(1− ζ), i = 4, 8 , (A11)

Ni =
1
4 (1 + ξiξ)(1 + ηiη)(1 + ζ)/(1− ζ), i = 9, 10, 11, 12 . (A12)

The Cartesian coordinate system in the physical domain can be obtained

x =
12

∑
k=1

Nk(ξ, η, ζ)xk, y =
12

∑
k=1

Nk(ξ, η, ζ)yk, z =
12

∑
k=1

Nk(ξ, η, ζ)zk. (A13)

The first-order partial differentials of Equations (A9)–(A12) are

∂Ni
∂ξ = 1

2 ξi(1 + ηiη)(−1 + ηiη + 2ξiξ − ζ)/(1− ζ),
∂Ni
∂η = 1

2 ηi(1 + ξiξ)(−1 + ξiξ + 2ηiη − ζ)/(1− ζ),
∂Ni
∂ζ = 1

2 (1 + ξiξ)(1 + ηiη)(−3 + ηiη + ξiξ − ζ)/(−1 + ζ)2, i = 1, 3, 5, 7

(A14)

∂Ni
∂ξ = 2ξ(1 + ηiη)/(1− ζ),

∂Ni
∂η = ηi(1− ξ2)/(1− ζ),

∂Ni
∂ζ = (1 + ηiη)(1− ξ2)/(1− ζ)2, i = 2, 6

(A15)

∂Ni
∂ξ = ξi(1 + η2)/(1− ζ),

∂Ni
∂η = −2η(1 + ξiξ)/(1− ζ),

∂Ni
∂ζ = (1− η2)(1 + ξiξ)/(1− ζ)2, i = 4, 8

(A16)

∂Ni
∂ξ = 1

4 ξi(1 + ηiη)(1 + ζ)/(1− ζ),
∂Ni
∂η = 1

4 (1 + ξiξ)ηi(1 + ζ)/(1− ζ),
∂Ni
∂ζ = 1

2 (1 + ηiη)(1 + ξiξ)/(−1 + ζ)2, i = 9, 10, 11, 12

(A17)



Materials 2022, 15, 641 21 of 24

3. 7-seed-two-edge-infinite block

In this case, two edges (ξ = 1, η = 1) in the normalized domain is mapped to infinite
place as shown in Figure 4d. The shape functions [17,52] are

N1 = (1− ξ)(−5− ξ − η − 4ζ + 3ξη)/(2α),
N2 = (1−ζ)(1+ξ)

[2(1−ξ)]
,

N3 = (1−ζ)(1+η)
[2(1−ξ)]

,

N4 = 4(1−ζ2)
α ,

N5 = (1 + ζ)(−5− ξ − η + 4ζ + 3ξη)/(2α),
N6 = (1+ζ)(1+ξ)

[2(1−ξ)]
,

N7 = (1−ζ)(1+ξ)
[2(1−η)]

,

(A18)

in which α = (1− ξ)(1− η) with coordinate transformation

x =
7

∑
k=1

Nk(ξ, η, ζ)xk, y =
7

∑
k=1

Nk(ξ, η, ζ)yk, z =
7

∑
k=1

Nk(ξ, η, ζ)zk. (A19)

Their partial differential with respect to ξ, η and ζ are given as follows:

∂N1
∂ξ = (1− ζ)(3− η + 2ζ)/β,

∂N2
∂ξ = (1− ζ)/(1− ξ)2,

∂N3
∂ξ = ∂N7

∂ξ = 0,
∂N4
∂ξ = 4(1− ζ2)/β,

∂N5
∂ξ = (1 + ξ)(−3 + η + 2ζ)/β,

∂N6
∂ξ = (1 + ζ)/(1− ξ)2,

(A20)

∂N1
∂η = (1− ζ)(−3 + ξ − 2ζ)/γ,

∂N2
∂η = ∂N6

∂η = 0,
∂N3
∂η = (1− ξ)/(1− η)2,

∂N4
∂η = 4(1− ζ2)/γ,

∂N5
∂η = (1 + ζ)(−3 + η + 2ζ)/γ,

∂N7
∂η = (1 + ζ)/(1− η)2,

(A21)

∂N1
∂ζ = (1− ξ + η − 3ξη + 8ζ)/(2α),

∂N2
∂ζ = −(1 + ξ)/[2(1− ξ)],

∂N3
∂ζ = −(1 + η)/[2(1− η)],

∂N4
∂ζ = −8ζ/α,

∂N5
∂ζ = (−1− ξ − η + 3ξη + 8ζ)/(2α),

∂N6
∂ζ = (1 + ξ)/[2(1− ξ)]

∂N7
∂ζ = (1 + η)/[2(1− η)],

(A22)

where α = (1− ξ)(1− η), β = α(1− ξ), γ = α(1− η).

4. 8-seed-three-edge-infinite block
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This type of infinite element is extended from Lagrangian 27-node brick, which is
shown in Figure 4e. Three directions (ξ = 1, η = 1, ζ = 1) in the normalized domain are
mapped to infinity. The shape functions [17,52] are simplified

N1 = −8ξηζ/α,
N2 = 4ηζ(1 + ξ)/α,
N3 = 4ξζ(1 + η)/α,
N4 = −2ζ(1 + ξ)(1 + η)/α,
N5 = 4ξη(1 + ζ)/α,
N6 = −2η(1 + ξ)(1 + ζ)/α,
N7 = −2ξ(1 + η)(1 + ζ)/α,
N8 = (1 + ξ)(1 + η)(1 + ζ)/α,

(A23)

where α = (1− ξ)(1− η)(1− ζ) with coordinate transformation

x =
8

∑
k=1

Nk(ξ, η, ζ)xk, y =
8

∑
k=1

Nk(ξ, η, ζ)yk, z =
8

∑
k=1

Nk(ξ, η, ζ)zk. (A24)

Their partial differential with respect to ξ, η and ζ are listed as follows:

∂N1
∂ξ = −8ηζ/β,

∂N2
∂ξ = 8ηζ/β,

∂N3
∂ξ = 4ζ(1 + η)/β,

∂N4
∂ξ = −4ζ(1 + η)/β,

∂N5
∂ξ = −4η(1 + ζ)/β,

∂N6
∂ξ = 4η(1 + ζ)/β,

∂N7
∂ξ = −2(1 + η)(1 + ζ)/β,

∂N8
∂ξ = 2(1 + η)(1 + ζ)/β,

(A25)

∂N1
∂η = −8ξζ/γ,

∂N2
∂η = 4ζ(1 + ξ)/γ,

∂N3
∂η = 8ξζ/γ,

∂N4
∂η = −4ζ(1 + ξ)/γ,

∂N5
∂η = 4ξ(1 + ζ)/γ,

∂N6
∂η = −2(1 + ξ)(1 + ζ)/γ,

∂N7
∂η = −4ξ(1 + ζ)/γ,

∂N8
∂η = 2(1 + ξ)(1 + ζ)/γ,

(A26)

∂N1
∂ζ = −8ξη/δ,

∂N2
∂ζ = 4η(1 + ξ)/δ,

∂N3
∂ζ = 4ξ(1 + η)/δ,

∂N4
∂ζ = −2(1 + ξ)(1 + η)/δ,

∂N5
∂ζ = 8ξη/δ,

∂N6
∂ζ = −4η(1 + ξ)/δ,

∂N7
∂ζ = −4ξ(1 + η)/δ,

∂N8
∂ζ = 2(1 + ξ)(1 + η)/δ,

(A27)

in which β = α(1− ξ), γ = α(1− η) and δ = α(1− ζ).
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