Bioconjugation Strategy for Ceramic Membranes Decorated with Candida Antarctica Lipase B—Impact of Immobilization Process on Material Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods—Ceramic Material Characterization
2.3. Procedure for Grafting of Aluminum Oxide
2.4. Functionalization Process of Ceramic Supports
2.5. Enzyme Immobilization
2.6. Transesterification in the Membrane Reactor
3. Functionalization of Ceramic Supports
3.1. Functionalization of Ceramic Powder Al2O3
Ceramic Membrane Functionalization
3.2. Enzyme Immobilization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dias, G.S.; Bandeira, P.T.; Jaerger, S.; Piovan, L.; Mitchell, D.A.; Wypych, F.; Krieger, N. Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzym. Microb. Technol. 2019, 130, 109365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-C.; Gao, S.-X.; Sheng, G.-P. Immobiling enzyme-like ligand in the ultrafiltration membrane to remove the micropollutant for the ultrafast water purification. J. Membr. Sci. 2021, 636, 119566. [Google Scholar] [CrossRef]
- Bilal, M.; Jing, Z.; Zhao, Y.; Iqbal, H.M.N. Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal. Agric. Biotechnol. 2019, 19, 101174. [Google Scholar] [CrossRef]
- Baig, U.; Alam, M.F.; Sajid, M. One-pot synthesis of magnetite based polymeric-inorganic nanocomposite: Structural, morphological, spectroscopic and enzyme immobilization studies. Colloid Interface Sci. Commun. 2021, 40, 100337. [Google Scholar] [CrossRef]
- Kujawa, J.; Głodek, M.; Li, G.; Al-Gharabli, S.; Knozowska, K.; Kujawski, W. Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. Sci. Total Environ. 2021, 801, 149647. [Google Scholar] [CrossRef] [PubMed]
- Lassouane, F.; Aït-Amar, H.; Amrani, S.; Rodriguez-Couto, S. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour. Technol. 2019, 271, 360–367. [Google Scholar] [CrossRef]
- Vineh, M.B.; Saboury, A.A.; Poostchi, A.A.; Ghasemi, A. Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO2 nanocomposite. Int. J. Biol. Macromol. 2020, 164, 4403–4414. [Google Scholar] [CrossRef] [PubMed]
- Ariaeenejad, S.; Jokar, F.; Hadian, P.; Ma’mani, L.; Gharaghani, S.; Fereidoonnezhad, M.; Salekdeh, G.H. An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: Xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles. Int. J. Biol. Macromol. 2020, 164, 3462–3473. [Google Scholar] [CrossRef]
- Sáringer, S.; Rouster, P.; Szilagyi, I. Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. J. Colloid Interface Sci. 2021, 590, 28–37. [Google Scholar] [CrossRef]
- Shivudu, G.; Chandraraj, K.; Selvam, P. Production of xylooligosaccharides from xylan catalyzed by endo-1,4-β-D-xylanase-immobilized nanoscale carbon, silica and zirconia matrices. Mol. Catal. 2020, 484, 110745. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Xin, X.; Wang, L.; Li, H.; Zheng, X.; Jiang, Y. Immobilization laccase on heterophase TiO2 microsphere as a photo-enzyme integrated catalyst for emerging contaminants degradation under visible light. Appl. Mater. Today 2020, 21, 100810. [Google Scholar] [CrossRef]
- Lin, J.; Lai, Q.; Liu, Y.; Chen, S.; Le, X.; Zhou, X. Laccase–methacrylyol functionalized magnetic particles: Highly immobilized, reusable, and efficacious for methyl red decolourization. Int. J. Biol. Macromol. 2017, 102, 144–152. [Google Scholar] [CrossRef]
- Aslani, E.; Abri, A.; Pazhang, M. Immobilization of trypsin onto Fe3O4@SiO2–NH2 and study of its activity and stability. Colloids Surf. B Biointerfaces 2018, 170, 553–562. [Google Scholar] [CrossRef]
- Cen, Y.-K.; Liu, Y.-X.; Xue, Y.-P.; Zheng, Y.-G. Immobilization of Enzymes in/on Membranes and their Applications. Adv. Synth. Catal. 2019, 361, 5500–5515. [Google Scholar] [CrossRef]
- Gul, I.; Wang, Q.; Jiang, Q.; Fang, R.; Tang, L. Enzyme immobilization on glass fiber membrane for detection of halogenated compounds. Anal. Biochem. 2020, 609, 113971. [Google Scholar] [CrossRef] [PubMed]
- Hoog Antink, M.M.; Sewczyk, T.; Kroll, S.; Árki, P.; Beutel, S.; Rezwan, K.; Maas, M. Proteolytic ceramic capillary membranes for the production of peptides under flow. Biochem. Eng. J. 2019, 147, 89–99. [Google Scholar] [CrossRef]
- An, Y.; Dong, S.; He, Z.; Xie, Q.; Huang, T. Heteroatom-doped Co-MOF derivative enhancing immobilization and activity of two enzymes for small-molecules electrochemical determination. Microchem. J. 2022, 172, 106942. [Google Scholar] [CrossRef]
- Nadar, S.S.; Vaidya, L.; Rathod, V.K. Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. Int. J. Biol. Macromol. 2020, 149, 861–876. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, L.; Liu, D.; Du, W.; Wang, Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renew. Sustain. Energy Rev. 2018, 91, 793–801. [Google Scholar]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Zeuner, B.; Ovtar, S.; Persson, Å.H.; Foghmoes, S.; Berendt, K.; Ma, N.; Kaiser, A.; Negra, M.D.; Pinelo, M. Surface treatments and functionalization of metal-ceramic membranes for improved enzyme immobilization performance. J. Chem. Technol. Biotechnol. 2020, 95, 993–1007. [Google Scholar] [CrossRef]
- de Cazes, M.; Belleville, M.P.; Mougel, M.; Kellner, H.; Sanchez-Marcano, J. Characterization of laccase-grafted ceramic membranes for pharmaceuticals degradation. J. Membr. Sci. 2015, 476, 384–393. [Google Scholar] [CrossRef]
- Zeuner, B.; Ma, N.; Berendt, K.; Meyer, A.S.; Andric, P.; Jørgensen, J.H.; Pinelo, M. Immobilization of alcohol dehydrogenase on ceramic silicon carbide membranes for enzymatic CH3OH production. J. Chem. Technol. Biotechnol. 2018, 93, 2952–2961. [Google Scholar] [CrossRef]
- Vitola, G.; Mazzei, R.; Giorno, L. Enzyme-loaded membrane reactor to degrade a pesticide in vegetative waters. J. Membr. Sci. 2021, 635, 119438. [Google Scholar] [CrossRef]
- Das, A.; Singh, J.; Yogalakshmi, K.N. Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. Int. Biodeterior. Biodegrad. 2017, 117, 183–189. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, S.; Ge, Y.; Li, Z. Enhanced removal of crystal violet in water using a facile-fabricated and environmental-friendly laccase immobilized composite membrane. Process Biochem. 2020, 98, 122–130. [Google Scholar] [CrossRef]
- Barrios-Estrada, C.; Rostro-Alanis, M.D.J.; Parra, A.L.; Belleville, M.-P.; Sanchez-Marcano, J.; Iqbal, H.M.N.; Parra-Saldívar, R. Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. Int. J. Biol. Macromol. 2018, 108, 837–844. [Google Scholar] [CrossRef]
- De Cazes, M.; Belleville, M.-P.; Petit, E.; Salomo, M.; Bayer, S.; Czaja, R.; De Gunzburg, J.; Sanchez-Marcano, J. Erythromycin degradation by esterase (EreB) in enzymatic membrane reactors. Biochem. Eng. J. 2016, 114, 70–78. [Google Scholar] [CrossRef]
- Su, Z.; Luo, J.; Sigurdardóttir, S.B.; Manferrari, T.; Jankowska, K.; Pinelo, M. An enzymatic membrane reactor for oligodextran production: Effects of enzyme immobilization strategies on dextranase activity. Carbohydr. Polym. 2021, 271, 118430. [Google Scholar] [CrossRef]
- Huang, S.; Gong, Y.; Li, Y.; Ruan, S.; Azam, S.M.R.; Duan, Y.; Ye, X.; Ma, H. Preparation of ACE-inhibitory peptides from milk protein in continuous enzyme membrane reactor with gradient dilution feeding substrate. Process Biochem. 2020, 92, 130–137. [Google Scholar] [CrossRef]
- Su, Z.; Luo, J.; Li, X.; Pinelo, M. Enzyme membrane reactors for production of oligosaccharides: A review on the interdependence between enzyme reaction and membrane separation. Sep. Purif. Technol. 2020, 243, 116840. [Google Scholar] [CrossRef]
- Sitanggang, A.B.; Sumitra, J.; Budijanto, S. Continuous production of tempe-based bioactive peptides using an automated enzymatic membrane reactor. Innov. Food Sci. Emerg. Technol. 2021, 68, 102639. [Google Scholar] [CrossRef]
- Kujawa, J.; Kujawski, W.; Koter, S.; Rozicka, A.; Cerneaux, S.; Persin, M.; Larbot, A. Efficiency of grafting of Al2O3, TiO2 and ZrO2 powders by perfluoroalkylsilanes. Colloids Surf. A 2013, 420, 64–73. [Google Scholar] [CrossRef]
- Kujawa, J.; Cerneaux, S.; Kujawski, W. Characterization of the surface modification process of Al2O3, TiO2 and ZrO2 powders by PFAS molecules. Colloids Surf. A 2014, 447, 14–22. [Google Scholar] [CrossRef]
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003, 261, 402–410. [Google Scholar] [CrossRef]
- Kujawa, J.; Al-Gharabli, S.; Kujawski, W.; Knozowska, K. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation. ACS Appl. Mater. Interfaces 2017, 9, 6571–6590. [Google Scholar] [CrossRef]
- Good, R.J. Spreading pressure and contact angle. J. Colloid Interface Sci. 1975, 52, 308–313. [Google Scholar] [CrossRef]
- Rowley, H.H.; Innes, W.B. Relationships between the spreading pressure, adsorption, and wetting. J. Phys. Chem. 1942, 46, 694–705. [Google Scholar] [CrossRef]
- Bikerman, J.J. The Nature of the equilibrium spreading pressure. Colloid Polym. Sci. 1963, 191, 33–35. [Google Scholar] [CrossRef]
- Kujawa, J.; Głodek, M.; Koter, I.; Ośmiałowski, B.; Knozowska, K.; Al-Gharabli, S.; Dumée, L.F.; Kujawski, W. Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization—Material Approach. Materials 2021, 14, 201. [Google Scholar] [CrossRef]
- Bahena, J.L.R.; Cabrera, A.R.; Valdivieso, A.L.; Urbina, R.H. Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina–aqueous electrolyte interface. Sep. Sci Technol. 2002, 37, 1973–1987. [Google Scholar] [CrossRef]
- Yang, D.; Krasowska, M.; Sedev, R.; Ralston, J. The unusual surface chemistry of α-Al2O3 (0001). Phys. Chem. Chem. Phys. 2010, 12, 13724–13729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Banfield, J.F. Interatomic Coulombic interactions as the driving force for oriented attachment. CrystEngComm 2014, 16, 1568–1578. [Google Scholar] [CrossRef]
- Christenson, H.K. DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids. J. Chem. Soc. 1984, 80, 1933–1946. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ong, B.C. Critical zeta potential and the Hamaker constant of oxides in water. Powder Technol. 2003, 134, 249–254. [Google Scholar] [CrossRef]
- Liu, Y.D.; Choi, H.J. Electrorheological fluids: Smart soft matter and characteristics. Soft Matter 2012, 8, 11961–11978. [Google Scholar] [CrossRef]
- Leong, Y.-K.; Ong, B.-C. Polyelectrolyte-mediated interparticle forces in aqueous suspensions: Molecular structure and surface forces relationship. Chem. Eng. Res. Des. 2015, 101, 44–55. [Google Scholar] [CrossRef]
- Dalvi, V.; Rossky, P.J. Molecular origins of fluorocarbon hydrophobicity. Proc. Natl. Acad. Sci. USA 2010, 107, 13603–13607. [Google Scholar] [CrossRef] [Green Version]
- Černochová, P.; Blahová, L.; Medalová, J.; Nečas, D.; Michlíček, M.; Kaushik, P.; Přibyl, J.; Bartošíková, J.; Manakhov, A.; Bačáková, L.; et al. Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Sci. Rep. 2020, 10, 9357. [Google Scholar] [CrossRef]
- Aminian, A.; Shirzadi, B.; Azizi, Z.; Maedler, K.; Volkmann, E.; Hildebrand, N.; Maas, M.; Treccani, L.; Rezwan, K. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 184–194. [Google Scholar] [CrossRef]
- de Barros, H.R.; Santos, M.; Barbosa, L.; Piovan, L.; Riegel-Vidotti, I. Physicochemical Study of the Interaction between Gold Nanoparticles and Lipase from Candida sp. (CALB): Insights into the Nano-Bio Interface. J. Braz. Chem. Soc. 2019, 30, 2231–2242. [Google Scholar] [CrossRef]
- Schultz, N.; Metreveli, G.; Franzreb, M.; Frimmel, F.H.; Syldatk, C. Zeta potential measurement as a diagnostic tool in enzyme immobilization. Colloids Surf. B 2008, 66, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Uppenberg, J.; Hansen, M.T.; Patkar, S.; Jones, T. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 1994, 2, 293–308. [Google Scholar] [CrossRef] [Green Version]
Sample | Hydrodynamic Diameter [nm] | ζ Potential [mV] | Conductivity [µS cm−1] | Electrophoretic Mobility [µm cm V−1 s−1] |
---|---|---|---|---|
Al2O3 | 125 ± 11 | 42.9 ± 2.2 | 5.8 ± 0.7 | 3.35 ± 0.37 |
Al2O3–silane | 243 ± 15 | 35.2 ± 1.8 | 3.6 ± 0.3 | 3.08 ± 0.25 |
Al2O3–silane–enzyme | 357 ± 23 | 39.6 ± 1.3 | 2.4 ± 0.5 | 2.74 ± 0.21 |
Sample | CAcor [deg] | Wadh [mN m−1] | S [mN m−1] |
---|---|---|---|
15 kDa | |||
Pristine 15 kDa | 33.6 ± 1.5 | 133.4 ± 2.2 | −12.16 ± 0.28 |
+ Silane | 83.5 ± 1.5 | 81.0 ± 2.0 | −64.56 ± 0.35 |
+ Silane + Enzyme | 58.9 ± 1.5 | 110.4 ± 2.1 | −35.20 ± 0.38 |
+ Silane + Enzyme + Process | 92.3 ± 1.5 | 69.9 ± 1.5 | −75.72 ± 0.32 |
50 kDa | |||
Pristine 50 kDa | 29.1 ± 1.5 | 136.41 ± 2.2 | −9.19 ± 0.21 |
+ Silane | 72.3 ± 1.5 | 94.93 ± 2.0 | −50.67 ± 0.33 |
+ Silane + Enzyme | 57.2 ± 1.5 | 112.24 ± 1.9 | −33.36 ± 0.30 |
+ Silane + Enzyme + Process | 92.9 ± 1.5 | 69.12 ± 1.4 | −76.48 ± 0.55 |
150 kDa | |||
Pristine 150 kDa | 30.7 ± 1.5 | 135.40 ± 2.1 | −10.20 ± 0.31 |
+ Silane | 77.4 ± 1.5 | 88.68 ± 2.0 | −56.92 ± 0.61 |
+ Silane + Enzyme | 69.8 ± 1.5 | 97.94 ± 1.9 | −47.66 ± 0.55 |
+ Silane + Enzyme + Process | 88.4 ± 1.5 | 74.83 ± 1.8 | −70.77 ± 0.48 |
300 kDa | |||
Pristine 300 kDa | 32.5 ± 1.5 | 134.20 ± 2.1 | −11.40 ± 0.25 |
+ Silane | 75.6 ± 1.5 | 90.90 ± 2.0 | −54.70 ± 0.36 |
+ Silane + Enzyme | 65.7 ± 1.5 | 102.76 ± 1.9 | −42.84 ± 0.32 |
+ Silane + Enzyme + Process | 94.6 ± 1.5 | 66.96 ± 1.4 | −78.64 ± 0.41 |
Cut-Off | Amount of Lipase Immobilized [mg] | Productivity [µmol h−1] | Productivity/mg of Lipase[µmol h−1mg−1] |
---|---|---|---|
15 kDa | 0.84 ± 0.18 | 68.9 ± 14.5 | 82.1 ± 34.9 |
50 kDa | 1.49 ± 0.18 | 75.0 ± 17.9 | 50.3 ± 18.1 |
150 kDa | 2.11 ± 0.19 | 51.2 ± 5.5 | 24.3 ± 4.8 |
300 kDa | 3.26 ± 0.18 | 43.6 ± 6.9 | 13.4 ± 2.9 |
Cut-Off | Amount of Lipase Immobilized [mg] | Productivity [µmol h−1] | Productivity/mg of Lipase [µmol h−1 mg−1] |
---|---|---|---|
15 kDa | 0.84 ± 0.18 | 60.3 ± 9.5 | 71.9 ± 26.8 |
300 kDa | 3.26 ± 0.18 | 99.7 ± 14.9 | 30.6 ± 6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawa, J.; Głodek, M.; Koter, I.; Li, G.; Knozowska, K.; Kujawski, W. Bioconjugation Strategy for Ceramic Membranes Decorated with Candida Antarctica Lipase B—Impact of Immobilization Process on Material Features. Materials 2022, 15, 671. https://doi.org/10.3390/ma15020671
Kujawa J, Głodek M, Koter I, Li G, Knozowska K, Kujawski W. Bioconjugation Strategy for Ceramic Membranes Decorated with Candida Antarctica Lipase B—Impact of Immobilization Process on Material Features. Materials. 2022; 15(2):671. https://doi.org/10.3390/ma15020671
Chicago/Turabian StyleKujawa, Joanna, Marta Głodek, Izabela Koter, Guoqiang Li, Katarzyna Knozowska, and Wojciech Kujawski. 2022. "Bioconjugation Strategy for Ceramic Membranes Decorated with Candida Antarctica Lipase B—Impact of Immobilization Process on Material Features" Materials 15, no. 2: 671. https://doi.org/10.3390/ma15020671
APA StyleKujawa, J., Głodek, M., Koter, I., Li, G., Knozowska, K., & Kujawski, W. (2022). Bioconjugation Strategy for Ceramic Membranes Decorated with Candida Antarctica Lipase B—Impact of Immobilization Process on Material Features. Materials, 15(2), 671. https://doi.org/10.3390/ma15020671