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Abstract: In the process of the rutting test, the air-void characteristics in asphalt mixture specimens
are a dynamic change process. It is of great significance to systematically study the correlation
between the change of air-void characteristics and the depth of the rutting slab and establish a
relationship with damage. In this paper, the air-void information of rutting specimen sections with
different loading cycles (500, 1000, 1500, 2000, 2500, and 3000 times) is obtained by two-dimensional
image technology. The dynamic change process of the micro characteristics of internal air voids of
two graded asphalt mixtures (AC-13 and AC-16) under cyclic wheel load is analyzed, and it is used
as an index to characterize the microstructure damage of the asphalt mixture. The results show that
the variation of air-void distribution, air-void shape characteristics, and air-void fractal dimension
with the loading process can well characterize the permanent deformation law of the rutting slab.
The fractal dimension of the air void increases with the increase in load. It is a dynamic process in
which the air-void content changes with crack initiation and propagation. After rutting deformation,
the total air-void area and average air-void size of the sample increase, and the total air-void number
decreases. Because microcracks are formed in the specimen after rutting damage, the aspect ratio of
the air void increases, and the roundness value decreases.

Keywords: air-void characteristics; fractal dimension; crack initiation and propagation; rutting damage

1. Introduction

An asphalt mixture is a composite material composed of aggregates, air voids, mastic,
and other multiphase media, which is generally considered a continuous medium. How-
ever, the anisotropy of the microstructure leads to complex mechanical states and complex
interactions between the components of the asphalt mixture. Among these, the air-void
characteristics significantly impact the mechanical properties of the asphalt mixture. We
found that two specimens with the same gradation and same air-void content may have
different air-void numbers and average air-void size distributions. Specimens with the
same air-void content may be composed of air voids of different sizes according to a certain
combination. Therefore, two specimens with the same air-void content may also have
different failures under the same load conditions. Specimens with larger air voids are more
prone to relatively early failure compared with specimens with smaller air-void sizes. This
is because once the specimen is subjected to load conditions, the possibility of inducing
larger strains increases. In turn, it may lead to internal structural instability, and the existing
air voids may continue to expand in the specimen and connect (or merge with other air
voids), resulting in serious damage [1]. The increase in air void will reduce the resistance
of the asphalt mixture to pavement damage. This is because the air void cannot transfer
the load, and the material becomes weaker due to the decrease in the effective area (The
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concentrated force of each area is higher). The air-void content of the asphalt mixture shall
be within a reasonable range to avoid adverse damage such as rutting [2]. Therefore, the
proper compaction degree is significant for the performance of asphalt materials. The com-
paction index is widely used in engineering practice to ensure good service performance of
asphalt mixture [3,4].

In recent years, with the progress of technology and the improvement of equipment
available, the digital imaging technology of asphalt concrete is an effective tool for evalu-
ating the internal structure. Researchers have been able to use digital image technology
to monitor the internal failure process of engineering materials and connect this failure
with the measured strain. Internal failure in materials can be represented in many forms,
such as specific voids [5], crack surfaces [6,7], and spacing between cracks [8,9]. Air voids
play an important role in characterizing the performance of asphalt mixture, and their
distribution is very important for determining the overall mechanical response of asphalt
mixture [10–12]. Under load, existing air voids may merge, resulting in microcracks at the
interface between aggregate and mastic. Microcracks continue to expand and grow under
deformation, forming macro cracks and increasing air voids [13]. Xu G et al. [14] extracted
the internal void structure characteristics of asphalt mixture through an X-ray computed
tomography (CT) test and three-dimensional (3D) image reconstruction technology. The
change of air-void distribution before and after the freeze–thaw test is analyzed to evaluate
the structural evolution of materials under freeze–thaw cycles. Yang B et al. [15] studied
the correlation between the performance of porous asphalt mixture and the three pore
characteristic parameters obtained by the CT. It was found that the micro pore character-
istic parameters had little effect on high temperature, humidity sensitivity, and cooling
performance but had a strong correlation with spalling resistance, permeability, connec-
tivity, noise reduction, and other properties. Zhang Z et al. [16] used the connective void
content of three types of asphalt mixtures was employed to characterize the damage to the
corresponding asphalt mixture sample under freeze–thaw cyclic loading. The variation of
connective void content revealed the nonlinear characteristics of asphalt mixture damage
accumulation. Kassem Emad et al. [17] used several mechanical tests (the overlay tester,
Hamburg Wheel-Tracking Test (HWTT), and a repeated tensile test) to characterize the
influence of air-void distributions on mechanical properties and response of asphalt mix-
tures. The results show that air voids play an important role in influencing the performance
of asphalt mixtures. Xu H et al. [18] used a set of image analysis programs to extract
the internal structural characteristics of asphalt mixture during freeze–thaw cycles. The
evolution of the internal void structure of the asphalt mixture during the freeze–thaw cycle
was evaluated. Hassan et al. [19] analyzed the air void and crack characteristics caused by
stress and strain by using a two-dimensional (2D) image analysis method and took them
as the damage index to characterize the microstructure damage of the asphalt mixture.
Therefore, it is very meaningful to analyze the damage behavior of asphalt mixture by
describing the change characteristics of air voids in the deformation process of samples.
However, previous researchers used image analysis to characterize the void of asphalt
mixture, focusing on the change value before and after the test and less on the development
of the whole process of void during the test. At the same time, the change of air-void
content is more used as an evaluation indicator, and other intuitive and effective indicators
are lacking. Few studies have used the rutting test to characterize the change in the internal
voids of materials.

The purpose of this paper is to quantify the change of air-void characteristics as a
damage characterization method by analyzing the section image information of rutting
specimens during the test. This method can not only be used to quantify the changes of
air-void characteristics in the process of damage development but also to determine the
damage concentration area and use the determined air-void parameters to describe the
severity of the damage. Although most of the current research involves 3D analysis, the
internal structure of materials is obtained through various advanced scanning techniques.
It is also important to understand the basic 2D measurement in damage analysis because it
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can provide a reference for specific problems. Using the same concept, further analysis of
damage can be extended to complex problems in 3D or four-dimensional (4D) analysis [20].
At present, most of the research focuses on the change of meso-void characteristics of
the whole specimen before and after wheel loading. Few studies have explained the air-
void distribution of the whole wheel load area section in the whole process of loading
and linked the air-void distribution with the change of air-void fractal dimension and
permanent deformation of the asphalt mixture. This study is a comprehensive study
on the variation law of internal air-void characteristics of two kinds of asphalt mixtures
(AC-13 and AC-16) with the loading cycles of the rutting test. It is the basic work to
explain the evolution of internal defects of mixtures under wheel load and evaluate the
high-temperature performance of asphalt mixtures from a meso perspective.

2. Materials and Methods
2.1. Materials

In this study, the dense gradation, namely AC-13 and AC-16, with the nominal maxi-
mum aggregate size of 13 and 16 mm, was selected. Qinhuangdao 70# asphalt was selected
as an asphalt binder, and the main physical properties are given in Table 1. The coarse
aggregate is limestone, the fine aggregate is machine-made sand (0–5 mm), and the filler
is limestone powder. Asphalt mixture samples are prepared under the optimum asphalt
binder content obtained by the Marshall method [21]. The aggregate gradation, optimum
asphalt binder content, and air-void content of the two asphalt mixtures are shown in
Table 2. The air-void content of all types of samples is controlled within ±0.5% of the range
shown in Table 2.

Table 1. The properties of asphalt binders.

Parameter Qinhuangdao-70# Requirements Test Value Test
Method

Penetration (25 ◦C, 5 s, 100 g) 0.1 mm 60~80 64 T0604
Penetration index (PI) −1.5~+1.0 −0.32 T0604

Ductility (10 ◦C) ≥20 42 T0605
Ductility (15 ◦C) ≥100 >100

Softening point TR&B/°C ≥46 48.0 T0606
Solubility/% ≥99.5 99.72 T0607

Flash point/◦C ≥260 282 T0611
Density (15 ◦C) Measured 1.037 T0603

Thin Film Oven Test
(TFOT)

Mass loss/% ≤±0.8 −0.177 T0609
Penetration ratio/% ≥61 65.4 T0604
Ductility (10 ◦C)/cm ≥6 9.8 T0605

Table 2. Aggregate gradations and mix design results of AC mixtures.

Sieve Size (mm) Passing Percent (%)

Gradation AC-16 AC-13
19 100 -
16 95 100

13.2 85 94.8
9.5 71.2 81.5

4.75 35.4 41.2
2.36 23.9 27.6
1.18 20.4 23.3
0.6 16.2 18.2
0.3 13.0 14.2

0.15 11.1 12.0
0.075 7.8 8.0

Optimum asphalt content (%) 4.6 4.8
Air-void content (%) 4.0 4.4
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2.2. Specimen Fabrication and Rutting Test

According to the Chinese code [22], the mixing temperature of asphalt mixture con-
taining petroleum asphalt is 163 ◦C. The compaction temperature of the rutting specimen
is 100 ◦C during the forming process. Therefore, the rolling equipment and test mold shall
be preheated to 100 ◦C in advance. The roller load is set as 9 kN (line load 300 N/m). The
manufacture of a rutting specimen consists of two steps: (1) rolling the rutting specimen
for two cycles with a roller (moving back and forth on the sample is defined as one cycle)
and (2) rolling the sample for 12 cycles after rotating it 180◦. The size of the final formed
rutting specimen is 300 (length) × 300 (width) × 50 mm (height). In order to accurately
obtain the change of specimen section after different loading cycles, the plate is cut into
three parts by an asphalt mixture cutter along the wheel loading direction before the test,
60 mm in the middle and 120 mm on both sides. Therefore, 3 specimens named 1, 2, and 3
are obtained, as shown in Figure 1.
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Figure 1. Specimen preparation and cutting.

The rutting test is carried out by using the automatic asphalt mixture rutting in-
strument to study the rutting development of the asphalt mixture. The device is mainly
composed of rubber wheels and a fixed platform. The diameter of the rubber wheel is
designed to be 200 mm, and the contact width of the wheel specimen is 50 mm. The stress
applied by the rubber wheel is 0.70 ± 0.05 MPa, and it is loaded back and forth on the
rutting specimen at the rolling speed of 42 r/min. The experimental temperature is set at
60 ◦C [22]. Due to the cutting effect, the overall size of the rutting specimen is reduced by
4 mm. In order to keep the boundary conditions unchanged, 4 mm steel sheets are inserted
on one side to provide a constant lateral force. The details of the rut test are shown in
Figure 2. The cumulative rutting depth changes of the specimens under different loading
times (500, 1000, 1500, 2000, 2500, and 3000) are recorded by the linear variable differential
transformer (LVDT) in the device. In this study, 3 rut specimens of AC-13 and AC-16 are
used, respectively.
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2.3. Image Acquisition and Processing

The industrial camera is used to collect the images of four sections of each specimen
after the corresponding loading times (500, 100, 1500, 2000, 2500, and 3000) to study the
rutting deformation law. Because of the large difference in each specimen section, we only
collected the image information of one of the three samples of each asphalt mixture. When
taking images, the camera is placed on the test bench to ensure the levelness of the camera.
The camera lens is located at the center of the specimen, 50 cm away from the specimen, as
shown in Figure 3.
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Digital image processing uses a series of algorithms to process and analyze digital
images with computers so that the images can meet the needs of human vision, other
equipment, data extraction, etc. [23]. In this section, MATLAB software is used to process
images, including image enhancement, image filtering, image segmentation, and feature
information acquisition. (1) Image enhancement: image enhancement is mainly processed
by histogram equalization, also known as gray-level equalization. The purpose is to convert
the input image into an output image with the same number of pixels at each gray level
through the operation of each pixel in the image. The cross-section image of the asphalt
mixture specimen after gray histogram equalization is shown in Figure 4b. Histogram
equalization function in MATLAB is histeq (f, 256). (2) Image filtering: In this study,
median filtering method is used to filter the image, which is very effective for filtering pulse
interference and image scanning noise. The cross-section of the specimens after median
filtering is shown in Figure 4c. The function of the median filtering operation in MATLAB
is medfilt2 (f). (3) Image segmentation: This research obtains the best threshold value
through the function gray threshold value in MATLAB [24]. According to the function
result, when the threshold value is set to 35, a good segmentation effect can be obtained,
as shown in Figure 4d. Figure 4e shows the acquisition of air-void feature information on
the segmented image using ImageJ software. The whole process is shown in Figure 4. By
comparing with the air-void content of the actual mixture, we selected the air void when
the intensity of the corresponding pixel is in the range of 0 to 20. The air voids are divided
into small air voids (<1 mm2), medium air voids (1–5 mm2), and large air voids (>5 mm2)
according to the size.

2.4. Air-Void Characteristics

Some parameters, such as air-void content, air-void number, air-void shape, and
average air-void size, have been successfully used to characterize the characteristics of
air voids. Among them, the number and average size of air voids are very important in
characterizing the characteristics of air voids. In the study of microstructure damage, the
changes of these parameters (by comparing the parameters during and before deformation)
provide information on the damage degree of rutting specimens with different gradations,
different depths, and different loading accumulation times.
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In 2D images, the shape is usually regarded as the area surrounded by a closed contour
curve. The most commonly used shape factors in image analysis are roundness, circularity,
and aspect ratio. Figure 5 shows air-void shape features defined according to roundness,
circularity, and aspect ratio. The shape factor is usually normalized, ranging from 0 to 1.
A shape factor equal to 1 usually represents the ideal case or maximum symmetry, such
as a circle and sphere [25]. Generally speaking, the crack has a high aspect ratio, and the
circularity and roundness values are low (close to 0.0), showing a flat shape. In this study,
the section information of the specimen before and after the rutting test is obtained through
image analysis. The average air-void size, aspect ratio, circularity, and roundness of the air
void in the whole process of the test are calculated by using Equations (1)–(4) to study the
change of the air void.

Average air voids size =
Total air void area

Number of air void
, (1)

Aspect ratio =
Length of major axis
Length of minor axis

, (2)

Circularity =
4π × Area
Perimeter2 , (3)
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2.5. Fractal Dimension Theory

The fractal dimension reflects the validity of space occupied by complex objects. It is a
measure of the complex shape and irregularity of objects, including Hausdorff dimension,
box-counting method, etc. [26]. Box counting uses a set of square boxes or grids to measure
the length or distance between points on the shape boundary. It can be calculated with
MATLAB software [27]. Figure 6 shows an image of a box array of different sizes (r)
covering the air-void image. In the curves of Log (box number, N) and Log (box size, r),
the boxes containing the pixels of the air-void image are counted (N), which is used to
obtain the fractal dimension, i.e., the slope of the logarithmic regression line. As shown in
Figure 7, it can be seen from the fitting curve of Log N (s)–Log N that the image shows the
self-similar characteristics of the fractal body at different scales. This shows that the fractal
dimension based on 2D images can well reflect the changes in micro-structure. Therefore, it
is feasible to quantitatively characterize the rut section by fractal dimension. We can use
Equation (5) to calculate the fractal dimension. Lower fractal dimensions represent more
stable air-void structures. If the measured air-void areas are the same, different air-void
distributions will produce different fractal dimensions.

FD = − log(N(r))
log(r)

, (5)
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the boxes containing the pixels of the air-void image are counted (N), which is used to 
obtain the fractal dimension, i.e., the slope of the logarithmic regression line. As shown in 
Figure 7, it can be seen from the fitting curve of Log N (s)–Log N that the image shows the 
self-similar characteristics of the fractal body at different scales. This shows that the fractal 
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3. Results
3.1. Correlation between Rutting Performance and Air-Void Characteristics
3.1.1. Rutting Test Results

Rutting depth is an important index to evaluate the rutting resistance of specimens.
The average value of rutting depth measured on different specimens (three samples for
each grading) of the same grading is taken as the rutting test results of this study. The
rutting test results are shown in Figure 8. As shown in Figure 8, the deformation of AC-16
is less than that of AC-13 during the whole flow deformation. Different asphalt mixture
gradation leads to different deformation development of rutting specimens. Later, we
try to explain this phenomenon from the damage analysis of the screenshot image of the
rutting specimen.
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3.1.2. Correlation between Rutting Cumulative Depth and Air-Void Characteristics

Previous studies have found that the damage of the asphalt mixture under load may
first occur in its internal air voids [28]. Therefore, it is of great significance to deeply under-
stand the permanent deformation of the specimen by studying the variation characteristics
of the air voids in the specimen during the rutting test. The correlation between the accu-
mulated rut depth and the air-void characteristics (average air-void size, air-void content,
circularity, and aspect ratio) is shown in Figure 9. In order not to increase the influence of
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other factors, only the air-void characteristics of section 2-A after different loading times
are studied here.
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The cumulative rut depth is linearly related to the average air-void size and aspect
ratio, as shown in Figure 9a,d. With the increase in the average air-void size and aspect
ratio, the cumulative rut depth also increases. At the same time, according to Figure 9c, with
continuous loading, the air void inside the specimen becomes flatter, and the circularity
decreases. At this time, the internal damage of the specimen increases, and it is more prone
to damage. It can be seen from Figure 9b that with the increase in cumulative rut depth,
the air-void content first increases, then decreases, and finally tends to a stable value. This
is mainly because the number of air voids will first increase rapidly under the load. With
the increase in load, the air voids in the specimen are continuously compacted and merged
into larger air voids, finally forming cracks. Therefore, the air-void content decreases to
a certain extent. This is consistent with Ma X et al.’s research on two possible air-void
evolution laws in the mixture [29]. This indicates that under load, the change of internal air
voids, along with the initiation and propagation of cracks, is a dynamic process, which is of
great significance to the study of internal damage of rut specimens.

3.1.3. Correlation between Rutting Cumulative Depth and Air-Void Fractal Dimension

Based on the fractal theory, the relationship between the fractal dimension of air voids
and the rutting depth of rutting specimens is studied. It solves the difficulty of measuring
the deformation of each layer in the sample by a conventional test method. The measured
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fractal dimensions of the AC-13 and AC-16 sections vary with the loading cycles, as shown
in Figure 10. For the relationship between fractal dimension and rutting depth, we only
analyze the fractal results of section 2-A, and the results are shown in Figure 11. The
fractal dimension is related to the complexity and disorder of surface morphology, and
more complex image surfaces have higher fractal dimensions [30]. In general, the fractal
dimension of air voids increases with the increase in loading times. In other words, with
the increase in loading times, the air-void complexity increases. This is consistent with
the formation of many irregularly shaped air voids and the increase in roughness in the
specimen section during the test.
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By studying the correlation between rutting depth and air-void fractal dimension, it
is found that the value of the fractal dimension is linearly correlated with rutting depth.
Therefore, fractal theory can reliably study the deformation law of rutting samples. With
the development of deformation, the fractal dimension of cross-section air voids increases
gradually. During the test, air voids of all sizes are compacted under the wheel load and
create new air voids, especially in the area below the load. With the development of rutting
depth, new air voids appear, and the old air voids fuse and merge into micro cracks, which
increases the complexity and dispersion in the section. Obviously, the fractal results of air
voids accord with the physical significance of fractal theory.
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3.2. Air-Void Structure and Rutting Specimen Damage
3.2.1. Change of Air-Void Content

In order to characterize the internal damage of the material by the change of the
air-void content of the specimen. The changes in the air-void content of the 2-A section of
the two mixtures with the loading cycles and the height along the specimen before and
after loading are studied, respectively, as shown in Figure 12.
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The air-void content of the two rutting specimens first increases, then decreases, and
finally stabilizes with the increase in loading cycles, as shown in Figure 12a. This is mainly
due to the formation of a large number of air voids in the loading area under compression
and shear at the early stage of loading. The newly formed air voids are more than the air
voids used for fusion and forming microcracks, so the air-void content will have a rising
process. With the increase in loading cycles, a part of the internal air void of the rutting
specimen is fused and merged to form micro cracks under load, and a part of the air void is
compacted, so the internal air-void content will have a decline process. In the last stage,
damage occurred inside the specimen. The change process of air voids is similar to the
previous two stages, but this process is not as violent as before. Finally, the air voids will
gradually tend to a stable value. Due to the lack of laboratory technology to accurately
capture the air-void distribution of asphalt mixture, previous research results are based
on the air-void content before and after the test [31]. It is of little significance to study the
damage development process.

It can be seen from Figure 12b that before and after the test, the area with high air-void
content change mainly occurs in the middle and upper part, which indicates that under the
action of wheel load, this area is subject to more shear deformation, resulting in more new
air voids. For AC-13, the air-void content in the middle area of the section decreases after
the test. Because this area is mainly subjected to compressive stress and the air voids are
continuously compacted, the air voids are reduced. The increase in bottom air-void content
indicates that it is subjected to shear stress. For AC-16, the change of air-void fraction in the
middle area is not obvious, and there is a certain decrease in the bottom. This is mainly due
to the large particle size of aggregate in AC-16 and the good performance of the skeleton in
the middle area, which can withstand large shear stress failure.

3.2.2. Damage Analysis of Rutting Specimen

Previous studies have shown that the load transfer capacity of asphalt mixture mainly
depends on the interaction between aggregate and mortar, and macro cracks appear at the
interface between aggregate and mortar [32]. Figure 13 shows the change process of air-
void shape of the two mixtures under wheel load and also vividly represents the formation
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process of macro cracks in the mixture. As shown in Figure 13b, under the action of wheel
load, the air void develops along the interface between aggregate and asphalt mortar. This
process leads to the deformation, expansion, and fusion of the air void and promotes the
generation of macro cracks in the mixture. Micro damage also promotes the bond failure or
damage of asphalt mortar, further has a more adverse impact on the bonding performance
between aggregate and asphalt mortar, and aggravates the degradation of internal structure
under a wheel load. In addition, it can be seen from Figure 13a that the load also makes the
aggregate with smaller particle size in the mixture crushed, which destroys the internal
skeleton structure of the mixture and further accelerates the damage of the asphalt mixture.
Comparing the two mixtures, it can be seen that this phenomenon is more obvious for
the mixture with a smaller maximum particle size of aggregate. The damage is not only
the increase in air void but also accompanied by the crushing of many aggregates and the
overflow of asphalt mortar. This is different from Li P et al.’s result that only aggregate
movement exists in asphalt mixture under pressure [33], which provides a new idea for the
study of mixture damage.
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3.2.3. Change of Air-Void Characteristics

Figure 14 shows the changes in total air-void number, total air-void area, and av-
erage air-void size of the two graded mixtures before and after the rutting test. These
parameters have been successfully applied to characterize the characteristic changes of
voids and have been well-established in previous research work [34,35]. In the study of
microstructure damage, the changes of these parameters (by comparing the parameters
before and after deformation) provide valuable information on the severity of damage at
different depths in compacted asphalt mixture specimens. The bar graph compares changes
in air-void characteristics by averaging at 5 mm intervals along the height of the specimen.
Through observation, several noteworthy results were obtained along the characteristic
distribution of the sample height in three main areas, namely, the bottom (0–1.5 cm), the
middle (1.5–3.5 cm), and the top (3.5–5 cm).
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As shown in Figure 14, the rate of change of total air-void area and average air-void
size is higher in the middle and upper region, which is consistent with the slight expansion
observed in the middle and upper region of the specimen after the rutting test. Under the
action of wheel load, the middle and upper mixture is seriously damaged. The total air
voids of the two mixture specimens along the height direction are reduced, indicating the
generation of micro cracks and macro cracks in the rutting specimen, which also promotes
the expansion in the middle area of the specimen. This is mainly due to two reasons: one
is that the internal air void is reduced due to the continuous compaction of the specimen
under load; Second, microcracks are formed due to the fusion of small air voids.

In this study, when describing the different damage phenomena in the specimen due to
deformation, the changes in total air-void number and total air-void area are determined as
two key parameters. According to the previous study [36], there are two main mechanisms
under permanent deformation, namely densification, and shear deformation, as shown
in Figure 15. By analyzing the changes in air-void number and air-void area before and
after the test, the results of this experiment are mainly related to the damage mechanism
related to compression deformation. The relationship between damage mechanisms and
air-void properties will be further clarified in subsequent sections, involving changes in
air-void geometry.

Materials 2022, 15, 7190 14 of 19 
 

 

 
Figure 15. Correlation between damage mechanisms and changes in air-void content properties. 

Figure 16 shows the area and perimeter distribution of the air void in the rutting 
specimen under different loading cycles. When the polygon area is certain, the larger the 
ratio of major and minor axes, the longer the circumference [37]. It can be seen from Figure 
16 that with the increase in loading times, the area and perimeter distribution of the inter-
nal air voids of the rutting specimen become wider, and the discreteness also increases. 
This shows that under the action of load, the air voids develop towards a flatter shape, 
preparing for further integration and macro cracks. This also confirms the rationality of 
the previous research on the development law of air voids before and after loading from 
another perspective. 

  
(a) (b) 

Figure 16. Relationship between air-void area and perimeter: (a) AC-13; (b) AC-16. 

Figure 17 shows the variation law of the average area and perimeter of air voids along 
the height of the specimen. It can be seen from Figure 17 that before the load is applied, 
the average perimeter and area of the two graded mixtures change a little along the height 
direction, which shows that the specimen is fully compacted during the preparation pro-
cess. After 3000 cycles of cyclic loading, the average area and perimeter of the specimen 
increase to a certain extent along the height direction, indicating that the internal air-void 
size of the specimen increases as a whole. For the two mixtures, the change rate of the 
middle and upper part of the specimen is large, which is also consistent with the obvious 
expansion of the middle and upper part observed after the test. 

In order to further explain the change of air voids before and after the test, we calcu-
lated the area and the corresponding number of air voids in the 2-A section of the speci-
men before and after loading, as shown in Figure 18. Previous field tests have concluded 
that air voids in the pavement are compressed after permanent deformation [38]. How-
ever, it can be seen from Figure 18 that a larger area of air voids appeared in the specimen 
after loading. The number of air voids with smaller areas (≤1 mm2) is reduced greatly, and 

Figure 15. Correlation between damage mechanisms and changes in air-void content properties.



Materials 2022, 15, 7190 14 of 19

The change distribution of air-void characteristics along the height of the rutting
specimen before and after the test is systematically studied in the previous part. This
part will study the change of air void under load from the whole section. Firstly, the
variation characteristics of air-void perimeter and area in the mixture under different
loading cycles are studied. Secondly, the changes in air voids with different area sizes and
their corresponding quantities before and after loading are studied. Finally, the changes in
the total area and number of air voids of different types (large, medium, and small) before
and after the test are studied.

Figure 16 shows the area and perimeter distribution of the air void in the rutting
specimen under different loading cycles. When the polygon area is certain, the larger
the ratio of major and minor axes, the longer the circumference [37]. It can be seen from
Figure 16 that with the increase in loading times, the area and perimeter distribution of the
internal air voids of the rutting specimen become wider, and the discreteness also increases.
This shows that under the action of load, the air voids develop towards a flatter shape,
preparing for further integration and macro cracks. This also confirms the rationality of
the previous research on the development law of air voids before and after loading from
another perspective.
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Figure 17 shows the variation law of the average area and perimeter of air voids along
the height of the specimen. It can be seen from Figure 17 that before the load is applied,
the average perimeter and area of the two graded mixtures change a little along the height
direction, which shows that the specimen is fully compacted during the preparation process.
After 3000 cycles of cyclic loading, the average area and perimeter of the specimen increase
to a certain extent along the height direction, indicating that the internal air-void size of the
specimen increases as a whole. For the two mixtures, the change rate of the middle and
upper part of the specimen is large, which is also consistent with the obvious expansion of
the middle and upper part observed after the test.

In order to further explain the change of air voids before and after the test, we calcu-
lated the area and the corresponding number of air voids in the 2-A section of the specimen
before and after loading, as shown in Figure 18. Previous field tests have concluded that air
voids in the pavement are compressed after permanent deformation [38]. However, it can
be seen from Figure 18 that a larger area of air voids appeared in the specimen after loading.
The number of air voids with smaller areas (≤1 mm2) is reduced greatly, and most of them
are compressed. At the same time, we also compared the change rate of the total area and
quantity of different types of air voids before and after the test, as shown in Figure 19.
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It can be seen from Figure 19 that after 3000 cycles of wheel loading, the total number
and area of small air voids in the specimen decrease, while the middle air voids and large
air voids increase, and the change rate of the total number and area of large air voids is the
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largest. This is mainly due to the small number of large air voids in the original specimen.
After loading, the number of large air voids increases, making the change rate larger. The
above results show that the air voids inside the specimen mainly occur through compaction
and fusion of small air voids under load. The fusion between small air voids expands
into micro cracks, which in turn induces damage to the asphalt mixture. At the same
time, the change rate of the total number and area of the large and medium air voids in
AC-13 specimens is higher than that of AC-16, indicating that the damage degree of AC-13
specimens is higher than that of AC-16. This result can be confirmed by rutting results.

3.2.4. Change of Air-Void Shape Characteristics

After the rutting test, not only the total number of air voids, total air-void area, and
average air-void size but also the shape characteristics of air voids will change greatly.
Figure 20 shows the change rate of void shape characteristics of the specimen before and
after the test, i.e., aspect ratio, circularity, and roundness. The bar graph compares the
changes in air-void shape characteristics by averaging at 5 mm intervals along with the
height of the specimen.
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It can be seen from Figure 20 that after the test, the overall roundness of the air voids
in the specimen decreased, and the shape of the air voids developed into a flat shape. At
the same time, with the increase in air-void size, two adjacent air voids merge to form
an air void, and its aspect ratio is higher than that of its single air void. This confirms
the previous findings about the change in air-void properties. In general, the method of
measuring the shape characteristics of air voids provides a different method to describe the
characteristics of air-void formation, growth, connectivity, and expansion. The damage is
due to the coalescence of small air voids to form microcracks, which increases the aspect
ratio of air voids, thereby reducing the number of air voids and roundness [39]. Based on
the observation of a large number of samples, it is determined that the damage controlled
by the change of air-void structure occurs in many ways. First of all, these changes may
be due to the increase in the existing single air-void size and the propagation of cracks.
Secondly, the two separated air voids may merge and expand, forming cracks near the
damage. Third, due to deformation, new air voids with crack initiation potential are also
formed. This finding is consistent with the two failure types determined by Kim et al. [40].
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The damage in the asphalt mixture is the result of microcracks generated in the interfacial
transition (ITZ) between asphalt and aggregate and within the binder (cohesive failure).

4. Conclusions

This paper aims to quantify the change of air-void characteristics as a method to char-
acterize damage by analyzing the cross-sectional image information of rutting specimens
during the test. Firstly, the indoor rutting test was carried out, and the air-void information
of the sample interface under different loading times was obtained by digital image technol-
ogy. Then, the variation law of the internal air-void characteristics of the asphalt mixture
with the loading times of the rutting test is systematically studied, and the relationship with
the development of rutting is established. Finally, the air-void characteristic parameters
are used to quantify the damage in the asphalt mixture and describe the generation and
development of damage. According to the research results, the following conclusions can
be drawn:

(1) In the process of the rutting test, the change of air-void ratio in the rutting specimen is
a dynamic process with the initiation and propagation of the crack. With the increase
in cumulative rut depth, the air-void ratio increases first, then decreases to a certain
extent, and finally tends to a stable value.

(2) The fractal dimension of air voids increases with the increase in loading times. In
other words, with the increase in loading times, the air-void complexity increases.
This is consistent with the observation that the section of the specimen expands, and
the roughness increases during the test.

(3) In the rutting test, the damage is not only the compaction of voids but also accom-
panied by the crushing of aggregates and the overflow of asphalt mortar. At the
same time, this phenomenon is more obvious for the asphalt mixture with a smaller
maximum particle size of aggregate.

(4) The measurement of air-void characteristics and shape characteristics provides a differ-
ent method to describe the characteristics of air-void formation, growth, connectivity,
and expansion of voids in asphalt mixture during a rutting test. After deformation,
the total air-void area and average air-void size of the specimen increase, and the
total air-void number decreases. Because microcracks are formed in the specimen
after rutting damage, the aspect ratio of the air voids increases, and the roundness
value decreases.

Therefore, we can use the change of void ratio, void characteristics, and void shape
characteristics to quantify the damage type and its evolution process in the rutting for-
mation of the asphalt mixture in future research. Due to the limitations of the technology
used in this study, the voids discussed are obtained based on two-dimensional images. It is
difficult to distinguish the connection and closure of voids in the three-dimensional case of
a mixture, so further research is needed. In addition, in order to determine the main cause
of damage to the inner cup of the asphalt mixture, it is necessary to analyze the damage at
the contact between aggregate and asphalt and the impact of the contact point between
aggregates on the performance.
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