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Abstract: The aim of this study is to produce graphene oxide using a modified Hummers method
without using sodium nitrate. This modification eliminates the production of toxic gases. Two drying
temperatures, 60 ◦C and 90 ◦C, were used. Material was characterized by X-Ray Diffraction, Fourier
Transform Infrared Spectroscopy, Raman Spectroscopy and Scanning Electron Microscopy. FTIR
study shows various functional groups such as hydroxyl, carboxyl and carbonyl. The XRD results
show that the space between the layers of GO60 is slightly larger than that for GO90. SEM images
show a homogeneous network of graphene oxide layers of ≈6 to ≈9 nm. The procedure described
has an environmentally friendly approach.
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1. Introduction

Graphene has excellent mechanical, electronic, optical and thermal properties. It
has a unique two-dimensional structure one atom thick [1]. Many researchers have been
interested in investigating this two-dimensional (2D) form of carbon because it has become
a relevant topic for the development of materials with many applications [2]. As reported
in the literature, graphene has a large specific surface area [3], an efficient electron mobility
(200,000 cm2 v−1 s−1) [4,5], a high Young’s modulus (1 TPa) [6], and good thermal conduc-
tivity (4.84 × 103 to 5.30 × 103 W/mK) [7]. Graphene oxide (GO) can be manufactured
or self-assembled into materials with controlled compositions and microstructures for
different applications [8]. Previous work has reported the use of graphene oxide combined
with fullerene in thin-film form to produce lightweight three-dimensional hybrid structures
with high surface area [9]. The arrangement of other molecules within graphene oxide
layers has shown that multilayer structures exhibit high biocatalytic activity [10]. The
Langmuir–Blodgett process has recently been used for the production of graphene oxide
by which a uniform dispersion and controllable development of graphene oxide flakes has
been achieved [11].

The most important and widely applied method for GO synthesis is that developed
by Hummers and Offeman [12]. This method has three important advantages over other
techniques. First, the reaction is complete in a few hours, second, potassium chlorate
can be replaced by potassium permanganate for a safer reaction, and third, the use of
sodium nitrate eliminates acid mist formation. However, the method also has some defects,
since in the oxidation process, some toxic gases such as nitrogen dioxide and dinitrogen
tetroxide are released. In addition, sodium and nitrate ions are difficult to remove from the
wastewater formed during the process of synthesis and purification of graphene oxide.

In previous works, the Hummers method has been improved by excluding sodium
nitrate and increasing the amount of potassium permanganate, carrying out the reaction in
a single mixture [13]. With this modification, it is possible to increase the performance of
the reaction and reduce the release of toxic gases; also, phosphoric acid is introduced in the
reaction system. Previous research has reported that the mixture of sulfuric acid and nitric
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acid used in the Hummers method acts as a “chemical scissors” for graphene planes that
facilitates the penetration of the oxidation solution [14].

On the other hand, potassium permanganate can achieve the complete intercalation of
graphite, forming graphite bisulfate [15,16]. This interaction ensures the effective penetra-
tion of potassium permanganate into the graphene layers for graphite oxidation. Due to
this, potassium permanganate replaces the function of sodium nitrate, so it is not necessary
for the reaction. In this investigation, we show an easy synthesis route to produce GO
using a low-cost and environmentally friendly modified Hummers method. In addition,
the synthesis route is highly reproducible in obtaining graphene oxide for its subsequent
reduction (rOG) for possible biocatalytic applications as reported in previous works.

2. Materials and Methods
Synthesis of GO

Materials included: natural graphite (99%) supplied by Aldrich chemistry, potassium
permanganate (KMnO4) supplied by Sigma Aldrich, sulfuric acid (H2SO4) supplied by
Jalmex, hydrochloric acid (HCl) supplied by Sigma Aldrich, and hydrogen peroxide (H2O2)
supplied by J.T Baker. All the reagents were obtained in the city of Queretaro, Mexico.

The synthesis process for obtaining graphene oxide is described below. Two glycerin
baths are preheated to 45 ◦C and 98 ◦C, respectively. Then, 1 g of graphite was added in a
ball flask in a cold bath for 5 min with 23 mL of sulfuric acid (H2SO4), it was stirred for
5 min. Subsequently, potassium permanganate (KMnO4) was added and placed in the
glycerin bath at 45 ◦C for 2 h. After 2 h, the mixture was transferred to a glycerin bath at
98 ◦C, adding 46 mL of distilled water at room temperature; then, it was kept for 15 min.
After 15 min, 140 mL of hot water was added along with 10 mL of hydrogen peroxide
(H2O2). The mixture obtained was emptied into the strainer to filter by vacuum. The
sample was removed and placed in 6 jars with 1 g of sample. Finally, 2 mL of hydrochloric
acid (HCl) and distilled water were added to wash the samples by centrifugation. The
final sample was placed in a petri dish to be dried in oven at 60 ◦C and 90 ◦C for 24 h. In
Table 1, the number of washes, the centrifugation revolutions and the time for each sample
is shown. In addition, in Figure 1, the results after washing and after drying, respectively,
are observed. Finally, in Figure 2, the synthesis process is shown in a flow chart. Table 2
shows a comparison between the traditional synthesis method and the modified Hummers
method used in this work.

Table 1. Centrifugation washes.

Washed Cycles (rpm) Time (min)

1 to 10 300 5
11 300 10

12 to 14 300 5
15 300 10

16 to 19 300 5
20 300 10
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Table 2. Comparison of traditional synthesis vs. Hummers method for graphene oxide.

Method Oxidants Advantages Disadvantages

Traditional KCIO3
(NaCIO3)

,HNO3, H2SO4

- Time-consuming and
dangerous method. The
risk of explosions are a

constant
danger.

Hummers modified KMnO4, H2SO4
,NaNO3

Improved level of
oxidation and,

therefore, product
performance.

Separation and
purification

processes are
tedious. Highly time-

consuming.

3. Results and Discussion
3.1. X-ray Diffraction (XRD)

In this study, X-Ray Diffraction (XRD) was used to determine the crystal structure and
verify the spacing between the GO layers.

The XRD pattern for the sample dried at 60 ◦C, GO60-1 and GO60-2 is presented
in Figure 3. This sample exhibits a diffraction peak at 9.28◦ due to the (002) plane of
GO [17]. In addition, a small peak at ≈26◦ is observed; according to the literature, this peak
corresponds to graphite. When the graphite is oxidized, the diffraction peak should change
from ≈26◦ to ≈11◦; this agrees with the results observed in Figure 3.

On the other hand, the XRD pattern for the sample dried at 90 ◦C is presented in
Figure 4 GO90-1 and GO90-2. This sample presents a diffraction peak at 9.6◦, which is
slightly different from the GO60 sample. In GO90-1, a small peak at ≈26 corresponding to
graphite can also be observed; however, in GO90-2, this peak is no longer present, which
suggests that in said sample, all the graphite was oxidized to become GO. In addition, the
intensity of it is three times greater compared to GO90-1, which suggests a greater number
of planes (002) in that direction. This difference could be due to the increase in the drying
temperature compared to the GO60 sample.
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Figure 4. XRD pattern of graphene oxide dried at 90 ◦C.

In both samples, the observed peaks are sharp, which indicates that the graphite was
completely oxidized by this method. The spacing between the GO layers was calculated
using Bragg’s law [18].

λ = 2dsinθ

where n is the diffraction series and λ is the X-ray wavelength (0.154 nm). The spacing
between the GO60 and GO90 layers was 0.95 nm and 0.92 nm, respectively, according to
Bragg’s law. Both spacings are slightly different, since a different drying temperature was
used. Usually, the interlayer spacing d of graphene oxide is in the range of 0.6–1.0 nm and is
controlled according to the degree of oxidation of graphite and the number of intercalated
water molecules in the interlayer space [19]. In previous works, it has been reported that
the increase in the space between the layers is due to the intercalated functional group of
oxygen and water molecule in the structure of the carbon layer [20].

On the other hand, Zeng et al. mention that the increase is related to the weaker Van
der Waals bond formed by the epoxyl, hydroxyl, carbonyl and carboxyl groups in the basal
planes [21].

3.2. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of the GO60 and GO90 samples are shown in Figure 5. The spectra
consist of vibrational groups of GO that include carbonyl (C=O), aromatic (C=C), and
hydroxyl (O-H) groups; these groups appear in Table 3. The O-H stretching vibrations in
the region of 3500–3000 cm−1 are attributed to the carboxyl and hydroxyl groups of the
residual water present in the GO samples. These hydrophilic functional groups containing
oxygen provide GO samples with good dispersibility in water [22].
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Table 3. Characteristic vibrational modes and their energies of GO60 and GO90.

Band Shift (cm−1) Functional Group

3500–3000 O-H
1730 C=O
1567 C=C
1100 C-O

The peak in 1730 cm−1 is due to the ketone group (C=O), while the peak at 1567 cm−1

is the main graphitic domain and is due to sp2 hybridization [23]. Finally, the band
at 1100 indicates the C-O stretching of the epoxy groups [24]. These results suggest
that graphite powder is successfully oxidized in the presence of acid with potassium
permanganate (KMnO4).

3.3. Raman Analysis

The Raman spectrum of GO60 and G090 is shown in Figure 6. Both Raman spectra
contain bands marked as D and G bands. Peak D appears at ≈1300 cm−1, while peak G
appears at ≈1600 cm−1. The G band is associated with graphitic carbons, and the D band
is related to structural defects or partially disordered graphitic domains [25].

In both spectra, the D bands are strong, which confirms the distortions of the graphene
basal plane lattice. In addition, the G band is prominent for sp2 carbon lattices. Ferrari et al.
mention that the D band reveals disorders of crystalline materials and defects associated
with vacancies and grains [26]. On the other hand, the G peak corresponds to the optical
phonons in the center of the Brillouin zone that result from the stretching of the bond of the
sp2 carbon pairs in the rings as well as in the chains [27]. Therefore, the intensity of the
ratio of ID/IG was calculated for both samples, resulting in 1.26 and 1.2 for GO60 and GO90,
respectively. These results provide evidence of the degree of functionalization of graphene
oxide [28]. According to the literature, it is possible to obtain the number of layers in the
graphene oxide flakes from the position and shape of the D band in the Raman spectra [29].
Our results show a few layers in the flakes in the order of 3. Silva et al. mention that the D
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band gives us information about the exfoliation of graphene, while the G band provides
information about the number of layers [30].
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3.4. Scanning Electron Microscopy (SEM)

Figure 7 shows SEM images of sample GO60 with magnifications of (a) ×15,000,
(b) ×25,000 and (c) ×100,000. On the other hand, in Figure 8, SEM images of the GO90
sample are shown at the same magnifications of the GO60 sample.
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distinguish the edges of individual sheets, including crooked and wrinkled areas. The SEM
images revealed that our material consists of thin and wrinkled sheets; furthermore, they
are randomly aggregated and closely associated with each other, forming a disordered solid.
It was observed that the folded regions (Figure 7c) have an average width of ≈6 nm, while
the fold thickness (Figure 8c) has an average of ≈9 nm. These measurements represent the
thickness of the network of graphene oxide layers.

High-resolution SEM data suggest the presence of individual leaves in GO60 and
GO90. The measured value for fold thickness in both samples suggests a confidence limit
of approximately ±1 nm. The absence of charge during the SEM image indicates that the
network of graphene oxide-based sheets and the individual sheets is electrical [31].
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3.5. Energy-Dispersive Spectroscopy (EDS)

In order to obtain the elemental composition of the samples, EDS analyses were
performed. A sweep over different regions was made, showing in both samples the presence
of carbon and oxygen as predominant elements. Other impurities such as potassium,
chlorine, sulfur and silicon are also present in less quantity. The presence of these elements
is due to the precursors used in the synthesis process; however, the washings carried
out on the samples reduce the presence of impurities. The presence of aluminum is
due to the sample holder used in the study. Figure 9 shows the region analyzed and
the spectrum obtained in each sample at an amplification of ×5000. Table 4 shows the
elemental composition for GO60 and GO90.
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Table 4. Elemental composition.

Sample Element wt %

GO60

C 49.29
O 42.09
Si 6.73
S 1.13
Cl 0.25
K 0.46

GO90

C 51.14
O 43.23
Si 2.60
S 1.42
Cl 0.53
K 0.77

4. Conclusions

In conclusion, we developed a modified Hummers method without using sodium
nitrate (NaNO3) to obtain graphene oxide. With this method, we eliminate the generation
of toxic gases and simplify the procedure, thus reducing the cost of GO synthesis. GO
characterizations indicate that the products have similar chemical structure, thickness
and dimensions. The exclusion of sodium nitrate produces the same characteristic of
graphene oxide and does not affect the overall reaction yield. The modified Hummers
method that we developed can be used to prepare GO on a large scale and is the first
step to obtain pure graphene and all its derivatives. The synthesis described in this work
has an environmentally friendly approach. As such, graphene oxide can find uses in
a variety of applications such as energy storage and as a conductive filler material in
composite materials.
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