Benefits of Printed Graphene with Variable Resistance for Flexible and Ecological 5G Band Antennas
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Rationale for the Antenna Design Choice
3.2. Dependence of Powers on the Active Layer Conductivity
3.3. Characteristics of Antennas
3.4. Antenna Efficiency
3.5. Comparison of Antennas with the Various Thicknesses and Resistances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Song, R.; Zhao, X.; Fang, R.; Zhang, B.; Qian, W.; Zhang, J.; Liu, C.; He, D. Flexible Graphene-Assembled Film-Based Antenna for Wireless Wearable Sensor with Miniaturized Size and High Sensitivity. ACS Omega 2020, 5, 12937. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Leng, T.; Zhang, X.; Chen, J.C.; Chang, K.H.; Geim, A.K.; Novoselov, K.S.; Hu, Z. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett. 2015, 106, 203105. [Google Scholar] [CrossRef]
- Alharbi, A.G.; Sorathiya, V. Ultra-Wideband Graphene-Based Micro-Sized Circular Patch-Shaped Yagi-like MIMO Antenna for Terahertz Wireless Communication. Electronics 2022, 11, 1305. [Google Scholar] [CrossRef]
- Arapov, K.; Jaakkola, K.; Ermolov, V.; Bex, G.; Rubingh, E.; Haque, S.; Sandberg, H.; Abbel, R.; de With, G.; Friedrich, H. Graphene screen-printed radio-frequency identification devices on flexible substrates. Phys. Status Solidi RRL 2016, 10, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Morales-Centla, N.; Torrealba-Melendez, R.; Tamariz-Flores, E.I.; López-López, M.; Arriaga-Arriaga, C.A.; Munoz-Pacheco, J.M.; Gonzalez-Diaz, V.R. Dual-Band CPW Graphene Antenna for Smart Cities and IoT Applications. Sensors 2022, 22, 5634. [Google Scholar] [CrossRef] [PubMed]
- Cherevko, A.G.; Morgachev, Y.V. Ecological graphene antennas modeling for multi-channel systems for transferring atmospheric data and oceanological information in the range of cellular communications. In Proceedings of the XXV International Symposium Atmospheric and Ocean Optics, Atmospheric Physics, Novosibirsk, Russia, 1–5 July 2019; Volume 11208. [Google Scholar]
- Sa’don, S.N.H.; Jamaluddin, M.H.; Kamarudin, M.R.; Ahmad, F.; Yamada, Y.; Kamardin, K.; Idris, I.H. Analysis of Graphene Antenna Properties for 5G Applications. Sensors 2019, 19, 4835. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, K. Electronic skin: From flexibility to a sense of touch. Nature 2021, 591, 685–687. [Google Scholar] [CrossRef]
- Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices. Adv. Mater. 2016, 28, 7862–7898. [Google Scholar] [CrossRef]
- Ren, Z.I.; Nie, J.; Shao, J.; Lai, Q.; Wang, L.; Chen, J.; Chen, X.; Wang, Z.L. Fully Elastic and Metal-Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Adv. Funct. Mater. 2018, 28, 1802989. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, Z.; Liu, Z.; Wang, L.; Guo, H.; Li, L.; Li, S.; Chen, X.; Tang, W.; Wang, Z.L. Energy Harvesting from Breeze Wind (0.7–6 m/s) Using Ultra-Stretchable Triboelectric Nanogenerator. Adv. Energy Mater. 2020, 10, 2001770. [Google Scholar]
- Perruisseau-Carrier, J. Graphene for antenna applications: Opportunities and challenges from microwaves to THz. In Proceedings of the Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2012; pp. 1–4. [Google Scholar]
- Gomez-Diaz, J.S.; Perruisseau-Carrier, J. Microwave to THz Properties of Graphene and Potential Antenna Applications. In Proceedings of the 2012 International Symposium on Antennas and Propagation (ISAP2012), Nagoya, Japan, 29 October–2 November 2012; pp. 239–242. [Google Scholar]
- Radwan, A.; D’Amico, M.; Din, J.; Gentili, G.G.; Verri, V. Bandwidth and gain enhancement of a graphene-based metamaterial antenna for the THz band. ARPN J. Eng. Appl. Sci. 2016, 11, 6349–6354. [Google Scholar]
- Wang, W.; Ma, C.; Zhang, X.; Shen, J.; Hanagata, N.; Huangfu, J.; Xu, M. High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology. Sci. Technol. Adv. Mater. 2019, 20, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Leng, T.; Pan, K.; Jiang, Y.; Hu, Z.; Ouslimani, H.; Abdalla, M.A. Dual Band Graphene Nanoflakes Printed Compact Monopole Antenna for Low Cost WIFI Applications. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1287–1288. [Google Scholar]
- Kapetanakis, T.N.; Nikolopoulos, C.D.; Petridis, K.; Vardiambasis, I.O. Wearable Textile Antenna with a Graphene Sheet or Conductive Fabric Patch for the 2.45 GHz Band. Electronics 2021, 10, 2571. [Google Scholar]
- Hu, Z.; Xiao, Z.; Jiang, S.; Song, R.; He, D. A Dual-Band Conformal Antenna Based on Highly Conductive Graphene-Assembled Films for 5G WLAN Applications. Materials 2021, 14, 5087. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Leng, T.; Pan, K.; Hu, Z.; Abdalla, M. Graphene Printed Antenna Array for Wireless Communication Applications. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1621–1622. [Google Scholar]
- Pan, K.; Leng, T.; Jiang, Y.; Fang, Y.; Zhou, X.; Abdalla, M.A.; Ouslimani, H.; Hu, Z. Graphene Printed UWB Monopole Antenna for Wireless communication applications. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1739–1740. [Google Scholar]
- Zu, H.-R.; Wu, B.; Zhang, Y.-H.; Zhao, Y.-T.; Song, R.-G.; He, D.-P. Circularly Polarized Wearable Antenna with Low Profile and Low Specific Absorption Rate Using Highly Conductive Graphene Film. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2354–2358. [Google Scholar] [CrossRef]
- Soots, R.A.; Yakimchuk, E.A.; Nebogatikova, N.A.; Kotin, I.A.; Antonova, I.V. Graphene Suspensions for 2D Printing. Tech. Phys. Lett. 2016, 42, 438–441. [Google Scholar] [CrossRef]
- Fang, X.-Y.; Yu, X.-X.; Zheng, H.-M.; Jinb, H.-B.; Wang, L.; Cao, M.-S. Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 2015, 379, 2245–2251. [Google Scholar] [CrossRef]
- Global E-Waste Monitor. 2020. Available online: https://www.itu.int/en/ITU-D/Environment/Pages/Spotlight/Global-Ewaste-Monitor-2020.aspx (accessed on 4 September 2022).
- Zhu, W.; Park, S.; Yogeesh, M.N.; Akinwande, D. Advancements in 2D flexible nanoelectronics: From material perspectives to RF applications. Flex. Print. Electron. 2017, 2, 043001. [Google Scholar] [CrossRef]
- Pandhi, T.; Cornwell, C.; Fujimoto, K.; Barnes, P.; Cox, J.; Xiong, H.; Davis, P.H.; Subbaraman, H.; Koehne, J.E.; Estrada, D. Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response. RSC Adv. 2020, 10, 38205–38219. [Google Scholar] [CrossRef]
- Huang, X.; Pan, K.; Hu, Z. Experimental Demonstration of Printed Graphene Nano-flakes Enabled Flexible and Conformable Wideband Radar Absorbers. Sci. Rep. 2016, 6, 38197. [Google Scholar] [CrossRef]
- Hansen, R.C. Phased Array Antennas, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2009; 571p. [Google Scholar]
- Sindhu, B.; Kothuru, A.; Sahatiya, P.; Goel, S.; Nandi, S. Laser-Induced Graphene Printed Wearable Flexible Antenna-Based Strain Sensor for Wireless Human Motion Monitoring. IEEE Trans. Electron Devices 2021, 68, 3189–3194. [Google Scholar] [CrossRef]
- Fang, R.; Song, R.; Zhao, X.; Wang, Z.; Qian, W.; He, D. Compact and Low-Profile UWB Antenna Based on Graphene-Assembled Films for Wearable Applications. Sensors 2020, 20, 2552. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Chen, X.; Jiang, S.; Hu, Z.; Liu, T.; Calatayud, D.; Mao, B.; He, D. A Graphene-Assembled Film Based MIMO Antenna Array with High Isolation for 5G Wireless Communication. Appl. Sci. 2021, 11, 2382. [Google Scholar] [CrossRef]
- Tang, D.; Wang, Q.; Wang, Z.; Liu, Q.; Zhang, B.; He, D.; Wu, Z.; Mu, S. Highly Sensitive Wearable Sensor Based on a Flexible Multi-Layer Graphene Film Antenna. Sci. Bull. 2018, 63, 574–579. [Google Scholar] [CrossRef]
Type of Antenna | Frequencies, GHz | Thickness, μm | σ, S/m | Skin Depth, μm | Ref. |
---|---|---|---|---|---|
Rectangular Patch Antenna | 4–8 | 21 | 106 | 5.6 | [30] |
Patch MIMO Antenna | 3.5 | 21 | 1.1 × 106 | 8.1 | [31] |
Patch Antenna | 3.13–4.42 | 28 | 1.1 × 106 | 7.2 | [1] |
Rectangular Patch Antenna | 1.63 | 30 | 106 | 12.5 | [32] |
Patch Antenna | 5–13.5 | – | 4.1 × 104 | 21.65 | [19] |
Patch Antenna | 5.8 | 24 | 1.13 × 106 | 6.2 | [20] |
Dual-Band CPW Graphene Antenna | 2.4 5.8 | 240 | 3.5 × 105 | 11.1 | [5] |
Dual-Band Conformal Antenna | 2.4–2.45 5.15–7.1 | 24 | 1.13 × 106 | 6.2 | [17] |
Patch Antenna | 5.8 | 100 | 7.18 × 102 | 246 | [29] |
Patch Antenna | 5.8 | 24 | 1.13 × 106 | 6.2 | [20] |
Dipole with Integrated Balun | 5.75 | 7 | 4.4 × 104 | 31.7 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherevko, A.G.; Krygin, A.S.; Ivanov, A.I.; Soots, R.A.; Antonova, I.V. Benefits of Printed Graphene with Variable Resistance for Flexible and Ecological 5G Band Antennas. Materials 2022, 15, 7267. https://doi.org/10.3390/ma15207267
Cherevko AG, Krygin AS, Ivanov AI, Soots RA, Antonova IV. Benefits of Printed Graphene with Variable Resistance for Flexible and Ecological 5G Band Antennas. Materials. 2022; 15(20):7267. https://doi.org/10.3390/ma15207267
Chicago/Turabian StyleCherevko, Alexander G., Alexey S. Krygin, Artem I. Ivanov, Regina A. Soots, and Irina V. Antonova. 2022. "Benefits of Printed Graphene with Variable Resistance for Flexible and Ecological 5G Band Antennas" Materials 15, no. 20: 7267. https://doi.org/10.3390/ma15207267
APA StyleCherevko, A. G., Krygin, A. S., Ivanov, A. I., Soots, R. A., & Antonova, I. V. (2022). Benefits of Printed Graphene with Variable Resistance for Flexible and Ecological 5G Band Antennas. Materials, 15(20), 7267. https://doi.org/10.3390/ma15207267