Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porous Carbon Nanofiber (PCNF)
2.3. Preparation of Hollow Porous Carbon Nanofiber (HPCNF)
2.4. Preparation of Coaxial Ring Samples for Microwave Absorbing Composites
2.5. Measurement and Characterization
2.5.1. Characterization of Morphology
2.5.2. Characterization of XPS Spectrum
2.5.3. Characterization of Raman Spectroscopy
2.5.4. Characterization of the Electromagnetic Parameters
3. Results and Discussion
3.1. The Morphology of PCNF and HPCNF and Their Dispersion in Paraffin
3.2. Analysis of the HPCNF
3.3. Microwave Absorption Performance
3.3.1. Analysis of Microwave Absorption Performance of PCNF
3.3.2. Analysis of Microwave Absorption Performance of HPCNF
3.4. The Broadband Absorbing Principle of HPCNF
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, R.; Qing, X.; Zhou, T.; Miao, Y.; Ren, H. Research propress of novel radar wave absorbing materials. Ordnance Mater. Sci. Eng. 2004, 27, 63–66. [Google Scholar]
- Zhou, Q.; Yin, X.; Zhang, L.; Cheng, L. Research progress of microwave tunable metamaterial absorber. Sci. Technol. Rev. 2016, 34, 40–46. [Google Scholar]
- Huang, Y.; Chen, M.; Xie, A.; Wang, Y.; Xu, X. Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing. Materials 2021, 14, 4148. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-T.; Xia, L.; Huang, X.-X.; Zhong, B.; Wang, C.-Y.; Zhang, T. Progress in dielectric loss microwave absorbing materials. J. Mater. Eng. 2021, 49, 1–13. [Google Scholar]
- Jiao, Y.; Song, Q.; Yin, X.; Han, L.; Li, W.; Li, H. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band. J. Mater. Sci. Technol. 2022, 119, 200–208. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, Y. Application of carbon nanotubes in polymer composite for electromagnetic wave absorption. Fiber Reinf. Plast./Compos. 2021, 3, 80–84. [Google Scholar]
- Feng, G.; Zhou, W.; Deng, H.; Chen, D.; Qing, Y.; Wang, C.-H.; Luo, F.; Zhu, D.; Huang, Z.; Zhou, Y. Co substituted BaFe12O19 ceramics with enhanced magnetic resonance behavior and microwave absorption properties in 2.6–18 GHz. Ceram. Int. 2019, 45, 13859–13864. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y. Developments status of magnetic loss wave-absorbing materials. J. Silk 2021, 58, 27–34. [Google Scholar]
- Zheng, W.; Ye, W.; Yang, P.; Wang, D.; Xiong, Y.; Liu, Z.; Qi, J.; Zhang, Y. Recent Progress in Iron-Based Microwave Absorbing Composites: A Review and Prospective. Molecules 2022, 27, 4117. [Google Scholar] [CrossRef]
- Gao, X.; Wu, X.; Qiu, J. High Electromagnetic Waves Absorbing Performance of a Multilayer-Like Structure Absorber Containing Activated Carbon Hollow Porous Fibers–Carbon Nanotubes and Fe3O4 Nanoparticles. Adv. Electron. Mater. 2018, 4, 1700565. [Google Scholar] [CrossRef]
- Yang, F.; Hou, X.; Wang, L.; Li, Y.; Zhang, X.; Yu, M. Study on Electromagnetic Wave Absorption performance of Dendritic-like Co. Mater. Sci. Eng. 2020, 729, 012038. [Google Scholar] [CrossRef]
- Wang, Y.; Hui, Z.; Hao, G.; Zhang, S.; Ke, X.; Yan, H. Structural and component optimization of conventional magnetic material Co to synthesis dendritic-like FeCo and rose-like CoNi toward high-performance electromagnetic wave absorption. J. Mater. Res. Technol. 2022, 19, 418–430. [Google Scholar] [CrossRef]
- Shao, R.; Tu, T.; Li, Y.; Yang, S.; Jin, J.; Wang, F.; Li, G. Properties of porous carbon fiber microwave absorbing composites and their influencing factors. J. Funct. Mater. Devices 2021, 27, 556–564. [Google Scholar]
- Cao, Q.; Liu, X.; Zhu, S.; Wen, Y.; Wang, Z.; Sun, Y.; Tao, F. Low-cost preparation and enhanced wave-absorbing properties of porous spiral carbon fibers. J. Anhui Univ. Eng. 2021, 36, 8–18. [Google Scholar]
- Zhang, B.; Lv, C. Research progress of polyacrylonitrile-based hollow porous carbon fibers. Chem. New Mater. 2018, 46, 222–225. [Google Scholar]
- Wang, G.; Yu, B.; Gele, A. Preparation and microwave absorption properties of lignin-based magnetic porous composite carbon nanofibers. Mater. Guide 2020, 34, 20159–20164. [Google Scholar]
- Yang, Z.; Zheng, H.; Zhi, S.; Yang, Y.; Zhang, W. Preparation of hollow porous carbon nanofibers by coaxial electrostatic spinning. J. Hebei Univ. (Nat. Sci. Ed.) 2016, 36, 237–241. [Google Scholar]
- Li, S.; Cheng, B.; Luo, Y.; Wang, H.; Xu, J. Preparation of polyacrylonitrile-based reactive hollow carbon nanofibers and their properties. J. Text. 2019, 40, 1–6. [Google Scholar]
- Li, D.; Sun, Y.; Wang, X.; Wu, S.; Han, S.; Yang, Y. Development of a hollow carbon sphere absorber displaying the multiple-reflection effect to attenuate electromagnetic waves. RSC Adv. 2017, 7, 37983–37989. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Yang, S.; Jin, J.; Zhang, L.; Li, G.; Jiang, J. Preparation and Electromagnetic Properties of Carbon Nanofiber/Epoxy Composites. J. Macromol. Sci. 2010, 49, 355–365. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Yu, C.; Jiao, L.; Chen, J. MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries. Nano Lett. 2016, 16, 3321–3328. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jiang, B.; Che, S.; Yan, L.; Li, Z.-X.; Li, Y.-F. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms. New Carbon Mater. 2021, 36, 1016–1033. [Google Scholar] [CrossRef]
- Kong, J.; Gao, H.; Li, Y. Research Progress of Electromagnetic Shielding Mechanism and Lightweight and Broadband Wave-absorbing Materials. Mater. Rev. 2020, 34, 09055–09063. [Google Scholar]
- Qin, M.; Zhang, L.; Wu, H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Adv. Sci. News 2022, 9, 2105553. [Google Scholar] [CrossRef]
- Li, H.; Chen, K.; Luo, Y.; Sun, L.; Du, J. Research progress on wave absorption mechanism and performance of nano-carbon-based composite wave absorbing materials. Mater. Guide 2019, 33, 73–77. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, R.; Wang, F.; Yang, S.; Jin, J.; Li, G. Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption. Materials 2022, 15, 7273. https://doi.org/10.3390/ma15207273
Shao R, Wang F, Yang S, Jin J, Li G. Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption. Materials. 2022; 15(20):7273. https://doi.org/10.3390/ma15207273
Chicago/Turabian StyleShao, Rui, Fang Wang, Shenglin Yang, Junhong Jin, and Guang Li. 2022. "Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption" Materials 15, no. 20: 7273. https://doi.org/10.3390/ma15207273
APA StyleShao, R., Wang, F., Yang, S., Jin, J., & Li, G. (2022). Preparation of Hollow Porous Carbon Nanofibers and Their Performance and Mechanism of Broadband Microwave Absorption. Materials, 15(20), 7273. https://doi.org/10.3390/ma15207273