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Abstract: In this study, a series of polyether-type defoamers for concrete which consist of the same
alkyl chain (hydrophobic part) but different polyether chains (hydrophilic part) was prepared, and
the structure–property relationship of the defoamers was investigated for the first time. Using oleyl
alcohol (OA) as the starting agent (alkyl chain), the polyether defoamers with different polyether
chains were prepared by changing the amount and sequence of ethylene oxide (EO) and propylene
oxide (PO) units. The properties of different defoamers were tested in aqueous solutions, and fresh
and hardened mortars; the structure–property relationship of the defoamers was thus studied. The
results indicated that the defoaming capacity of the polyether defoamers decreased with an increased
EO amount, and the defoamers linked with both EO and PO units (PO before EO) had a stronger
defoaming capacity than those linked with EO only. This study is beneficial for the development and
applications of novel synthetic polyether-type defoamers for concrete.
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1. Introduction

As one of the most important engineering materials in the construction industry,
concrete has been widely used with the rapid development of the world’s market economy
and the increase in construction projects [1–9]. However, there are still many problems in
the practical engineering applications of concrete, such as resistance to chloride diffusion,
slump loss, early-age plastic shrinkage and cracking, expansion of the U-type expansive
agent, and hydration heat regulation of mass concrete. These problems are mainly because
of air bubbles with large sizes and in excessive amounts, which are harmful and formed in
the process of fresh concrete mixing [10–12]. The reduction of these harmful bubbles is thus
highly desirable to improve the performance of concrete [13–16]. Defoamer is a chemical
admixture which has been widely used to inhibit and eliminate the harmful, large bubbles
in fresh concrete [17]. By reducing the harmful bubbles and optimizing the pore structure
of concretes, defoamers can improve the mechanical properties and service life of hardened
concretes [18,19].

The chemical structure of defoamer is an amphiphilic surfactant which consists of
a hydrophilic part and a hydrophobic part [20]. From the chemical composition, com-
monly used defoamers can be divided into four types, including fatty acids, mineral oils,
polyethers and silicones [21–27]. Among them, polyether-type defoamers show the best
water solubility and highest compatibility with polycarboxylate (PCE) superplasticizer, and
have been most widely used as concrete admixtures [18]. However, synthetic polyethers
have only rarely been reported as the defoamers for concrete. The structure–property
relationships of polyether-type defoamers in both aqueous solutions and cement-based ma-
terials have not been fully investigated, which is of great importance for the development
of novel, high-performance defoamers for concrete.
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In our previous study, we reported the polyether-type defoamers (amphiphilic surfac-
tants) consisting of different hydrophobic alkyl chains (linear or branched, C14–25) and
the same hydrophilic polyether chain (8 ethylene oxide units), which exhibited excellent
defoaming performance [18,19]. The effect of hydrophobic alkyl chains on defoaming prop-
erties has been investigated, but the influence of a hydrophilic polyether chain (length and
sequence) is still unknown. In this study, a series of polyether-type defoamers consisting of
the same alkyl chain but different polyether chains was prepared and investigated for the
first time. Using oleyl alcohol (OA) as the starting agent (long alkyl chain), the polyether
defoamers with different polyether chains were prepared by changing the amount and
sequence of ethylene oxide (EO) and propylene oxide (PO) units. The properties of differ-
ent defoamers were tested in aqueous solutions, and fresh and hardened cement mortars,
and the structure–property relationship was investigated. The results indicated that the
defoaming capacity of the defoamers decreased with an increased EO amount, and the
defoamers linked with both EO and PO units (PO before EO) had a stronger defoaming
capacity than those linked with EO only. This study is beneficial for the applications and
development of novel, high-performance polyether-type defoamers for concrete.

2. Materials and Methods
2.1. Materials

Oleyl alcohol (OA) was obtained from Aladdin Chemical Co., Ltd. (Shanghai, China).
Ethylene oxide (EO), propylene oxide (PO) and sodium hydride (NaH) were obtained from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All the reagents are analytical
reagents and were used as received. PII52.5 Portland cement was obtained from Jiangnan
Xiaoyetian Cement Co., Ltd. (Nanjing, China). The fine aggregate was river sand with
a nominal grain size of 0.5–1.5 mm. Polycarboxylate superplasticizer was prepared by
Jiangsu Sobute New Materials Co., Ltd. (Nanjing, China).

2.2. Methodology

The polyether-type defoamers were prepared as previously reported [28]. The chemi-
cal structure of the prepared defoamers was characterized by FT-IR, 1H-NMR, and elemen-
tal analysis; the results clearly indicate that defoamers of a correct chemical structure and
high purity were obtained. The properties of different defoamers were tested in aqueous
solutions (surface activity and foaming property), and fresh (air content and bubble size dis-
tribution) and hardened (air content, air-void parameter and compressive strength) cement
mortars; the structure–property relationship of the defoamers was thus fully investigated.

2.2.1. Synthesis and Characterization of Defoamers

Sodium hydride (1.5 g, 60 wt% dissolved in mineral oil) was dissolved in oleyl alcohol
(200 g), and the mixture was poured into an autoclave. The autoclave was vacuumized
until the pressure was down to −0.1 MPa, then heated up to 120–130 ◦C. Different amounts
of ethylene oxide (132–328 g), and a mixture of ethylene oxide (132 g) and propylene
oxide (174 g), were added for a period of time (0.5–2.5 h), with the reaction temperature
of 120–140 ◦C. The reaction pressure was controlled at 0.3–0.35 MPa. After the reaction
pressure decreased to 0.1 MPa, the mixtures were cooled to room temperature; then, the
defoamers were obtained as yellow liquids (melting points < 4 ◦C).

Infrared spectra (FT-IR) were obtained with a Nicolet Impact 410 FT-IR Spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The FT-IR spectra were scanned over the
wave number range of 500–4000 cm−1 using KBr as the carrier. Nuclear magnetic resonance
spectra (1H-NMR) were obtained with a Bruker AVANCE 400 Fourier transform NMR
spectrometer (400 MHz, Bruker, Billerica, MA, USA) using CDCl3 as the solvent. Elemental
analysis results were carried out on a LECO 932 CHNS elemental analyzer (LECO, St.
Joseph, MI, USA). The results were as follows: OE1, calculated for C26H52O5 (%), C
70.22 and H 11.79, and found to be C 70.87 and H 11.31; OE2, calculated for C30H60O7 (%),
C 67.63 and H 11.35, and found to be C 67.14 and H 10.95; OE3, calculated for C34H68O9 (%),
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C 65.77 and H 11.04, and found to be C 66.03 and H 10.82; OE4, calculated for C38H76O11
(%), C 64.37 and H 10.80, and found to be C 64.24 and H 11.29; OEP1, calculated for
C38H76O9 (%), C 67.42 and H 11.32, and found to be C 67.73 and H 11.82; and OEP2,
calculated for C38H76O9 (%), C 67.42 and H 11.32, found to be, C 67.91 and H 11.95.

2.2.2. Test of Aqueous Solution Samples

Solution samples (50 mL each) of the defoamers of various concentrations were pre-
pared. A platinum loop was put into a sample and then separated again. The surface tension
value was measured when the loop was separated from the liquid surface. Surface tension
results were obtained with a Krüss K100 surface tensiometer (Krüss, Hamburg, Germany).
Solutions of polycarboxylate superplasticizer (20 wt%) and various defoamers (0.1 wt%)
were prepared. Each solution was foamed for 2 min with the gas flow rate of 0.3 L/min.
Foam heights, bubble photographs and bubble size distributions were obtained with a
Krüss DFA100 dynamic foam analyzer (Krüss, Hamburg, Germany).

2.2.3. Test of Fresh Cement Mortar Samples

Totals of 675 g of cement, 1350 g of sand, 216 g of water, 12 g of the solution (20 wt%)
of polycarboxylate superplasticizer and various defoamers (0.1 wt%) were mixed, then
stirred using a low speed for 3 min and a high speed for another 1 min. The fresh samples
were tested. Air contents were obtained with a SANYO direct reading air content tester
(SANYO, Osaka, Japan). Spread diameters were tested according to the Chinese National
Standard, GB/T 8077-2012 13. Air contents were tested according to the Chinese National
Standard, GB/T 50080-2016 15. Bubble size distribution was obtained with an AVA-3000
pore structure analyzer of fresh concretes (Germann Instruments, Copenhagen, Denmark),
according to the previously reported method [29].

2.2.4. Test of Hardened Cement Mortar Samples

The fresh samples were incubated for 28 days to prepare the hardened cement mortar
specimens (100 mm × 100 mm × 100 mm). The specimens were cut into thin slices with
a thickness of 10 ± 2 mm, then ground, buffed, cleaned and coated with a fluorescer,
successively. After drying, the hardened samples were tested. Air contents, air-void
spacing factors and air-void photographs were obtained with an MIC-840-01 pore struc-
ture analyzer of hardened concretes (CHUO SEIKI, Tokyo, Japan). Meanwhile, the fresh
samples were incubated for 28 days to prepare the hardened cement mortar specimens
(4 cm × 4 cm × 16 cm). Compressive strengths were obtained with an AEC-201 mortar
strength testing machine (AEC, Shanghai, China). Compressive strengths were tested
according to the Chinese National Standard, GB/T 50081-2002 6. Three same samples of
each category were prepared and tested, and the average value was recorded.

3. Results and Discussion
3.1. Preparation and Characterization of the Defoamers

Using OA as the starting agent (long alkyl chain), the polyether defoamers of differ-
ent EO amounts (4, 6, 8 and 10, respectively) were prepared, and polyether defoamers
of different EO and PO sequences (OA-4EO-4PO and OA-4PO-4EO) were also prepared
(Figure 1 and Table 1). The chemical structure of the obtained defoamers was characterized
by FT-IR, 1H-NMR and elemental analysis. Figure 2 shows the FT-IR spectrum of OA,
including a weak absorption peak of -O-H at 3318 cm−1, strong stretching vibration absorp-
tion peaks of -C-H at 3000–2800 cm−1 and the characteristic adsorption peak of -C=C- at
about 1460 cm−1. By contrast, the spectra of the defoamers show not only the characteristic
adsorption peaks of OA, but also another strong adsorption peak of -C-O- at 1104 cm−1,
suggesting the EO and PO units were linked to OA successfully.
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Table 1. Structure list of the prepared defoamers.
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OEP1 OA-4EO-4PO
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Figure 3 shows the 1H-NMR spectra of the defoamers. For all the defoamers, the peaks
at δ = 0.8 are the proton peaks of -CH3 of OA, and the peaks at δ = 1.2 are the proton peaks
of -CH2CH2- of OA. For OE1–4, the peaks at δ = 3.5–4.0 are the proton peaks of -CH2-O- of
EO, and the integral areas of the peaks of the polyether chains increased with the increase
in the amounts of EO. For OEP1 and OEP2, the peaks at δ = 1.05 are the proton peaks of
-CH3 of PO, and the peaks at δ = 3.5–4.0 are the proton peaks of -CH2-O- of EO and PO.
The results clearly indicate that the EO and PO units were linked to OA successfully, and
defoamers of a correct chemical structure were obtained.
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3.2. Surface Activity of the Defoamers

The surface activity of the polyether defoamers was tested firstly. Solutions containing
different defoamers of various concentrations were prepared, and the surface tensions of
all the samples were tested. Figure 4 shows that the surface tensions of all the samples
decreased gradually with an increasing logarithm of the defoamer concentrations. When the
concentration of each sample reached its critical micelle concentration (CMC), the surface
tension of each defoamer also reached its minimum value (γCMC). The further increase in
the concentration of each defoamer induced only a little decrease in the surface tension.
Compared with pure water, with a surface tension of 72 mN/m, the surface tensions
of the solutions of all the defoamers reached lower values at lower concentrations. The
surface tensions of the samples increased with an increased amount of EO units (decreasing
hydrophobicity) [30–32]. Table 2 shows the CMC and γCMC values of the defoamers, which
were calculated by plotting surface tension against logarithmic concentration, as in the
previous report [33–37]. It was observed that both the CMC and γCMC values increased
with the increase in the amount of EO unit, and the defoamer linked with PO before EO
(OEP2) gave the lowest CMC and γCMC values.
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Table 2. Surface activity parameters of the solutions mixed with various defoamers.

Defoamers CMC (mM) γCMC (mN/m)

OE1 0.007 30.63
OE2 0.011 31.53
OE3 0.016 35.12
OE4 0.025 35.89

OEP1 0.013 34.47
OEP2 0.004 27.30

3.3. Properties of the Defoamers in Aqueous Solutions

The defoaming performance of the defoamers in aqueous solutions was investigated
next. Solutions of polycarboxylate superplasticizer mixed with various defoamers were
prepared. Each solution was foamed for 2 min with a gas flow rate of 0.3 L/min, and the
real-time changes in the foam height were recorded. Since the solution of polycarboxylate
superplasticizer contains a large number of unreacted polyether comonomers, which are
hydrophilic and can produce excessive air bubbles in solution, adding the defoamers to the
solution can eliminate these bubbles effectively. Figure 5 shows that the foam heights of
all the samples increased gradually with the foaming time, and then decreased with the
incubation time. The maximum foam heights decreased with the decrease in the amount of
EO units, indicating that the defoamer containing less EO (higher hydrophobicity) had a
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higher defoaming ability in aqueous solutions [18,19]. It was also observed that compared
with the defoamers linked with EO only, the defoamers linked with both EO and PO caused
the foam heights to decay more quickly during the incubation time, and the defoamer
linked with PO before EO (OPE2) caused the foam height to decay the most quickly. The
results indicated that the defoamer linked with both EO and PO had a stronger defoaming
capacity, since PO is more hydrophobic than EO, which exhibits weak hydrophilicity.
Compared with OEP1 (OA-4EO-4PO, hydrophobic–hydrophilic–weakly hydrophilic), the
structure of OEP2 (OA-4PO-4EO, hydrophobic–weakly hydrophilic–hydrophilic) is closer
to that of an amphiphilic surfactant; thus, OEP2 exhibits a stronger defoaming capacity.
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mixed with various defoamers (0.1 wt%) against time.

Table 3 shows the maximum foam heights and complete defoaming times of all the
solution samples. The results indicate that both the maximum foam heights and complete
defoaming times decreased with the decrease in the amount of EO units. The defoamers
linked with both EO and PO gave the maximum values of the foam heights and lower
complete defoaming times, compared with the defoamers linked with EO only, and the
defoamer linked with PO before EO (OEP2) gave the lowest values. The results clearly
indicated that the defoamer containing less EO had a higher defoaming capacity, and
the defoamer linked with PO before EO had the strongest defoaming capacity. Figure 6
shows the photographs of the bubbles of the samples mixed with various defoamers at
the total time of 700 s. It was observed that the defoamer containing less EO induced less
and a larger size of bubbles at the time of 700 s, and the defoamer linked with PO before
EO (OEP2) induced nearly no bubbles. The results further support the conclusions more
directly, which suggest that during the incubation time, the defoamers caused more tiny
bubbles to burst then merged into large bubbles.

Table 3. Maximum foam heights and complete defoaming times of the samples of the polycarboxylate
superplasticizer mixed with various defoamers.

Defoamers Maximum Foam Height (mm) Complete Defoaming Time (s)

Blank 167 >700
OE1 108 466
OE2 122 >700
OE3 143 >700
OE4 159 >700

OEP1 96 214
OEP2 85 164
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plasticizer mixed with various defoamers at the total time of 700 s.

3.4. Properties of the Defoamers in Fresh Cement Mortars

The defoamers in this study exhibited both a high surface activity and defoaming
capacity in aqueous solutions. We envisioned that they may also have had a good defoam-
ing capacity in cement-based materials. The defoaming properties of the defoamers in
fresh cement mortars were thus investigated. Table 4 shows that compared with the blank
sample, the air content of all the samples mixed with the defoamers markedly decreased,
and the air content decreased with the decrease in the amount of EO. It can be observed
that the defoamers linked with PO before EO (OEP2) gave lower air content (higher bulk
density) compared with those linked with EO only. The defoaming properties of the de-
foamers in fresh cement mortars are highly consistent with those obtained in aqueous
solutions. The results tested in fresh cement mortars are also consistent with the results of
surface tension, and the defoamer having a lower surface tension value exhibits a higher
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defoaming capacity. The bubble size distribution of the fresh mortars mixed with various
defoamers was also tested. Figure 7 shows that all the defoamers could decrease the air
content of the fresh mortars at all the bubble size ranges, and the air contents of the air
bubbles at the large sizes (>1 mm) caused a much larger decrease. Since large air bubbles
may weaken the mechanical performance of hardened concretes much more strongly [14],
the defoamers in this study preferred to inhibit and eliminate the harmful large bubbles in
the fresh concretes, which may be advantageous to enhance the mechanical performance of
hardened concretes.

Table 4. The air content and spread diameters of the fresh mortar samples mixed with different
defoamers.

Defoamers Spread Diameter (mm) Bulk Density (g/L) Air Content (%)

Blank 202 1807 10.4
OE1 247 1985 3.3
OE2 237 1966 4.0
OE3 216 1912 6.2
OE4 211 1855 8.6

OEP1 228 1941 5.0
OEP2 252 2008 2.3
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3.5. Properties of Defoamers in Hardened Cement Mortars

The defoaming properties of the defoamers in hardened cement mortars were also
investigated. Hardened specimens mixed with various defoamers were prepared and
tested. Table 5 shows that compared with the blank sample, the air content of all the
samples mixed with the defoamers obviously decreased, and the air content decreased
gradually with a decreasing amount of EO. The sample containing the defoamer linked with
PO before EO (OEP2) showed a lower air content value compared with those linked with
EO only, which is consistent with the conclusions obtained in both the aqueous solutions
and fresh cement mortars.
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Table 5. Performance of the hardened mortar samples mixed with various defoamers.

Defoamers Air Content (%) Air-Void Spacing
Factors (mm)

Compressive Strength (MPa)
3 d 7 d 28 d

Blank 12.33 0.22 21 31.4 42.1
OE1 4.98 0.49 24.2 36.5 48.4
OE2 6.38 0.41 23.5 35.8 46.5
OE3 7.36 0.36 22.2 34.8 44.8
OE4 9.94 0.25 21.3 32.4 43.2

OEP1 7.73 0.33 22 34.8 44.6
OEP2 3.05 0.58 25.2 39.2 50.3

An important air-void parameter of hardened concretes, the air-void spacing factor,
was discussed [30–32]. Table 5 also shows that the samples with lower air content features
had a larger air-void spacing factor. Figure 8 shows the air-void photographs of the
hardened mortars mixed with various defoamers to observe the air voids more directly. It
can be clearly observed that the samples mixed with the defoamer with a higher defoaming
capacity produced air voids in lesser amounts and with longer air-void distances. The
results further support the conclusions of the air content and air-void spacing factors, which
clearly suggest that the defoamers in this study eliminated the excessive harmful air voids
and decreased the air content of hardened concretes effectively.
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Figure 8. Air-void photographs of the hardened specimen samples mixed with various defoamers.

Unlike the small bubbles (<200 µm) produced by air-entraining agents (good for
workability and freeze–thaw durability), the use of polycarboxylate superplasticizer has
a tendency to produce an excessive amount of large bubbles in fresh concrete. Both the
amount and quality of these entrapped bubbles are not controlled, which may decrease
the mechanical performance of hardened concrete [13,14]. Inhibiting and eliminating the
excessive harmful bubbles in fresh concretes has been reported to be advantageous in
enhancing the mechanical performance of hardened concretes [38–42]. Table 5 and Figure 9
also show the compressive strengths of the hardened mortar samples mixed with various
defoamers after incubation for 28 days. It can be clearly observed that compared with
the blank sample, the compressive strengths of all the samples mixed with the defoamers
were enhanced, and the defoamers with a higher defoaming capacity caused a larger
enhancement of the compressive strength. The results suggest that using polyether-type
defoamers in this study was highly beneficial in enhancing the compressive strength of
hardened concretes.
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Figure 9. Compressive strengths of the hardened mortar samples after the incubation times of
3 (black), 7 (red) and 28 (blue) days mixed with various polyether-type defoamers.

4. Conclusions

In summary, a series of polyether-type defoamers consisting of the same alkyl chain
but different polyether chains was prepared and investigated for the first time. Using
OA as the starting agent (hydrophobic alkyl chain), polyether defoamers with different
hydrophilic polyether chains were prepared by changing the amount and sequence of EO
and PO units. The properties of different defoamers were tested in aqueous solutions,
and fresh and hardened cement mortars, and the structure–property relationship was
investigated. The results indicated that the defoaming capacity of the polyether defoamers
decreased with the increase in the EO amount, and the defoamers linked with both EO and
PO units had a stronger defoaming capacity than those linked with EO only. The structure
of the defoamer linked with PO before EO (hydrophobic–weakly hydrophilic–hydrophilic)
is closer to that of an amphiphilic surfactant, which exhibits a stronger defoaming capacity.
This study is highly beneficial for the application and development of novel synthetic
polyether-type defoamers for concrete.
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