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Abstract: A new Eu3+-doped Gd3+ complex of formula [Eu0.0135Gd0.9865(pta)3me-phen] was syn-
thesized and structurally characterized (Hpta = benzoyltrifluoroacetone, me-phen = 5-methyl-1,10-
phenanthroline). The photoluminescence study revealed that when the compound was excited at
RT, under a 457 nm continuous laser, the material exhibited high luminescence due to the antenna
effect of the ligands, as well as a good balance between the phosphorescence from the spin-forbidden
triplet (from the organic ligands), and the characteristic lanthanide f-f transitions. The ratio between
the previous emissions drastically changed when the sample was heated up to 62 ◦C inside a tubular
furnace. This ratio was investigated using the luminescence intensity ratio method, to analyze the
capabilities of the sample as a temperature sensor. The relative sensitivity reached a maximum of
11.4 ◦C−1 %, maintaining a detection limit below 0.15 ◦C for the whole temperature range.

Keywords: hybrid organic-inorganic complex; optical temperature sensor; luminescence; downshifting

1. Introduction

In recent years, much effort has been devoted to developing lanthanide ratiometric
thermometers based on the temperature-induced changes in the luminescence intensity
of two different transitions [1,2]. Lanthanide ions are fundamental in all luminescence
science research and are usually employed in optical sensors due to their interesting optical
properties. In particular, numerous research works have investigated trivalent lanthanide
ions, so their optical properties are relatively well known [3]. These ions feature 4f-electrons’
shielding, which is related to their characteristic sharp absorption and emission spectra
covering a wide UV–Vis–NIR range.

The host material plays an essential role in the design of optical devices, as its vibratory
properties can influence the optical behavior of the dopant ion. Many of the transition
lines (of practical importance) of lanthanide ions originate from excited levels with a small
energy gap. Therefore, material hosts with lower phonon energy are necessary, in order for
the radiative transitions of active ions to dominate over non-radiative losses. Furthermore,
lanthanide ions present weak light absorption, which translates into weak luminescence,
since the luminescence intensity is proportional to the absorption [4,5]. Hybrid organic–
inorganic compounds can overcome this problem by providing an intense absorption band
from an organic ligand that will transfer the higher absorbed-light energy to the lanthanide
ion. This effect is known as the antenna effect (or sensitization) [6]. On top of that, they are
easy to process (and, therefore, to mix), to create composites that can combine temperature
sensing with other novel and interesting applications [7–9].
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In this work, we study the capability of the Ln(III) complex [Eu0.0135Gd0.9865(pta)3me-
phen] as an optical temperature ratiometric sensor. Ratiometric thermometers based on
dual-emission provide a self-calibrated temperature readout that is unaffected by sensor
concentration and/or excitation-signal fluctuations. Thus, these thermometers are more
reliable and accurate than thermometers based on the emission intensity of a single tran-
sition [10–12]. This type of dual-emission measurement is commonly comprehended as
being part of the luminescence intensity ratio (LIR) or fluorescence intensity ratio (FIR)
techniques, and is based mainly in the exploit of pairs of thermalized energy levels in
trivalent lanthanide-doped materials that can be fitted to a Boltzmann equation. This
classic approach, has limited sensitivity in the sensors, proportional to the energy gap
between the thermalized levels [13]. By using a complex material, combining organic and
inorganic emissions, however, it is possible to overcome the previous sensitivity limit of
the Boltzmann thermometer. This work may be considered as part of an exciting new trend,
related to overcoming the previously-mentioned limit. Other approaches include the com-
bination of linear and non-linear optics, whether by second-harmonic generation [14–16]
or multilevel cascade [17], as well as the combination of a single-emission band and the
conventional Boltzmann ratio [18].

2. Experimental Setup
2.1. Synthesis

Reagents: all chemicals and reagents were commercially available and used with-
out further purification; specifically, benzoyltrifluoroacetone 99% (Hpta), 5-methyl-1,10-
phenanthroline (me-phen) 99%, triethylamine 99%, ethanol, and Eu(NO3)3·5H2O (99.9%),
Gd(NO3)3·6H2O (99.9%). All the reactions were performed under a dinitrogen atmosphere.

Synthesis of [Eu0.0135Gd0.9865(pta)3me-phen]: Hpta (163.8 mg, 0.75 mmol) and triethy-
lamine (150 µL, 1.00 mmol) were dissolved in 9 mL of ethanol in a round-bottomed flask.
Then, 0.25 mmol of me-phen (48.6 mg) dissolved in 3 mL of ethanol was added. Subse-
quently, 0.0034 mmol of Eu(NO3)3·5H2O (1.5 mg) and 0.2466 mmol of Gd(NO3)3·6H2O
(111.3 mg), for a sum of 0.25 mmol of Ln(NO3)3, were dissolved together in 3 mL of
ethanol and added to the reaction flask. The solution was heated under stirring at 60 ◦C
for 150 min. After that, the solution was cooled to room temperature and 10 mL of deion-
ized water was added. A white precipitate appeared immediately, and the solution was
stirred for another 15 min. The product was collected by filtration, washed with 10 mL of
water and 5 mL of ice-cooled ethanol, and dried at 60 ◦C overnight. The crude product
was recrystallized by diffusion of n-heptane in an acetonitrile solution of the complex.
During the recrystallization process, some crystals were collected for single-crystal X-ray
diffraction, to solve the structure, and the rest was ground, for: X-ray powder diffraction,
elemental analysis, thermogravimetry and photoluminescence measurements. Synthesised
[Eu0.0135Gd0.9865(pta)3me-phen] yield: 210.1 mg (85%). Elemental analysis (%) calculated
for C43H28N2Eu0.0135Gd0.9865O6F9 (996.85): C, 51.75; H, 2.80; N, 2.81. Found: C, 51.8; H,
2.8; N, 2.9. IR (KBr, ν/cm−1): 3070(m), 2921(m), 1612(s), 1577(s), 1527(m), 1319(s), 1292(s),
1187(s), 1139(s), 1078(w), 767(m), 703(m), 603(m), 582(m). UV-vis (ethanol, λmax/nm): 232,
266, 324.

2.2. General Characterization Methods

FT-IR as KBr disks, in the 400 cm−1 to 4000 cm−1 range, was recorded on a Thermo
NicolletAvatar 360 FT-IR spectrometer (Nicolet Instruments, Madison, WI, USA). UV-visible
spectra, between 220 nm and 800 nm, with samples dissolved in ethanol, were recorded on
a Varian Cary 50 bio UV-Visible spectrophotometer (Agilent Technologies, Santa Clara, CA,
USA). X-ray powder diffraction patterns were recorded on a PANanalytical X’pert X-ray
diffractometer (Malvern Panalytical, Malvern, United Kingdom) with Cu Kα radiation,
1.54184 Å, at room temperature.
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2.3. Single-Crystal X-ray Crystallography

A suitable single crystal was selected under a polarizing microscope, taken directly
from the mother liquors, and covered with a protective oil before putting it on a 0.05 mm
loop. Single-crystal XRD data were collected with an Agilent SuperNova diffractometer
(Agilent Technologies, Santa Clara, CA, USA), with a micro-focus X-ray, under Cu-Kα

radiation (λ = 1.5418 Å). CrysalisPro software (v1.171.41.122a ,Rigaku Corporation, Tokyo,
Japan, 2021) was used to collect, index, scale and apply analytical absorption correction,
based on the multi-scan method.

2.4. Structure Analysis and Refinement

The structure was solved by direct methods, using SHELXT2018/2 [19], and refinement
was undertaken via full-matrix least-squares on F2, using SHELXL2018/3 [19]. Crystal
data and details of the structure refinement are given in Table 1. Crystallographic data
for the structure have been deposited in the Cambridge Crystallographic Database with
deposition number 2162029. The structure was solved considering all the Ln atoms as Gd,
since it corresponds to 98.65 % of the total Ln. The formula and the distances and angles in
Tables 1 and 2 refer to this element.

Table 1. Crystal data and structure refinement details.

Compound [Gd(pta)3me-phen] a

CCDC Number 2162029
Empirical formula C43H27F9GdN2O6
M/gmol−1 995.91
Temperature (K) 293
λ/Å 1.54184
Crystal system Monoclinic
space group P21/c
a, (Å) 10.0369 (3)
b, (Å) 37.5293 (15)
c, (Å) 11.1039 (3)
β (◦) 91.093 (3)
V (Å3) 4181.8 (2)
Z 4
Dcalc/gcm−3 1.582
µ/(mm−1) 11.05
Theta range/◦ 4.6–72.3
Rint 0.038
R1[I> 2σ(I) b 0.0895
wR2[I > 2σ(I)] c 0.1575
GOF onF 2 d 1.053

a The compound is formulated this way for simplicity. b R1 = [∑(‖Fo| − |Fc‖)/∑|Fo|]. c wR2 = [∑[w(Fo
2 −

Fc
2)2]/∑[w(Fo

2)2]]1/2. d Goodness-of-fit S = [Σ [w(Fo
2–Fc

2)2]/(n–p)]1/2.

Aromatic hydrogen atoms and hydrogen atoms in the alpha-position of benzoyltrifluo-
roacetone ligand’s diketonate group were situated geometrically (C-H = 0.95 Å) and refined
using a riding model (AFIX 43) with Uiso(H) = 1.2 Ueq(C). The Methyl group’s hydrogens
in the phenanthroline ring were also positioned geometrically (C-H = 0.98 angstroms) and
refined using a riding model (AFIX 137) with Uiso(H) = 1.5 Ueq (C). This methyl group is
disordered over positions 5 and 6 of the phenanthroline ring and was refined with PART
instructions, with occupancies of 0.42:0.58. The phenyl ring of the benzoyltrifluoroacetone
ligand labelled A was refined using a riding model AFIX 66.

2.5. X-ray Powder Diffractograms

There was a perfect match between the simulated (from single-crystal structure)
diffractogram and the experimental powder diffractogram (Figure 1), which confirmed the
integrity of the product sample and allowed us to use the recrystallized material for the rest
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of the measurements. Figure 1 also shows the isostructural character of [Gd(pta)3me-phen]
and [Eu(pta)3me-phen] [20].

Figure 1. Simulated and experimental powder diffractograms.

2.6. Optical Characterization

The emission spectra for the sample were obtained by excitation with a 457 nm contin-
uous laser, with the emission focused onto an optical fiber, coupled to a 0.303 m grating
single spectrometer (Andor Shamrock SR-303i-A from Andor Technology Ltd, Belfast,
United Kingdom). For the detection, a cooled Newton CCD camera (Andor Technology
Ltd, Belfast, United Kingdom) was used. All spectra were corrected from the respective
spectral response of the equipment.

For the temperature calibration, the same setup was used, with the sample placed
inside a closed tubular furnace (Gero RES-E 230/3 from Carbolite Gero, Derbyshire, UK),
controlled via contact with a type K thermocouple (Figure 2):

Figure 2. Experimental setup used for the temperature calibration of the emission spectra.

where L1 and L2 are lenses, LP is a Long Pass filter and OF corresponds to the optical
fiber that collects the signal.
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3. Results and Discussion
3.1. Structure of the Compound

[Eu0.0135Gd0.9865(pta)3me-phen] crystallizes in the monoclinic P21/c space-group and
has a molecular structure. The Gd3+ and the Eu3+ ions are randomly dispersed throughout
the material and occupy the same crystallographic positions, replacing each other. The Ln3+

ions are bound to three β-diketonate (A, B and C) and to one 5-methyl-phenanthroline
ligand, (Figure 3). The me-phen ligand shows its typical coordination mode, with the two
donor nitrogen atoms directly bound to the Ln3+ ion. The pta- ligands bind the Ln3+ ion
through the two oxygen atoms, forming five-membered chelate rings. The Ln3+ atoms
are in an eight-coordination structure, with a distorted square–antiprismatic geometry,
surrounded by six oxygen atoms from the three diketonate ligands, with distances in
the range 2.3361(1) Å to 2.3574(1) Å and, furthermore, surrounded by the two nitrogen
atoms of the 5-methyl-phenanthroline, at distances 2.5491(1) Å-2.5880(1) Å, (Figure 3b).
The distances and angles are in the expected range, in agreement with similar complexes
(Table 2) [21,22].

Figure 3. (a) molecular structure of [Eu0.0135Gd0.9865(pta)3me-phen], hydrogen atoms omitted for
clarity; (b) square–antiprismatic environment around the Ln3+ ion.

Table 2. Selected bond distances (Å) and angles (º).

Gd1—O2A 2.3361(1) Gd1—O2C 2.3370(1)

Gd1—O1A 2.3444(1) Gd1—N2 2.5491(1)
Gd1—O1C 2.3470(1) Gd1—N1 2.5880(1)
Gd1—O2B 2.3574(1)

O2A—Gd1—N2 85.648(1) O1C—Gd1—O2C 71.629(1)
O1A—Gd1—O2A 71.780(1) O2B—Gd1—O2C 76.567(1)
O1A—Gd1—O1C 85.241(1) N1—Gd1—O2B 70.877(1)
N1—Gd1—N2 62.421(1)

Table 3 shows the intramolecular hydrogen bonding distances. Those between one of
the diketonate oxygen atoms and the closest phenylene hydrogen range from 2.4159(1) Å
to 2.4937(1) Å. Additionally, in those between the diketonate hydrogen and one of the F
atoms, the range is 2.3378(1) Å – 2.2769(1) Å. These hydrogen bonds block the twist of
the phenylene ring with respect to the diketonate group (twisting angles in the range of
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13.58◦ to 24.36◦), enhancing the conjugation and the rigidity of the molecule favoring the
luminescence process [23–25].

Table 3. Intramolecular hydrogen bonding distances in Å.

F3A-H16A 2.3378(1) O2A—H19A 2.4159(1)

F3C-H16C 2.3769(1) O2B—H23B 2.4937(1)
F1B-H16B 2.3629(1) O2C—H19C 2.4520(1)

The packing diagram, Figure 4, shows the molecular structure of the complex. Weak
intermolecular interactions favor the complex’s solubility in solvents such as CH2Cl2 or
CH3CN. The voluminous character of the ligands and the high coordination number of the
complex prevents the entry of water molecules into the coordination sphere of the metal
ion, which would deactivate the molecule by non-radiative vibrating processes [25].

Figure 4. Packing diagram of the structure of [Eu0.0135Gd0.9865(pta)3me-phen].

3.2. Emission Spectrum and Temperature Sensor

The emission spectrum of the Eu3+-doped Gd3+ complex under 457 nm continuous
laser excitation is shown in Figure 5a. Two different emissions can be seen superimposed
in the spectrum. First, the characteristic emission bands of Eu3+ at 595 nm (5D0→7F1),
611 nm (5D0→7F2), 647 nm (5D0→7F3), and 696 nm (5D0→7F4); second, a broad emission
band centered at 550 nm and related to the T1→S0 phosphorescence from the organic
ligands [26].

According to the spectrum shown in Figure 5a, Figure 5b shows a schematic diagram
of the energy levels in the lanthanide ions and the ligands, along with the energy transfers
involved in the luminescence process. The 457 nm laser radiation excites the pta- ligand
from the ground singlet state to the excited singlet state. At this point, ISC to the excited
triplet states of the pta- and me-phen takes place, then energy transfer (ET) to the excited
states of the Eu3+ ion occurs. Finally, the decay to the ground states of the Eu3+ ion produces
the luminescence. The laser at 457 nm can also directly excite the Eu3+ ion to its 5D2 state,
and after a non-radiative decay to the 5D0 state, luminescence occurs. These processes
compete with the phosphorescence (P) of the ligands. A time decay of 0.44 ms for the
Eu3+ 5D0 state was obtained, which is in good agreement with the literature and can be
related to a good sensitization [27,28]. Changes in the temperature produce differences
in the relationship between both decay pathways, and this forms the base of temperature
sensing. Given the absence of UV-excitation sources, no contribution to the luminescence is
expected from the Gd3+ ions.
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Figure 5. (a) Emission spectra of [Eu0.0135Gd0.9865(pta)3me-phen] under 457 nm in the range of
23–62 ◦C; (b) Partial energy-level diagram indicating the transitions observed under the excitation of
the 457 nm laser where ISC (intersystem crossing) occurs; ET is energy transfer; P is phosphorescence.
Non-radiative relaxation processes are represented by dashed arrows [29].

The sample’s response calibration with temperature was performed by introducing
the sample into a furnace and heating the system from RT up to 62 ◦C (Figure 5a). A
thermal redistribution of the population was observed and the ratio of intensities between
the emission bands of Eu3+ and the organic ligands drastically changed, reaching a change
of over one order of magnitude for a 40 ◦C range increase. Following this behavior, the
LIR was used to calibrate the temperature between the emission related to the organic
compound and the Eu3+ 5D0→7F2 (611 nm) emission band (Figure 6). Given the not-well-
resolved state of the emissions, the ratio was obtained by means of the separation of
chosen wavelength regions. This method was chosen for its simplicity, although it is worth
mentioning that spectral deconvolution could lead to a slight increase in terms of relative
sensitivity [13]. Integration from 470 to 580 nm was collected for the organic emission,
whereas for the Eu3+ transition the integration was collected from 605 to 625, after applying
a baseline subtraction. The obtained data were fitted to a Boltzmann-type equation.

Figure 6. Ratio measurements as a function of temperature (top), relative sensitivity (bottom—
continuous red line) and temperature uncertainty (bottom—dashed blue line).
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To characterize the performance of the sample as a temperature sensor, the relative
sensitivity and the temperature uncertainty were obtained and presented in Figure 6. The
relative sensitivity is a magnitude defined by the rate at which the measured parameter (∆)
changes with respect to temperature and is given by

Srel =
1
∆

∣∣∣∣d∆
dT

∣∣∣∣·100 (1)

In this experiment the measured parameter (∆) was calculated as the ratio between
the emission related to the organic compound and the Eu3+ 5D0→7F2 (611 nm) emission
band (LIR).

In contrast to the absolute sensitivity, the relative sensitivity magnitude allows for the
comparison of sensors independently, on the physical parameter analyzed as a function of
temperature. Figure 6 shows maximums of 11 ◦C−1 % and 11.4 ◦C−1 % for temperatures
of 23 ◦C and 62 ◦C, respectively, with a minimum of 5.1 ◦C−1 % at 40 ◦C. Higher values
for the relative sensitivity could be achieved over 62 ◦C, but they were considered outside
the reliability criterion of the intensity of the sensor when above 5% of the noise level [30].
In Table 4, a list of optical temperature sensors based on Eu3+-doped lanthanide ions is
ranked by relative sensitivity. Outside of this study (as far as can be ascertained), no sensor
within this reliability criterion has achieved this high level of relative sensitivity in the
physiological range. A sensor by X. Lui et al. [31], with relative sensitivity of 31 %K−1 at
4 K, presented values below 1 %K−1 in the physiological range. The sensor by X. Yang
et al. [32], with a relative sensitivity of 16 %K−1 at 383 K, also showed a maximum of
9.01 %K−1 over the physiological range, while the sensor by A. Kovalenko et al. [33] was
analyzed for a range of temperatures well below this range.

Table 4. List of optical temperature sensors based on Eu3+-doped lanthanide ions, ranked by relative
sensitivity.

Host Doped Ions Temp Range (K) Tmax (K) Max Sr (% K−1) Refs

H4L Tb3+/Eu3+ 4–290 4 31 [31]
BTC Tb3+/Eu3+ 298–383 383 16 [32]
(L1)(HL1) Eu3+ 80–180 125 12 [33]
(pta)3me-phen Eu3+/Gd3+ 296–335 335 11.4 This work
CaMoO4 Tb3+/Eu3+ 298–603 603 9.50 [34]
HOF-TCBP Eu3+ 297–377 297 5.79 [35]
L(DMF)2(NO3) Tb3+/Eu3+ 10–300 250 4.90 [36]
UiO-66 Zr3+/Eu3+ 237–337 337 4.67 [37]
Ln@Al(OH)(bpydc) Tb3+/Eu3+ 283–333 333 3.00 [38]
ZJU88 ⊃ ⋂perylene Eu3+ 293–353 293 1.28 [11]
β-NaY0.8Gd0.2F4 Tb3+/Eu3+ 303–563 303 0.76 [39]
POM@MOF Tb3+/Eu3+ 60–360 60 0.71 [40]
CGS Tb3+/Eu3+ 313–473 473 0.56 [41]
Ca8ZnLa(PO4)7 Tb3+/Eu3+ 298–498 298 0.53 [42]
[Ln(hfa)3(dpbp)]n Tb3+/Eu3+ 200–300 200 0.52 [43]
Gd2(MoO4)3 Tb3+, Eu3+ 80–450 270 0.50 [44]
NaYF4 Ce3+/Tb3+/Eu3+ 303–573 573 0.46 [45]
CaF2 Tb3+/Eu3+ 21–320 21 0.40 [46]
YF3 Tb3+/Eu3+ 303–563 563 0.38 [47]
Borate glass Tb3+/Eu3+ 353–573 573 0.35 [48]
[Ln(bdc)1.5(H2O)2] Tb3+/Eu3+ 290–320 318 0.31 [49]
SiO2–Y2O3 Tb3+/Eu3+ 298–333 303 0.29 [50]
YF3 Ce3+/Tb3+/Eu3+ 303–563 563 0.20 [47]
Sr3GdNa(PO4)3F Tb3+/Eu3+ 303–483 303 0.16 [51]
YF3 glass Tb3+/Eu3+ 303–563 563 0.13 [52]
[Ln2(D-cam)(Himdc)2(H2O)2] Tb3+/Eu3+ 100–450 450 0.11 [53]
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Finally, to characterize the error of the sensor, the temperature uncertainty (or tem-
perature resolution) was calculated. Temperature uncertainty refers to the minimum
temperature change that can be detected in a given measurement by the sensor and is given
by [30]

δT =
1

Srel

δ∆
∆

(2)

where δ∆ corresponds to the uncertainty in the determination of the ∆. To obtain this
last parameter experimentally, 100 measurements were carried out on with the sample
at RT, in the same conditions, where the temperature-dependent measurements were
undertaken. The resulting LIR readouts and the respective standard deviation are presented
in Figure 7. The experimental uncertainty in the determination is considered as the standard
deviation for the LIR readouts (δ∆ equal to 0.002). Using this parameter in Equation (2),
the resulting minimum and maximum temperature uncertainties are 0.008 and 0.15 ◦C
for the temperatures of 62 and 23 ◦C, respectively (Figure 6). Both results are well below
the inner limit of precision that can be found in cell-temperature sensing, among other
applications [54].

Figure 7. Distribution of the measured parameter (LIR) and the corresponding standard deviation.

4. Conclusions

A coordination compound combining pta- and me-phen ligands with Eu3+ and Gd3+

lanthanide ions was successfully synthesized and characterized. When excited under a 457
nm continuous laser, the emission spectrum showed a balanced equilibrium between the
broad phosphorescence from the organic ligands and the sharp peaks from the Eu3+ at RT.
When the sample was heated in the physiological temperature range, up to 62 ◦C, a drastic
change was observed in the intensities between the organic phosphorescence and the
lanthanide luminescence. The ratio of these intensities was analyzed by the LIR technique.
Furthermore, the performance of the sample as a temperature sensor was studied by obtain-
ing its relative sensitivity and temperature uncertainty. The relative sensitivity presents, as
far as can be ascertained, the highest sensitivities recorded to date for organic–inorganic hy-
brid materials. The temperature uncertainty in the study presented values below 0.15 ◦C for
the whole temperature range. All of these results position [Eu0.0135Gd0.9865(pta)3me-phen]
as one of the top candidates for optical temperature sensing in the physiological range.
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