Dynamic Characterization of Hexagonal Microstructured Materials with Voids from Discrete and Continuum Models
Abstract
:1. Introduction
2. Micropolar Continuum and FEM Implementation
3. Representative Volume Element
4. Numerical Simulations
4.1. Regular Shape
4.2. Hourglass Shape
4.3. Skew Shape
4.4. Effect of Void Size
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greco, F.; Leonetti, L.; Luciano, R.; Trovalusci, P. Multiscale failure analysis of periodic masonry structures with traditional and fiber-reinforced mortar joints. Compos. Part B Eng. 2017, 118, 75–95. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Sheng, Y.; Ye, J.; Tan, Y. Discrete element modeling of the microbond test of fiber reinforced composite. Comput. Mater. Sci. 2010, 49, 253–259. [Google Scholar] [CrossRef]
- Reccia, E.; Leonetti, L.; Trovalusci, P.; Cecchi, A. A multiscale/multidomain model for the failure analysis of masonry walls: A validation with a combined FEM/DEM approach. Int. J. Multiscale Comput. Eng. 2018, 16, 325–343. [Google Scholar] [CrossRef]
- Altenbach, H.; Sadowski, T. Failure and Damage Analysis of Advanced Materials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sadowski, T.; Samborski, S. Development of damage state in porous ceramics under compression. Comput. Mater. Sci. 2008, 43, 75–81. [Google Scholar] [CrossRef]
- Sadowski, T.; Samborski, S. Prediction of the mechanical behaviour of porous ceramics using mesomechanical modelling. Comput. Mater. Sci. 2003, 28, 512–517. [Google Scholar] [CrossRef]
- Leonetti, L.; Greco, F.; Trovalusci, P.; Luciano, R.; Masiani, R. A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: Application to masonry structures. Compos. Part B Eng. 2018, 141, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Trovalusci, P.; Varano, V.; Rega, G. A generalized continuum formulation for composite microcracked materials and wave propagation in a bar. J. Appl. Mech. 2010, 77, 061002. [Google Scholar] [CrossRef]
- Pau, A.; Trovalusci, P. A multifield continuum model for the description of the response of microporous/microcracked composite materials. Mech. Mater. 2021, 160, 103965. [Google Scholar] [CrossRef]
- Trovalusci, P.; Masiani, R. A multifield model for blocky materials based on multiscale description. Int. J. Solids Struct. 2005, 42, 5778–5794. [Google Scholar] [CrossRef] [Green Version]
- Trovalusci, P.; Masiani, R. Material symmetries of micropolar continua equivalent to lattices. Int. J. Solids Struct. 1999, 36, 2091–2108. [Google Scholar] [CrossRef]
- Sluys, L.; De Borst, R.; Mühlhaus, H.B. Wave propagation, localization and dispersion in a gradient-dependent medium. Int. J. Solids Struct. 1993, 30, 1153–1171. [Google Scholar] [CrossRef] [Green Version]
- Kunin, I. The theory of elastic media with microstructure and the theory of dislocations. In Mechanics of Generalized Continua; Springer: Berlin/Heidelberg, Germany, 1968; pp. 321–329. [Google Scholar]
- Puri, P.; Cowin, S.C. Plane waves in linear elastic materials with voids. J. Elast. 1985, 15, 167–183. [Google Scholar] [CrossRef]
- Reda, H.; Rahali, Y.; Ganghoffer, J.F.; Lakiss, H. Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Compos. Struct. 2016, 141, 328–345. [Google Scholar] [CrossRef]
- Settimi, V.; Trovalusci, P.; Rega, G. Dynamical properties of a composite microcracked bar based on a generalized continuum formulation. Contin. Mech. Thermodyn. 2019, 31, 1627–1644. [Google Scholar] [CrossRef] [Green Version]
- Kunin, I. Elastic Media with Microstructure II: Three-Dimensional Models; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Trovalusci, P. Molecular approaches for multifield continua: Origins and current developments. In Multiscale Modeling of Complex Materials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 211–278. [Google Scholar]
- Tuna, M.; Leonetti, L.; Trovalusci, P.; Kirca, M. ‘Explicit’ and ‘implicit’ non-local continuous descriptions for a plate with circular inclusion in tension. Meccanica 2020, 55, 927–944. [Google Scholar] [CrossRef] [Green Version]
- Tuna, M.; Trovalusci, P. Scale dependent continuum approaches for discontinuous assemblies: ‘Explicit’ and ‘implicit’ non-local models. Mech. Res. Commun. 2020, 103, 103461. [Google Scholar] [CrossRef]
- Bacca, M.; Bigoni, D.; Dal Corso, F.; Veber, D. Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Part I: Closed form expression for the effective higher-order constitutive tensor. Int. J. Solids Struct. 2013, 50, 4010–4019. [Google Scholar] [CrossRef] [Green Version]
- Luciano, R.; Willis, J. Bounds on non-local effective relations for random composites loaded by configuration-dependent body force. J. Mech. Phys. Solids 2000, 48, 1827–1849. [Google Scholar] [CrossRef]
- Smyshlyaev, V.P.; Cherednichenko, K.D. On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 2000, 48, 1325–1357. [Google Scholar] [CrossRef]
- Kouznetsova, V.; Geers, M.G.; Brekelmans, W.M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 2002, 54, 1235–1260. [Google Scholar] [CrossRef]
- Kouznetsova, V.; Geers, M.G.; Brekelmans, W. Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 2004, 193, 5525–5550. [Google Scholar] [CrossRef]
- Leismann, T.; Mahnken, R. Comparison of hyperelastic micromorphic, micropolar and microstrain continua. Int. J. Non-Linear Mech. 2015, 77, 115–127. [Google Scholar] [CrossRef]
- Peerlings, R.; Fleck, N. Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. Eng. 2004, 2. [Google Scholar] [CrossRef] [Green Version]
- Bacigalupo, A.; Gambarotta, L. Second-order computational homogenization of heterogeneous materials with periodic microstructure. ZAMM-J. Appl. Math. Mech. Für Angew. Math. Und Mech. 2010, 90, 796–811. [Google Scholar] [CrossRef]
- Eringen, A.C. Microcontinuum Field Theories: I. Foundations and Solids; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Neff, P.; Ghiba, I.D.; Madeo, A.; Placidi, L.; Rosi, G. A unifying perspective: The relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 2014, 26, 639–681. [Google Scholar] [CrossRef] [Green Version]
- Tekoğlu, C.; Onck, P.R. Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models. J. Mech. Phys. Solids 2008, 56, 3541–3564. [Google Scholar] [CrossRef]
- Trovalusci, P.; Sansalone, V. A Numerical Investigation of Structure-Property Relations in Fiber Composite Materials. Int. J. Multiscale Comput. Eng. 2007, 5, 141–152. [Google Scholar] [CrossRef]
- Forest, S.; Dendievel, R.; Canova, G.R. Estimating the overall properties of heterogeneous Cosserat materials. Model. Simul. Mater. Sci. Eng. 1999, 7, 829. [Google Scholar] [CrossRef]
- Herrmann, G.; Achenbach, J.D. Applications of theories of generalized Cosserat continua to the dynamics of composite materials. In Mechanics of Generalized Continua; Springer: Berlin/Heidelberg, Germany, 1968; pp. 69–79. [Google Scholar]
- Bauer, S.; Schäfer, M.; Grammenoudis, P.; Tsakmakis, C. Three-dimensional finite elements for large deformation micropolar elasticity. Comput. Methods Appl. Mech. Eng. 2010, 199, 2643–2654. [Google Scholar] [CrossRef]
- Forest, S.; Sab, K. Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 1998, 25, 449–454. [Google Scholar] [CrossRef]
- Mühlhaus, H.B. Continuum models for layered and blocky rock. In Analysis and Design Methods; Elsevier: Amsterdam, The Netherlands, 1993; pp. 209–230. [Google Scholar]
- Baraldi, D.; Cecchi, A.; Tralli, A. Continuous and discrete models for masonry like material: A critical comparative study. Eur. J. Mech.-A/Solids 2015, 50, 39–58. [Google Scholar] [CrossRef]
- Masiani, R.; Rizzi, N.; Trovalusci, P. Masonry as structured continuum. Meccanica 1995, 30, 673–683. [Google Scholar] [CrossRef]
- Perić, D.; Yu, J.; Owen, D. On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua. Int. J. Numer. Methods Eng. 1994, 37, 1351–1379. [Google Scholar] [CrossRef]
- Diegele, E.; ElsÄßer, R.; Tsakmakis, C. Linear micropolar elastic crack-tip fields under mixed mode loading conditions. Int. J. Fract. 2004, 129, 309–339. [Google Scholar] [CrossRef]
- Godio, M.; Stefanou, I.; Sab, K.; Sulem, J. Cosserat elastoplastic finite elements for masonry structures. Key Eng. Mater. 2015, 624, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liang, Y.; Duan, Q.; Schrefler, B.A.; Du, Y. A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials. Comput. Mech. 2014, 54, 1331–1356. [Google Scholar] [CrossRef]
- Ciarletta, M.; Scalia, A.; Svanadze, M. Fundamental solution in the theory of micropolar thermoelasticity for materials with voids. J. Therm. Stress. 2007, 30, 213–229. [Google Scholar] [CrossRef]
- Kumar, R.; Kansal, T. Fundamental solution in the theory of micropolar thermoelastic diffusion with voids. Comput. Appl. Math. 2012, 31, 169–189. [Google Scholar] [CrossRef] [Green Version]
- Scarpetta, E. On the fundamental solutions in micropolar elasticity with voids. Acta Mech. 1990, 82, 151–158. [Google Scholar] [CrossRef]
- Janjgava, R.; Gulua, B.; Tsotniashvili, S. Some boundary value problems for a micropolar porous elastic body. Arch. Mech. 2020, 72, 485–509. [Google Scholar]
- Lakes, R. Experimental microelasticity of two porous solids. Int. J. Solids Struct. 1986, 22, 55–63. [Google Scholar] [CrossRef]
- Bacigalupo, A.; Gambarotta, L. Chiral two-dimensional periodic blocky materials with elastic interfaces: Auxetic and acoustic properties. Extrem. Mech. Lett. 2020, 39, 100769. [Google Scholar] [CrossRef]
- Goda, I.; Assidi, M.; Belouettar, S.; Ganghoffer, J. A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 2012, 16, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Bîrsan, M. On a thermodynamic theory of porous Cosserat elastic shells. J. Therm. Stress. 2006, 29, 879–899. [Google Scholar] [CrossRef]
- Rueger, Z.; Lakes, R.S. Experimental Cosserat elasticity in open-cell polymer foam. Philos. Mag. 2016, 96, 93–111. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Trovalusci, P.; Dharasura, S. Mechanical behavior of anisotropic composite materials as micropolar continua. Front. Mater. 2019, 6, 59. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Trovalusci, P.; Luciano, R. Material Symmetries in Homogenized Hexagonal-Shaped Composites as Cosserat Continua. Symmetry 2020, 12, 441. [Google Scholar] [CrossRef] [Green Version]
- Colatosti, M.; Fantuzzi, N.; Trovalusci, P. Dynamic Characterization of Microstructured Materials Made of Hexagonal-Shape Particles with Elastic Interfaces. Nanomaterials 2021, 11, 1781. [Google Scholar] [CrossRef]
- Ferreira, A.J.; Fantuzzi, N. MATLAB Codes for Finite Element Analysis: Solids and Structures, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Fantuzzi, N.; Trovalusci, P.; Luciano, R. Multiscale analysis of anisotropic materials with hexagonal microstructure as micropolar continua. Int. J. Multiscale Comput. Eng. 2020, 18, 265–284. [Google Scholar] [CrossRef]
- Trovalusci, P.; De Bellis, M.L.; Masiani, R. A multiscale description of particle composites: From lattice microstructures to micropolar continua. Compos. Part B Eng. 2017, 128, 164–173. [Google Scholar] [CrossRef]
- Masiani, R.; Trovalusci, P. Cosserat and Cauchy materials as continuum models of brick masonry. Meccanica 1996, 31, 421–432. [Google Scholar] [CrossRef]
- Trovalusci, P.; Masiani, R. Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 2003, 40, 1281–1297. [Google Scholar] [CrossRef]
- Colatosti, M.; Fantuzzi, N.; Trovalusci, P.; Masiani, R. New insights on homogenization for hexagonal-shaped composites as Cosserat continua. Meccanica 2021, 57, 885–904. [Google Scholar] [CrossRef]
Model | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 |
---|---|---|---|---|---|---|
Discrete | 2.7393 | 5.9379 | 8.0329 | 12.4005 | 13.9150 | 15.5230 |
Cosserat | 2.7345 | 5.9220 | 8.0576 | 12.4892 | 13.8884 | 15.5679 |
Error (%) | 0.18 | 0.27 | −0.31 | −0.71 | 0.19 | −0.29 |
Cauchy | 2.7453 | 5.9198 | 8.1267 | 12.6091 | 13.9262 | 15.8579 |
Error (%) | −0.22 | 0.30 | −1.17 | −1.68 | −0.08 | −2.16 |
Discrete | 2.7389 | 5.9385 | 8.0343 | 12.4100 | 13.9160 | 15.5360 |
Cosserat | 2.7325 | 5.9209 | 8.0515 | 12.5243 | 13.9000 | 15.5713 |
Error (%) | 0.23 | 0.30 | −0.21 | −0.92 | 0.11 | −0.23 |
Cauchy | 2.7453 | 5.9198 | 8.1267 | 12.6091 | 13.9262 | 15.8579 |
Error (%) | −0.23 | 0.31 | −1.15 | −1.60 | −0.07 | −2.07 |
Discrete | 2.7404 | 5.9381 | 8.0354 | 12.4220 | 13.9170 | 15.5470 |
Cosserat | 2.7306 | 5.9199 | 8.0434 | 12.5491 | 13.9084 | 15.5706 |
Error (%) | 0.36 | 0.31 | −0.10 | −1.02 | 0.06 | −0.15 |
Cauchy | 2.7453 | 5.9198 | 8.1267 | 12.6091 | 13.9262 | 15.8579 |
Error (%) | −0.18 | 0.31 | −1.14 | −1.51 | −0.07 | −2.00 |
Model | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 |
---|---|---|---|---|---|---|
Scale | ||||||
Discrete | 2.6390 | 8.4401 | 8.4640 | 16.4650 | 19.3790 | 19.5590 |
Cosserat | 2.6478 | 8.3997 | 8.6419 | 16.7402 | 19.8063 (6) | 19.6702 (5) |
Error (%) | −0.33 | 0.48 | −2.10 | −1.67 | −2.21 | −0.57 |
Cauchy | 2.8119 | 8.3991 | 9.5843 | 19.4374 | 22.7869 (7) | 20.1853 (5) |
Error (%) | −6.55 | 0.49 | −13.24 | −18.05 | −17.59 | −3.20 |
Scale | ||||||
Discrete | 2.6402 | 8.4389 | 8.4646 | 16.4880 | 19.3990 | 19.5650 |
Cosserat | 2.6377 | 8.3976 | 8.5809 | 16.6601 | 19.6879 | 19.7209 |
Error (%) | −0.09 | 0.49 | −1.37 | −1.04 | −1.49 | −0.80 |
Cauchy | 2.8119 | 8.3991 | 9.5843 | 19.4374 | 22.7869 (7) | 20.1853 (5) |
Error (%) | −6.50 | 0.47 | −13.23 | −17.88 | −17.46 | −3.17 |
Scale | ||||||
Discrete | 2.6423 | 8.4376 | 8.4630 | 16.4950 | 19.4080 | 19.5530 |
Cosserat | 2.6291 | 8.3954 | 8.5233 | 16.5870 | 19.5770 | 19.7567 |
Error (%) | 0.50 | 0.50 | −0.71 | −0.56 | −0.87 | −1.04 |
Cauchy | 2.8119 | 8.3991 | 9.5843 | 19.4374 | 22.7869 (7) | 20.1853 (5) |
Error (%) | −6.42 | 0.46 | −13.25 | −17.84 | −17.41 | −3.23 |
Model | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 |
---|---|---|---|---|---|---|
Scale | ||||||
Discrete | 3.5949 | 9.6323 | 11.1940 | 21.1430 | 21.4230 | 24.1400 |
Cosserat | 3.7214 | 10.0285 | 11.5667 | 22.0620 (5) | 21.6435 (4) | 24.9388 |
Error (%) | −3.52 | −4.11 | −3.33 | −4.35 | −1.03 | −3.31 |
Cauchy | 3.7815 | 10.0283 | 11.8635 | 22.3742 | 23.0256 | 25.0461 |
Error (%) | −5.19 | −4.11 | −5.98 | −5.82 | −7.48 | −3.75 |
Scale | ||||||
Discrete | 3.5939 | 9.6279 | 11.1880 | 21.2180 | 21.4380 | 24.1440 |
Cosserat | 3.7101 | 10.0284 | 11.5178 | 22.0769 (5) | 21.6990 (4) | 24.9708 |
Error (%) | −3.23 | −4.16 | −2.95 | −4.05 | −1.22 | −3.42 |
Cauchy | 3.7815 | 10.0283 | 11.8635 | 22.3742 | 23.0256 | 25.0461 |
Error (%) | −5.22 | −4.16 | −6.04 | −5.45 | −7.41 | −3.74 |
Scale | ||||||
Discrete | 3.6133 | 9.6245 | 11.2070 | 21.2410 | 21.4860 | 24.1560 |
Cosserat | 3.7005 | 10.0283 | 11.4676 | 22.1155 (5) | 21.7045 (4) | 24.9937 |
Error (%) | −2.41 | −4.20 | −2.32 | −4.12 | −1.02 | −3.47 |
Cauchy | 3.7815 | 10.0283 | 11.8635 | 22.3742 | 23.0256 | 25.0461 |
Error (%) | −4.66 | −4.20 | −5.86 | −5.33 | −7.17 | −3.68 |
Cosserat | Cauchy | |||||
---|---|---|---|---|---|---|
Freq. | Regular | Hourglass | Skew | Regular | Hourglass | Skew |
0.9348 | 0.7717 | 1.2201 | 0.8583 | 0.7276 | 1.1173 | |
1.5041 | 2.1267 | 2.5776 | 1.5020 | 2.1253 | 2.5780 | |
3.4654 | 2.7356 | 4.3863 | 3.1511 | 2.5617 | 3.9315 | |
8.7207 | 5.7709 | 10.4737 | 8.7334 | 5.5503 | 10.0237 | |
8.7213 | 7.3973 | 10.9115 | 8.6112 | 7.5870 | 9.7834 | |
8.9467 | 7.0683 | 12.3076 | 8.0391 | 7.4896 | 12.1548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colatosti, M.; Shi, F.; Fantuzzi, N.; Trovalusci, P. Dynamic Characterization of Hexagonal Microstructured Materials with Voids from Discrete and Continuum Models. Materials 2022, 15, 7524. https://doi.org/10.3390/ma15217524
Colatosti M, Shi F, Fantuzzi N, Trovalusci P. Dynamic Characterization of Hexagonal Microstructured Materials with Voids from Discrete and Continuum Models. Materials. 2022; 15(21):7524. https://doi.org/10.3390/ma15217524
Chicago/Turabian StyleColatosti, Marco, Farui Shi, Nicholas Fantuzzi, and Patrizia Trovalusci. 2022. "Dynamic Characterization of Hexagonal Microstructured Materials with Voids from Discrete and Continuum Models" Materials 15, no. 21: 7524. https://doi.org/10.3390/ma15217524
APA StyleColatosti, M., Shi, F., Fantuzzi, N., & Trovalusci, P. (2022). Dynamic Characterization of Hexagonal Microstructured Materials with Voids from Discrete and Continuum Models. Materials, 15(21), 7524. https://doi.org/10.3390/ma15217524