Thermal Conductance of Copper–Graphene Interface: A Molecular Simulation
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
2.2. NEMD Method
2.3. Phonon Spectra
3. Results and Discussion
3.1. Effect of Graphene Layer Number
3.2. Effect of the Atomic Structure
3.3. Effect of Graphene Vacancy Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arden, L.M.; Li, S. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, D.; Jiang, L.; Zhang, G.; Wu, H.; Day, R.; Jiang, W. Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2022, 159, 112207. [Google Scholar] [CrossRef]
- Peng, Y.; Cui, Y. Advanced Textiles for Personal Thermal Management and Energy. Joule 2020, 4, 724–742. [Google Scholar] [CrossRef]
- Ömer, G.; Nihal, B. A short review on mechanical properties of graphene reinforced metal matrix composites. J. Mater. Res. Technol. 2020, 9, 6808–6833. [Google Scholar] [CrossRef]
- Andrey, M.A.; Fedor, M.S.; Andrey, I.A.; Vladimir, I.N. Mechanical properties of a diamond–copper composite with high thermal conductivity. Mater. Des. 2015, 87, 527–539. [Google Scholar] [CrossRef]
- Vasanthakumar, P.; Sekar, K. Processing and preparation of aerospace-grade aluminium hybrid metal matrix composite in a modified stir casting furnace integrated with mechanical supersonic vibration squeeze infiltration method. Mater. Today Commun. 2021, 26, 101732. [Google Scholar] [CrossRef]
- Baig, M.M.A.; Hassan, S.F.; Saheb, N.; Patel, F. Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties. Materials 2021, 14, 6257. [Google Scholar] [CrossRef]
- Kafil, M.R.; Eric, D.; Graham, L.W.C.; Anthony, J.R. Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 2018, 63, 1–21. [Google Scholar] [CrossRef]
- Zulfiqar, K.; Hafiz, M.A. Air cooled heat sink geometries subjected to forced flow: A critical review. Int. J. Heat Mass Transf. 2019, 130, 141–161. [Google Scholar] [CrossRef]
- Tai-Fa, Y. Fabrication and thermal analysis of a copper/diamond/copper thermal spreading device. Surf. Coat. Technol. 2007, 202, 1208–1213. [Google Scholar] [CrossRef]
- Cao, H.J.; Tan, Z.Q.; Lu, M.H.; Ji, G.; Yan, X.J.; Di, C.; Yuan, M.Y.; Guo, Q.; Su, Y.S.; Ahmed, A.; et al. Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: An approach beyond surface metallization and matrix alloying. Carbon 2019, 150, 60–68. [Google Scholar] [CrossRef]
- Pan, Y.; He, X.; Ren, S.; Wu, M.; Qu, X. Optimized thermal conductivity of diamond/Cu composite prepared with tungstencopper-coated diamond particles by vacuum sintering technique. Vacuum 2018, 153, 74–81. [Google Scholar] [CrossRef]
- Zhang, H.; Chao, M.; Zhang, H.; Tang, A.; Ren, B.; He, X. Microstructure and thermal properties of copper matrix composites reinforced by chromium-coated discontinuous graphite fibers. Appl. Therm. Eng. 2014, 73, 739–744. [Google Scholar] [CrossRef]
- Wei, N.; Chen, Y.; Cai, K.; Zhang, Y.Y.; Pei, Q.X.; Zheng, J.C.; Mai, Y.W.; Zhao, J.H. Unusual thermal properties of graphene origami crease: A molecular dynamics study. Green Energy Environ. 2022, 7, 86–94. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.H.; Yu, Z.Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. Appl. Phys. Lett. 2018, 3, 3884–3890. [Google Scholar] [CrossRef]
- Chu, K.; Wang, X.-H.; Li, Y.-B.; Huang, D.-J.; Geng, Z.-R.; Zhao, X.-L.; Liu, H.; Zhang, H. Thermal properties of graphene/metal composites with aligned graphene. Mater. Des. 2018, 140, 85–94. [Google Scholar] [CrossRef]
- Gao, X.; Yue, H.; Guo, E.; Zhang, H.; Lin, X.; Yao, L.; Wang, B. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol. 2016, 301, 601–607. [Google Scholar] [CrossRef]
- El-Kady, O.; Yehia, H.M.; Nouh, F. Preparation and characterization of Cu/(WC-TiC-Co)/graphene nano-composites as a suitable material for heat sink by powder metallurgy method. Int. J. Refract. Met. Hard Mater. 2019, 79, 108–114. [Google Scholar] [CrossRef]
- Köck, T.; Brendel, A.; Bolt, H. Interface reactions between silicon carbide and interlayers in silicon carbide-copper metal-matrix composites. J. Nucl. Mater. 2007, 362, 197–201. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Kumar, S. Impact of bonding at multi-layer graphene/metal Interfaces on thermal boundary conductance. RSC Adv. 2014, 4, 35852–35861. [Google Scholar] [CrossRef]
- Liu, B.; Khvesyuk, V.I.; Barinov, A.A.; Wang, M. Effect of interfacial roughness on thermal boundary conductance: An elastic wave model using the Kirchhoff approximation. Int. J. Mech. Sci. 2022, 218, 106993. [Google Scholar] [CrossRef]
- Hong, Y.; Li, L.; Zeng, X.C.; Zhang, J.C. Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering. Nanoscale 2015, 7, 6286–6294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, N.; Zhou, C.; Li, Z.; Ou, B.; Zhao, K.; Yu, P.; Li, S.; Zhao, J. Thermal conductivity of Aluminum/Graphene metal-matrix composites: From the thermal boundary conductance to thermal regulation. Mater. Today Commun. 2022, 30, 103147. [Google Scholar] [CrossRef]
- Ou, B.; Yan, J.; Wang, Q.; Lu, L. Thermal Conductance of Graphene-Titanium Interface: A Molecular Simulation. Molecules 2022, 27, 905. [Google Scholar] [CrossRef]
- Ghosh, S.; Bao, W.; Nika, D.L.; Subrina, S.; Pokatilov, E.P.; Lau, C.N.; Balandin, A.A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558. [Google Scholar] [CrossRef]
- Dumont, D.; Bougeard, D. Simulation of vibrational spectra of polydichlorophosphazene by molecular dynamics calculations: A study of the relaxed and stretched polymer. Comput. Theor. Polym. Sci. 1999, 9, 89–97. [Google Scholar] [CrossRef]
- Fukui, K.; Sumpter, B.G.; Barnes, M.D.; Noid, D.W. Molecular dynamics studies of the structure and properties of polymer nano-particles. Comput. Theor. Polym. Sci. 1999, 9, 245–254. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Daw, M.S.; Baskes, M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 1984, 29, 6443–6453. [Google Scholar] [CrossRef] [Green Version]
- Fischer, F.; Schmitz, G.; Eich, S.M. A systematic study of grain boundary segregation and grain boundary formation energy using a new copper–nickel embedded-atom potential. Acta Mater. 2019, 176, 220–231. [Google Scholar] [CrossRef]
- Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mat. 2002, 14, 783–802. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, G.; Nair, P.B.; Singh, C.V. Uncertainty analysis and estimation of robust AIREBO parameters for graphene. Carbon 2019, 142, 300–310. [Google Scholar] [CrossRef]
- Long, X.J.; Li, B.; Wang, L.; Huang, J.Y.; Zhu, J.; Luo, S.N. Shock response of Cu/graphene nanolayered composites. Carbon 2016, 103, 457–463. [Google Scholar] [CrossRef]
- Weng, S.; Ning, H.; Fu, T.; Hu, N.; Zhao, Y.; Huang, C.; Peng, X. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Sci. Rep. 2018, 8, 3089. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.Y.; Zou, J.H.; Hu, G.J.; Cao, G.X. Enhanced thermal transport across multilayer graphene and water by interlayer functionalization. Appl. Phys. Lett. 2018, 112, 041603. [Google Scholar] [CrossRef] [Green Version]
- Maiti, A.; Mahan, G.D.; Pantelides, S.T. Dynamical simulations of nonequilibrium processes—Heat flow and the Kapitza resistance across grain boundaries. Solid State Commun. 1997, 102, 517–521. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Y.; Liu, Y.; Liu, C.; Lin, L. Thermal Properties of the Mixed n-Octadecane/Cu Nanoparticle Nanofluids during Phase Transition: A Molecular Dynamics Study. Materials 2017, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 1978, 17, 1302–1322. [Google Scholar] [CrossRef]
- Mollow, B.R. Power Spectrum of Light Scattered by Two-Level Systems. Phys. Rev. 1969, 188, 1969–1975. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.; Huang, J.; Sumpter, B.G.; Qiao, R. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. J. Chem. Phys. 2015, 142, 244703. [Google Scholar] [CrossRef]
Composite | Method | Layer Number | Atomic Structure | Vacancy Rate | Other | Ref. |
---|---|---|---|---|---|---|
Cu/Gr | NEMD | √ | (011) > (111) > (001) | √ | Length of copper matrix | This work |
Al/Gr | NEMD | √ | (110) > (111) > (100) | × | Strain | [23] |
Ti/Gr | NEMD | √ | (0001) > () > () | × | Strain | [24] |
Ni/Gr | NEMD | √ | × | × | × | [25] |
Crystal Plane | Lx (nm) | Gr−x | Ly (nm) | Gr−y | Lt (nm) |
---|---|---|---|---|---|
Cu(001) | 4.69 | 0.407% | 4.69 | 0.085% | 5.42 |
Cu(011) | 2.43 | 0.57% | 4.52 | −3.69% | 4.98 |
Cu(111) | 2.43 | 0.57% | 5.49 | −0.89% | 6.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Huang, S.; Xie, Z.; Guo, H.; Yang, H. Thermal Conductance of Copper–Graphene Interface: A Molecular Simulation. Materials 2022, 15, 7588. https://doi.org/10.3390/ma15217588
Zhu J, Huang S, Xie Z, Guo H, Yang H. Thermal Conductance of Copper–Graphene Interface: A Molecular Simulation. Materials. 2022; 15(21):7588. https://doi.org/10.3390/ma15217588
Chicago/Turabian StyleZhu, Jiarui, Shuhui Huang, Zhongnan Xie, Hong Guo, and Hui Yang. 2022. "Thermal Conductance of Copper–Graphene Interface: A Molecular Simulation" Materials 15, no. 21: 7588. https://doi.org/10.3390/ma15217588
APA StyleZhu, J., Huang, S., Xie, Z., Guo, H., & Yang, H. (2022). Thermal Conductance of Copper–Graphene Interface: A Molecular Simulation. Materials, 15(21), 7588. https://doi.org/10.3390/ma15217588