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Abstract: Commercially supplied inoculation wires have a guaranteed chemical composition but not
the size and distribution of individual phases, which are very important for nucleation. Therefore,
two commercial alloys used for the inoculation of Al-Si alloys (AlTi3B1 and AlTi5B1) are investigated
in this paper. The emphasis is placed on their structural analysis and the size and distribution of
individual intermetallic phases. Furthermore, the grain refinement effect will be tested by adding
these alloys to the AlSi7Mg0.3 alloy and testing the optimal amount of added inoculation wires. The
results showed that the size and distribution of the individual phases in AlTi3B1 and AlTi5B1 meet
the requirements for the successful inoculation of aluminum alloys, the intermetallic phases based
on the TiAl3 phase are fine enough, and there is no agglomeration that would reduce the number
of nuclei. This assumption was confirmed by adding these inoculants to the AlSi7Mg0.3 alloy, and
it was found that the most ideal amount of inoculants added is 0.01 wt % when the structure was
refined by approximately 32%.

Keywords: inoculation; Al-Ti-B; AlSi7Mg0.3; grain size; intermetallics

1. Introduction

The refinement of the grain of aluminum alloys can be achieved by inoculation [1–3].
Inoculation affects the total number of nuclei and therefore results in a refinement of the
structure. For aluminum, inoculation is used to refine the α-phase of the metal matrix, that
is, the solid solution by adding some transition metals [4].

Inoculation is particularly effective for Al-Si alloys with a high proportion of α-
solid solution in the structure, that is, Al-Si alloys with a silicon content in the range
of 1–12 wt % [2,5–7]. The refinement of the solid solution is carried out by adding the ele-
ments titanium and boron, which are added to the melt individually or in combination [8,9].
These elements are added to the melt in the form of intermetallic compounds, which are
contained in the master alloys. Titanium is added to the melt by adding master alloys (e.g.,
AlTi6) that contain the intermetallic compound TiAl3 [10]. Boron is added to the melt by
adding master Al-B-type master alloys (e.g., AlB4) that contain the intermetallic compound
AlB2 [11,12]. Titanium and boron in combination with each other are added to the melt
by adding master alloys (e.g., AlTi5B1, AlTi5B0.2), which contain elements Ti and B in
the form of intermetallic compounds TiB2 and TiAl3. The intermetallic compound TiB2 is
insoluble in α-solid solution, while the compounds AlB2 and TiAl3 are soluble in α-solid
solution [13–16].

Inoculation with titanium and boron gives satisfactory results in α-solid solution
refinement. However, these elements have a weaker softening effect than boron separately
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but a higher softening effect than titanium. The refinement of the α-solid solution with
titanium and boron in combination is carried out by the action of the phases TiAl3 and
TiB2, (TiV)B2, AlB2, AlB12 or AlTiB, which are added to the melt by master alloys [17–20].
Vanadium may be present in the metal resulting from electrolysis and may react with
elements of the grain refiner to form (TiV)B2 [21]. This particle is similar to TiB2 but larger
in size. These master alloys are produced with different titanium and boron contents. The
most commonly used master alloys have the titanium and boron contents of 5% and 1%,
respectively [22]. This ratio has been proven to be the most advantageous in practice, as
the efficiency of inoculation decreases as this ratio is further increased. Boron is completely
bound to the insoluble TiB2 phase, which is usually very finely dispersed in the master
alloy. The rest of the titanium content (approximately 2.8 wt %) precipitates in the form
of polyhedral particles of the melt-soluble TiAl3 intermetallic phase [13,14,19]. This is in
contrast to the Al-Ti binary diagram, which shows that at real melting temperatures of
aluminum alloys, the TiAl3 solubility of the intermetallic phase is almost negligible [23].

Boron is found only in the insoluble intermetallic phase TiB2, which is usually very
finely precipitated in the master alloy. The remainder of the titanium content (approxi-
mately 2.8 wt %) is precipitated in the form of polyhedral particles of the intermetallic
phase TiAl3. TiB2 particles in the TiAl3 phase have a crystal lattice similar to aluminum
alloys and cannot become a nucleus. The diffusion of aluminum in the TiB2 phase and
the diffusion of titanium from the TiB2 phase form a shell on these particles, which is
composed of the TiAl3 phase. Therefore, it results in the particles formed by the nucleus
of the TiB2 phase and the TiAl3 shell. These particles are potential nuclei. The remaining
completely undissolved particles of the TiAl3 intermetallic phase of the master alloy also
act as nuclei, although they are not commonly identified in castings [24]. The dissolution of
the intermetallic phase TiAl3 is shown graphically in Figure 1.
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Figure 1. Graphical representation of the dissolution of TiAl3 intermetallic phases.

The addition of Al-Ti or Al-Ti-B-based inoculants to Al-Si alloys is used industrially.
However, industrial companies are not interested in the microstructure of inoculant alloys,
only their chemical composition and their effect on the grain refinement of the Al-Si
alloy [8,9,25–31]. The primary task of the inoculants added to the Al-Si alloy is to refine
the microstructure by heterogeneous nucleation and to control grain growth [2]. The grain
refiners (inoculants) in Al-Si alloys focus on suppressing the formation of coarse columnar
grains and support the formation of finer equiaxed grain structures during solidification [2].
An important criterion for the structural description of aluminum alloys is the distance
between the secondary dendrite axes, which is known as SDAS (Secondary Dendrite Arm
Spacing). The smaller the size of the primary grains and the distance between the secondary
axes (SDAS), the better the chemical and structural homogeneity of the alloy and the better
the mechanical properties of the alloy. A number of other structural phenomena are also
related to the size of the SDAS. The appearance of a finer structure (i.e., with a smaller
SDAS value) is associated with smaller segregation distances and with a smaller extent of
segregation, therefore, smaller particles of intermetallic inclusions are formed. Impurities
are separated as separate particles in the interdendritic spaces and do not form a network;
the chemical composition of the alloy is more homogeneous, and the microporosity is more
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favorably distributed. Therefore, the smaller the SDAS value, the higher the mechanical
properties of the casting.

McCartney created the first idea of the effect of titanium and titanium with boron
to refine the aluminum grain. At the same time, he found that boron in combination
with titanium is more suitable than titanium with carbon [25]. Spittle [26] investigated the
addition of the AlTi5B1 alloy to Al-Si alloys with a very small amount of silicon investigated
by Spittle [26]. Mohanty found that grain refinement is caused not only by TiB2 titanium
boride but also by TiAl3 titanium aluminide [27]. Al-Si alloys with silicon content greater
than 7 wt % were studied by Sritharan [9], who found that a more powerful inoculant
should have the same ratio of titanium and boron [9]. Kumar, on the other hand, found
that the carbon inoculant had a better effect than the boron inoculant [28]. The solution
could be to add titanium, boron and carbon to the inoculant at the same time, as performed
by the researchers in [29]. Jia [32] investigated the addition of Al-Ti-B-Y grafts to the
Al-Si-Mg alloy.

The aim of this paper is to characterize two commercially used inoculant alloys with
the addition of titanium and boron that are used to refine a solid solution of Al-Si alloys. The
AlTi3B1 and AlTi5B1 inoculation wires were characterized in terms of phase composition,
microstructure, grain size, and microhardness. Furthermore, their effect of refining the solid
solution was tested by adding these inoculants to the AlSi7Mg0.3 alloy, and the optimal
amount of inoculants was determined.

2. Materials and Methods

In this experiment, two Al-Ti-B alloys that differ in titanium content were studied.
Both materials were supplied by Foseco (Foseco, Vesuvius Group Foundry Technologies
Division, Tamworth, UK) in the form of master alloys for inoculation of aluminum alloys.
The supplied wires were cut, and metallographic samples were prepared from the wires.
The samples were mounted in Varidur 200 (Buehler, Braunschweig, Germany) methacry-
late resin, ground on P80 to P4000 sandpapers (Hermes Schleifmittel GmbH, Hamburg,
Germany) and polished by Eposil F suspension mixed with hydrogen peroxide (ratio 1:5).
Subsequently, polished samples were etched using modified Kroll’s reagent (10 mL HF,
5 mL HNO3, and 50 mL H2O) prepared in the laboratory.

Phase identification was performed by X-ray diffraction analysis using a X’Pert Pro
diffractometer (PANalytical, Almelo, The Netherlands), which was followed by evaluation
in the X’Pert HighScore 3.0 software package (PANalytical, Almelo, The Netherlands) using
the PDF-2 2018 database.

The inoculation wires were cut to small cylindrical samples having the height of
0.8 mm and ground on P80 do P1200 sandpapers. The microstructure of the inoculation
wires was investigated using a LEXT OLS 5000 laser confocal microscope (Olympus,
Sindzuku, Japan) and a TESCAN VEGA 3XMU scanning electron microscope (TESCAN,
Brno, Czech Republic) with an Oxford Instruments X-max 20 mm2 EDS (Energy-dispersive
X-ray spectrometer) analyzer (Oxford Instruments, HighWycombe, UK). The particle size
was determined from the micrographs by the means of image analysis using the analysis
application software of Olympus OLS 5000.

Both inoculation wires were added to the AlSi7Mg0.3 alloy (i.e., the alloy containing
92.7 wt % aluminum, 7 wt % silicon and 0.3 wt % magnesium). The AlSi7Mg0.3 alloy was
melted at 760 ◦C in a graphite crucible. The samples were cast by gravity casting in a mold
preheated at 200 ◦C; the molds had a conical shape with a height of 700 mm, a top diameter
of 850 mm and a bottom diameter of 400 mm. The AlSi7Mg0.3 alloy was chosen to optimize
the amount of the inoculant wire. The composition of the alloys is shown in Table 1.
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Table 1. Composition of the alloys.

Number of Sample Alloy
Amount of the
Inoculant Wire
AlTi5B1 (wt %)

Amount of the
Inoculant Wire
AlTi3B1 (wt %)

1 AlSi7Mg0.3 0 0

2 AlSi7Mg0.3 0.01 0

3 AlSi7Mg0.3 0.05 0

4 AlSi7Mg0.3 0.1 0

5 AlSi7Mg0.3 0.2 0

6 AlSi7Mg0.3 0 0.01

The AlTi5B1 inoculant was added as wire at the concentration of 0.01 wt %, 0.05 wt %,
0.1 wt % and 0.2 wt %, and the exposure time of the inoculant in the melt was 6–7 min.
Subsequently, the selected amount of inoculant was also used for the addition of AlTi3B1
to AlSi7Mg0.3. For comparison, the AlSi7Mg0.3 alloy without inoculants was cast in the
same way. All five melts were processed under the same conditions (temperature, time).
Samples were taken from the same place: namely, the intercentral region, for macroscopic
and microscopic evaluation of the size of dendritic cells (α-solid solution). All alloys were
mounted to the resin, ground, and polished. Their microstructure was investigated using a
laser-confocal microscope.

The most common method to determine the dendritic structure is the so-called SDAS
(Secondary Dendrite Arm Spacing) method (Figure 2). SDAS is the distance between the
secondary axes of the dendrites. On the selected dendrite, the distance across several
secondary arms (more than two) was measured on the metallographic sample and divided
by the number of gaps; see Equation (1):

SDAS =
L

n − 1
(1)

where L is the distance of the secondary arms and n is the number of axes.
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3. Results
3.1. Characteristics of the Inoculants

The phase identification of both alloys determined by X-ray diffraction is shown in
Figure 3. The AlTi3B1 and AlTi5B1 alloys have the same phase composition, consisting of
aluminum (fcc structure), titanium aluminide TiAl3 (hcp structure), and titanium diboride
TiB2 (hcp structure). In XRD patterns, there is also the KAlSiO4 phase (trigonal structure),
which is from the embedding material.
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Figure 3. XRD patterns of AlTi3B1 and AlTi5B1 alloys.

The microstructure of the AlTi3B1 inoculation wire shows an aluminum matrix, large
elongated titanium aluminide that are randomly oriented, and fine flaky irregular-shaped
particles (Figure 4). The coarse sharp-edged intermetallic phases are TiAl3 titanium alu-
minide particles. Inside the coarse intermetallic phases of TiAl3, fine irregular particles of
TiB2 are visible (Figure 4b).
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The microstructure of the AlTi3B1 alloy from the scanning electron microscope in
Figure 5 shows a coarse plate-shaped particle, where the point EDS analysis of this particle
confirms the intermetallic phase TiAl3 (spectrum 2, Figure 5). Scanning electron microscope
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images show that fine irregular particles of lighter color are visible inside the intermetallic
phases of TiAl3 (Figure 5). EDS analysis of this particle confirms that it is an intermetallic
phase of TiB2 (Spectrum 1, Figure 5). The matrix consists of aluminum (spectrum 5,
Figure 5).
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Figure 5. Microstructure of the AlTi3B1 alloy and EDS point analysis.

The microstructure of the laser confocal microscope (Figure 4) shows large elongated
particles TiAl3 of size 37 ± 17 µm and fine flaky particles of irregular shape TiB2 of size
0.5–2 µm. The histogram of the particle size distribution of the TiAl3 phase is shown in
Figure 6. These values were obtained from the image analysis (images from the laser
confocal microscope) using analysis application software. More than 200 particles were
included in the analysis. In the sample, there is approximately the same amount of particles
with a particle diameter of 16 to 61 µm.
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The microstructure of the AlTi5B1 inoculation wire shows the aluminum matrix and
large plate-shaped or coarse-edged or irregularly shaped intermetallic particles and fine
flaky particles of irregular shape (Figure 7). Compared to the AlTi3B1 alloy, the AlTi5B1
alloy has a larger number of TiAl3 intermetallic phases in the structure with different
irregular shapes.
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The TiAl3 intermetallic phase is present in the AlTi5B1 inoculation wire as quite
coarse particles with a size of 41 ± 15 µm. The histogram of the TiAl3 phase particle size
distribution is shown in Figure 8.
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The scanning electron micrograph of the AlTi5B1 alloy in Figure 9 shows a coarse
plate-shaped particle, where the point EDS analysis confirms that it is the TiAl3 intermetallic
phase (spectrum 2, Figure 9). Within this coarse intermetallic phase of TiAl3, a fine irregular
particle was identified, where the EDS analysis confirms the TiB2 phase (Spectrum 1,
Figure 9). The EDS analysis of the matrix shows aluminum (Spectrum 6, Figure 9).
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3.2. Optimizing the Inoculant in the AlSi7Mg0.3 Alloy

When using inoculants based on Al-Ti-B type, it is possible to achieve a significant
refinement of the α-solid solution in aluminum alloys by adding approximately 0.04–0.05%
of Al-Ti-B alloy. Compared to this amount, after increasing the amount of inoculant to 0.1%
Al-Ti-B, only a slight refinement of the α-phase occurs, and after exceeding this amount, no
further refinement of the a α-phase occurs, as stated in the literature [32]. However, the
question of the optimal amount of inoculant for a specific aluminum alloy is not resolved.

The AlSi7Mg0.3 alloy without the addition of inoculants is shown in Figure 10, the
addition of 0.01 wt % AlTi5B1 is shown in Figure 11, the addition of 0.05 wt % AlTi5B1
is shown in Figure 12, the addition of 0.1 wt % AlTi5B1 is shown in Figure 13, and the
addition of 0.2 wt % AlTi5B1 is shown in Figure 14.

From all of the micrographs shown, it is evident that the finest dendritic structure
is in the samples with an inoculant content of 0.01% (Figure 11). The microstructure
consists of an α-solid solution and the eutectic structure. The grains are practically all
polyhedral and allotriomorphs. The eutectic is formed by an α-solid solution and silicon
in the form of plates that appear as irregular sharp-edged needles of different sizes in
the plane of the metallographic cut. In the microstructure with a lower inoculant content
(0.05 wt %), the effect of inoculation is noticeable, where the eutectic silicon has a round
or slightly elongated shape (Figure 12). In the sample with a higher inoculant content
(0.1 wt %, Figure 13), the structure is already different from the previous samples, where the
rounded grains of eutectic silicon are slightly elongated. This means that further increasing
the content of the inoculant would no longer bring an additional effect of refining the
structure of the casting. From a microscopic point of view, one more partial difference can
be observed between the content of 0.2 wt % (Figure 14) and 0.1 wt % (Figure 13). At a
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content of 0.2 wt % inoculant, the α-grains are more polyhedral, and there is a higher area
fraction of the eutectic than in the sample with the inoculant content of 0.1 wt %.
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In addition to observing the microstructure with a laser microscope, SDAS analysis
of individual samples was performed in the AlSi7Mg0.3 alloy without and with various
contents of the inoculant. The results are shown in Table 2.

Table 2. SDAS analysis of individual samples in AlSi7Mg0.3 alloy.

AlTi5B1 Average SDAS (µm) Standard Deviation (µm)

0 wt % Ti 61 2.08

0.01 wt % Ti 41 0.38

0.05 wt % Ti 45 0.60

0.1 wt % Ti 55 2.42

0.2 wt % Ti 58 3.60

The values in the table show that during the crystallization, there was slow cooling,
which caused the formation of large grains. The distance of the secondary axes of the
dendrite depends on the percentage content of the inoculant and the cooling rate. This
means that the larger the SDAS, the coarser the grain and the lower the crystallization
nucleus amount. In addition, it can be seen that the addition of inoculant at a concentration
of 0.01 wt % caused the greatest increase in the number of crystallization nuclei. On the
contrary, the addition of a higher amount of inoculant caused a decrease in the number
of crystallization nuclei. The most suitable amount of inoculant appears to be 0.01 wt %.
This amount of inoculant was also tested by adding AlTi3B1 to AlSi7Mg0.3 alloy. The
microstructure of this alloy is shown in Figure 15. The average value of SDAS in this case is
42 ± 0.3 µm. The difference between the addition of AlTi3B1 and AlTi5B1 is minimal.
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4. Discussion

From a qualitative point of view, when using the inoculation wire, it is necessary to
monitor several structural parameters to achieve the maximum effect of the inoculation.
The producer of the inoculation alloys guarantees the chemical composition but not the
distribution and size of the particles, which are very important for nucleation. It is mainly
the uniform distribution of TiB2, (TiV)B2, (Al,Ti)B2 and AlB12 phases without the formation
of compact clusters and the size of TiAl3 intermetallic phase, max. 40–50 µm without the
formation of clusters. The optimal holding time at the inoculation temperature for Al-Ti-B
alloys is in the range of 5–10 min [32] (6–7 min were used in this work). Large particles
of TiAl3 intermetallic phases prolong this time due to their slower dissolution in the melt
during inoculation. It should be noted that long-term monitoring and evaluation of the
quality of the inoculation wire in terms of the qualitative factors have shown that its quality
is variable and there are often cases of noncompliance with these structural parameters.
Therefore, it is necessary to regularly evaluate the quality of the inoculation wire in terms
of structure prior to inoculation.

The unsatisfactory microstructure of the inoculation wires is shown in Figure 16a,
where separate coarse TiAl3 intermetallic phases are visible. The coarse intermetallic phases
reach a size of 50 to 80 µm and increase the risk of non-dissolution of these particles in
the aluminum melt. Figure 16b shows coarse particles of the TiAl3 intermetallic phase
and very fine particles of TiB2, which are not evenly distributed in cross-sections, form
large compact clusters, and segregate and degrade during nucleus formation. Another case
of an unsatisfactory structure may be the appearance of size-matched but agglomerating
TiAl3 intermetallic phases (Figure 16c) and/or coarse TiAl3 particles disintegrated during
forming (Figure 16d) of the inoculation wire.
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5. Conclusions

The purpose of this work was to characterize the commonly used AlTi5B1 and AlTi3B1
inoculants to refine the structure of Al-Si alloys. The phase composition of the inoculation
wires consists of aluminum, TiAl3 titanium aluminide, and TiB2 titanium diboride. The mi-
crostructure of the inoculant wires is characterized by an aluminum matrix with randomly
oriented and shaped titanium aluminide particles, in which titanium diboride particles are
located. The average particle size of titanium aluminide is between 37 and 41 µm. Further-
more, the optimal addition of the inoculant to the AlSi7Mg0.3 alloy was investigated. The
addition of the inoculant based on titanium is important for the refinement of the casting
grains. It was found that the optimal amount of inoculant is 0.01 wt % (the structure was
refined by approximately 32%), which causes the greatest refinement of the α-Al grains.
The difference between the inoculants AlTi5B1 and AlTi3B1 in grain refinement is minimal.
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