Damping Behaviour and Mechanical Properties of Restorative Materials for Primary Teeth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation and Storage Conditions
2.2. Test Procedures and Material Investigation
2.3. Statistical Analysis
3. Results
3.1. 4-Point Bending Test
3.2. Leeb Hardness
3.3. Instrumented Indentation Testing
4. Discussion
4.1. Common Mechanical Properties
4.2. Weibull Analysis
4.3. Damping Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.Y.; Lin, A.Y.; Lin, Y.S.; Seki, Y.; Stokes, A.G.; Peyras, J.; Peyras, J.; Olevsky, E.; Meyers, M.; McKittrick, J. Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater. 2008, 1, 208–226. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Pu, P.; Zhao, S.; Izadikhah, I.; Shi, H.; Liu, M.; Lu, R.; Yan, B.; Ma, S.; Markert, B. Frequency-related viscoelastic properties of the human incisor periodontal ligament under dynamic compressive loading. PLoS ONE 2020, 15, e0235822. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K. Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. J. Dent. Biomech. 2010, 1, 502318. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Du, W.; Zhou, X.D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi-Sakai, S.; Sakai, J.; Sakamoto, M.; Endo, H. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method. J. Mater. Sci. Mater. Med. 2012, 23, 2047–2054. [Google Scholar] [CrossRef]
- Yi, Q.; Feng, X.; Zhang, C.; Wang, X.; Wu, X.; Wang, J.; Cui, F.; Wang, S. Comparison of dynamic mechanical properties of dentin between deciduous and permanent teeth. Connect. Tissue Res. 2021, 62, 402–410. [Google Scholar] [CrossRef]
- Emamian, A.; Aghajani, F.; Safshekan, F.; Tafazzoli-Shadpour, M. Nonlinear viscoelastic properties of human dentin under uniaxial tension. Dent. Mater. 2021, 37, e59–e68. [Google Scholar] [CrossRef]
- Cisneros, T.; Zaytsev, D.; Seyedkavoosi, S.; Panfilov, P.; Gutkin, M.Y.; Sevostianov, I. Effect of saturation on the viscoelastic properties of dentin. J. Mech. Behav. Biomed. Mater. 2021, 114, 104143. [Google Scholar] [CrossRef]
- Cidreira Boaro, L.C.; Pereira Lopes, D.; De Souza, A.S.C.; Lie Nakano, E.; Ayala Perez, M.D.; Pfeifer, C.S.; Gonçalves, F. Clinical performance and chemical-physical properties of bulk fill composites resin-a systematic review and meta-analysis. Dent. Mater. 2019, 35, e249–e264. [Google Scholar] [CrossRef]
- Niem, T.; Youssef, N.; Wöstmann, B. Energy dissipation capacities of CAD-CAM restorative materials: A comparative evaluation of resilience and toughness. J. Prosthet. Dent. 2019, 121, 101–109. [Google Scholar] [CrossRef]
- Niem, T.; Gonschorek, S.; Wöstmann, B. New method to differentiate surface damping behavior and stress absorption capacities of common CAD/CAM restorative materials. Dent. Mater. 2021, 37, e213–e230. [Google Scholar] [CrossRef] [PubMed]
- Niem, T.; Gonschorek, S.; Wöstmann, B. Evaluation of the damping capacity of common CAD/CAM restorative materials. J. Mech. Behav. Biomed. Mater. 2022, 126, 104987. [Google Scholar] [CrossRef] [PubMed]
- Niem, T.; Gonschorek, S.; Wöstmann, B. Investigation of the Damping Capabilities of Different Resin-Based CAD/CAM Restorative Materials. Polymers 2022, 14, 493. [Google Scholar] [CrossRef]
- Braden, M.; Clarke, R.L.; Nicholson, J.; Parker, S. Polymeric Dental Materials, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Hahnel, S.; Schultz, S.; Trempler, C.; Ach, B.; Handel, G.; Rosentritt, M. Two-body wear of dental restorative materials. J. Mech. Behav. Biomed. Mater. 2011, 4, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Haugen, H.J.; Marovic, D.; Par, M.; Thieu, M.K.L.; Reseland, J.E.; Johnsen, G.F. Bulk Fill Composites Have Similar Performance to Conventional Dental Composites. Int. J. Mol. Sci. 2020, 21, 5136. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef]
- ISO 6872; Dentistry-Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 16859-1; Metallic Materials-Leeb Hardness Test Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- ASTM D6272-10; Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending. ASTM International: West Conshohocken, PA, USA, 2017.
- Rasmussen, M.J.; Togrye, C.; Trojan, T.M.; Tantbirojn, D.; Versluis, A. Post-gel shrinkage, elastic modulus, and stress generated by orthodontic adhesives. Angle Orthod. 2020, 90, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Suiter, E.A.; Tantbirojn, D.; Watson, L.E.; Yazdi, H.; Versluis, A. Elastic Modulus Maturation Effect on Shrinkage Stress in a Primary Molar Restored with Tooth-Colored Materials. Pediatr. Dent. 2018, 40, 370–374. [Google Scholar]
- Gallant, M.A.; Brown, D.M.; Hammond, M.; Wallace, J.M.; Du, J.; Deymier-Black, A.C.; Almer, J.D.; Stock, S.R.; Allen, M.R.; Burr, D.B. Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties. Bone 2014, 61, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance-Resin composites: Part I-Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Leeb, D. Dynamic hardness testing of metallic materials. NDT Int. 1979, 12, 274–278. [Google Scholar] [CrossRef]
- ISO 14577-2; Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters-Part 2: Verification and Calibration of Testing Machines. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 14577-1; Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters-Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 6507-1; Metallic Materials-Vickers Hardness Test-Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2018.
- Quinn, J.B.; Quinn, G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Bucuta, S.; Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin. Oral Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef]
- Ilie, N.; Rencz, A.; Hickel, R. Investigations towards nano-hybrid resin-based composites. Clin. Oral Investig. 2013, 17, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Belli, R.; Geinzer, E.; Muschweck, A.; Petschelt, A.; Lohbauer, U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent. Mater. 2014, 30, 424–432. [Google Scholar] [CrossRef]
- Belli, R.; Petschelt, A.; Lohbauer, U. Are linear elastic material properties relevant predictors of the cyclic fatigue resistance of dental resin composites? Dent. Mater. 2014, 30, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Chitchumnong, P.; Brooks, S.C.; Stafford, G.D. Comparison of three- and four-point flexural strength testing of denture-base polymers. Dent. Mater. 1989, 5, 2–5. [Google Scholar] [CrossRef]
- Junior, S.A.R.; Ferracane, J.L.; Bona, Á.D. Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar] [CrossRef]
- Miura, D.; Miyasaka, T.; Aoki, H.; Aoyagi, Y.; Ishida, Y. Correlations among bending test methods for dental hard resins. Dent. Mater. J. 2017, 36, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Miura, D.; Ishida, Y.; Miyasaka, T.; Aoki, H.; Shinya, A. Reliability of Different Bending Test Methods for Dental Press Ceramics. Materials 2020, 13, 5162. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Takahashi, H.; Iwasaki, N. Effect of Test Method on Flexural Strength of Recent Dental Ceramics. Dent. Mater. J. 2004, 23, 490–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomec, Y.; Dorter, C.; Dabanoglu, A.; Koray, F. Effect of resin-based material combination on the compressive and the flexural strength. J. Oral Rehabil. 2005, 32, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hickel, R. Investigations on mechanical behaviour of dental composites. Clin. Oral Investig. 2009, 13, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Finger, W.J.; Endo, T.; Kanehira, M.; Koottathape, N.; Komatsu, M.; Balkenhol, M. Comparative evaluation of mechanical characteristics of nanofiller containing resin composites. Am. J. Dent. 2011, 24, 264–270. [Google Scholar]
- Graf, N.; Ilie, N. Long-term mechanical stability and light transmission characteristics of one shade resin-based composites. J. Dent. 2022, 116, 103915. [Google Scholar] [CrossRef]
- Ilie, N.; Bucuta, S.; Draenert, M. Bulk-fill resin-based composites: An in vitro assessment of their mechanical performance. Oper. Dent. 2013, 38, 618–625. [Google Scholar] [CrossRef]
- De Jager, N.; Münker, T.; Guilardi, L.F.; Jansen, V.J.; Sportel, Y.G.E.; Kleverlaan, C.J. The relation between impact strength and flexural strength of dental materials. J. Mech. Behav. Biomed. Mater. 2021, 122, 104658. [Google Scholar] [CrossRef]
- Czasch, P.; Ilie, N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin. Oral Investig. 2013, 17, 227–235. [Google Scholar] [CrossRef]
- Danzer, R.; Supancic, P.; Pascual, J.; Lube, T. Fracture statistics of ceramics—Weibull statistics and deviations from Weibull statistics. Eng. Fract. Mech. 2007, 74, 2919–2932. [Google Scholar] [CrossRef]
- Marovic, D.; Par, M.; Macan, M.; Klarić, N.; Plazonić, I.; Tarle, Z. Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites. Materials 2022, 15, 902. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, Q.; Lin, Y.; Buchalla, W.; Wang, Y. Influence of carbamide peroxide on the flexural strength of tooth-colored restorative materials: An in vitro study at different environmental temperatures. Oper. Dent. 2010, 35, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, C.Y.; Wang, Y.N.; Cheng, H. Hydrogen peroxide bleaching induces changes in the physical properties of dental restorative materials: Effects of study protocols. J. Esthet. Restor. Dent. 2018, 30, E52–E60. [Google Scholar] [CrossRef] [PubMed]
- Ruengrungsom, C.; Burrow, M.F.; Parashos, P.; Palamara, J.E.A. Comprehensive characterisation of flexural mechanical properties and a new classification for porosity of 11 contemporary ion-leaching dental restorative materials. J. Mech. Behav. Biomed. Mater. 2021, 121, 104615. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.-F.; Migonney, V.; Ruse, N.D.; Sadoun, M. Resin composite blocks via high-pressure high-temperature polymerization. Dent. Mater. 2012, 28, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Karayannis, V.G.; Spiliotis, X.D.; Ntampegliotis, K.I.; Koukouzas, N.K.; Tsianakas, I.D.; Taousanidis, N.I.; Papapolymerou, G.A.P. Reliability Analysis of Clay Ceramics Incorporating Industrial Solid By-Products. Mod. Appl. Sci. 2014, 8, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Baudin, C.; Osorio, R.; Toledano, M.; De Aza, S. Work of fracture of a composite resin: Fracture-toughening mechanisms. J. Biomed. Mater. Res. A 2009, 89, 751–758. [Google Scholar] [CrossRef]
- Elbishari, H.; Silikas, N.; Satterthwaite, J. Filler size of resin-composites, percentage of voids and fracture toughness: Is there a correlation? Dent. Mater. J. 2012, 31, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Jansen, U.; Stoyan, D. On the validity of the Weibull failure model for brittle particles. Granul. Matter 2000, 2, 165–170. [Google Scholar] [CrossRef]
- Tian, K.V.; Yang, B.; Yue, Y.; Bowron, D.T.; Mayers, J.; Donnan, R.S.; Dobó-Nagy, C.; Nicholson, J.W.; Fang, D.-C.; Greer, A.L.; et al. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nat. Commun. 2015, 6, 8631–8640. [Google Scholar] [CrossRef] [Green Version]
- Tian, K.V.; Nagy, P.M.; Chass, G.A.; Fejerdy, P.; Nicholson, J.W.; Csizmadia, I.G.; Dobó-Nagy, C. Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements. J. Mater. Sci. Mater. Med. 2012, 23, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, B.W.; Mouhat, M.; Jokstad, A. Quantification of porosity in composite resins delivered by injectable syringes using X-ray microtomography. Biomater. Investig. Dent. 2020, 7, 86–95. [Google Scholar] [CrossRef] [PubMed]
- SDR Directions for Use. 2018, Detrey Dentsply. Available online: https://assets.dentsplysirona.com/flagship/en/explore/restorative/sdr_flow_plus_eu-version/RES-IFU-SDRflow-plus-multilingual-2018-03-30.pdf (accessed on 30 March 2018).
- Sampaio, C.S.; Chiu, K.J.; Farrokhmanesh, E.; Janal, M.; Puppin-Rontani, R.M.; Giannini, M.; Bonfante, E.; Coelho, P.; Hirata, R. Microcomputed Tomography Evaluation of Polymerization Shrinkage of Class I Flowable Resin Composite Restorations. Oper. Dent. 2017, 42, E16–E23. [Google Scholar] [CrossRef] [PubMed]
- Marovic, D.; Tauböck, T.T.; Attin, T.; Panduric, V.; Tarle, Z. Monomer conversion and shrinkage force kinetics of low-viscosity bulk-fill resin composites. Acta Odontol. Scand. 2015, 73, 474–480. [Google Scholar] [CrossRef]
- Kim, R.J.-Y.; Kim, Y.-J.; Choi, N.-S.; Lee, I.-B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Lazan, B.J. Damping of Materials and Members in Structural Mechanics, 1st ed.; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Scotti, N.; Comba, A.; Gambino, A.; Paolino, D.S.; Alovisi, M.; Pasqualini, D.; Berutti, E. Microleakage at enamel and dentin margins with a bulk fills flowable resin. Eur. J. Dent. 2014, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roggendorf, M.J.; Krämer, N.; Appelt, A.; Naumann, M.; Frankenberger, R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J. Dent. 2011, 39, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Nazari, A.; Sadr, A.; Shimada, Y.; Tagami, J.; Sumi, Y. 3D Assessment of Void and Gap Formation in Flowable Resin Composites Using Optical Coherence Tomography. J. Adhes Dent. 2013, 15, 237–243. [Google Scholar]
- Van Ende, A.; De Munck, J.; Van Landuyt, K.; Van Meerbeek, B. Effect of Bulk-filling on the Bonding Efficacy in Occlusal Class I Cavities. J. Adhes Dent. 2016, 18, 119–124. [Google Scholar]
- Shahidi, C.; Krejci, I.; Dietschi, D. In Vitro Evaluation of Marginal Adaptation of Direct Class II Composite Restorations Made of Different “Low-Shrinkage” Systems. Oper. Dent 2017, 42, 273–283. [Google Scholar] [CrossRef]
- Fronza, B.M.; Rueggeberg, F.A.; Braga, R.R.; Mogilevych, B.; Soares, L.E.S.; Martin, A.A.; Ambrosano, G.; Giannini, M. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent. Mater. 2015, 31, 1542–1551. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, S.; Silikas, N.; Watts, D.C. Creep deformation of restorative resin-composites intended for bulk-fill placement. Dent. Mater. 2012, 28, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Van Dijken, J.W.; Pallesen, U. A randomized controlled three year evaluation of “bulk-filled” posterior resin restorations based on stress decreasing resin technology. Dent. Mater. 2014, 30, e245–e251. [Google Scholar] [CrossRef] [PubMed]
- Van Dijken, J.W.V.; Pallesen, U. Bulk-filled posterior resin restorations based on stress-decreasing resin technology: A randomized, controlled 6-year evaluation. Eur. J. Oral Sci. 2017, 125, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Ugurlu, M.; Sari, F. A 3-year retrospective study of clinical durability of bulk-filled resin composite restorations. Restor. Dent. Endod. 2022, 47, e5–e15. [Google Scholar] [CrossRef] [PubMed]
- Zotti, F.; Falavigna, E.; Capocasale, G.; De Santis, D.; Albanese, M. Microleakage of Direct Restorations-Comparison between Bulk-Fill and Traditional Composite Resins:Systematic Review and Meta-Analysis. Eur. J. Dent. 2021, 15, 755–767. [Google Scholar]
- Guney, T.; Yazici, A.R. 24-Month Clinical Evaluation of Different Bulk-Fill Restorative Resins in Class II Restorations. Oper. Dent. 2020, 45, 123–133. [Google Scholar] [CrossRef]
- Moda, M.D.; Briso, A.F.; Hoshino, I.; Frascino, S.; Santos, P.H.; Gonçalves, D.M.; Fagundes, T. Three-year Randomized Prospective Clinical Trial of Class II Restorations Using Flowable Bulk-fill Resin Composites. Oper. Dent. 2021, 46, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Sarapultseva, M.; Sarapultsev, A. Flowable Bulk-Fill Materials Compared to Nano Ceramic Composites for Class I Cavities Restorations in Primary Molars: A Two-Year Prospective Case-Control Study. Dent. J. 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Giannetti, L.; Diago, A.; Spinas, E. SDR® vs. traditional composite in class II restorations in primary molars. J. Biol. Regul. Homeost. Agents 2018, 32, 745–749. [Google Scholar]
- Magne, P.; Schlichting, L.H. Biomimetic CAD/CAM restoration made of human enamel and dentin: Case report at 4th year of clinical service. Int. J. Esthet. Dent. 2016, 11, 472–480. [Google Scholar] [PubMed]
- Schweiger, J.; Edelhoff, D.; Güth, J.F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef] [PubMed]
- Skorulska, A.; Piszko, P.; Rybak, Z.; Szymonowicz, M.; Dobrzyński, M. Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry-Application, Mechanical Characteristics and Comparison. Materials 2021, 14, 1592. [Google Scholar] [CrossRef]
Material Type | Brand | Code | Manufacturer | Lot No. | Filler Content/wt% * |
---|---|---|---|---|---|
Compomer | Compoglass F A3 | CGF | Ivoclar Vivadent AG (Schaan, Principality of Liechtenstein) | U33209 a | 77.0, (76 [15]) |
Dyract eXtra A3 | DY | DENTSPLY DeTrey GmbH (Konstanz, Germany) | 1403000083 a | n.a. (76 [15]) | |
Composite | Venus Diamond A3 | VD | Kulzer GmbH (Hanau, Germany) | K010078 a | 82.0 |
Tetric Evo Ceram A3 | TEC | Ivoclar Vivadent AG (Schaan, Principality of Liechtenstein) | Z0067N b | 76.0, (73.0 [16]) | |
Tetric Evo Ceram Bulk Fill A3 | TECB | Ivoclar Vivadent AG (Schaan, Principality of Liechtenstein) | Z0038Z b | 79–81 $, (73.1 [17]) | |
SDR flow + U | SDR | DENTSPLY DeTrey GmbH (Konstanz, Germany) | 00070112 a | 68.0, (69.0 [17]), (67.6 [16]) |
Material Type | Code | FS/MPa * | ME/GPa * | FS/MPa | ME/GPa |
---|---|---|---|---|---|
Compomer | CGF | 110.0 a | 8.2 a | 67.0 b [23], 86.9 a [40], 104.0 a [41] | 17.4 c [23], 8.8 a [41] |
DY | 118.0 a | 7.7 a | 78.0 b [23], 101.0 a [41] | 19.9 c [23], 7.3 a [41] | |
Composite | VD | 169.0 a | 12.6 a | 130.1 c [34], 157.4 a [42], 165.3 a [43] | 10.9 a [42], 7.2 a [43], 8.7 a [34] |
TEC | 120.0 a | 10.0 a | 90.6 c [33], 96.0 a [41], 107.5 a [42] | 5.3 a [41], 8.9 a [42] | |
TECB | 120.0 a | 10.0 a | 120.8 a [44], 87 d [45] | 4.5 a [44], 9.4 d [45] | |
SDR | 118.0 a | 5.8 a | 131.8 a [44], 115 d [45] | 5.0 a [44], 5.9 d [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niem, T.; Frankenberger, R.; Amend, S.; Wöstmann, B.; Krämer, N. Damping Behaviour and Mechanical Properties of Restorative Materials for Primary Teeth. Materials 2022, 15, 7698. https://doi.org/10.3390/ma15217698
Niem T, Frankenberger R, Amend S, Wöstmann B, Krämer N. Damping Behaviour and Mechanical Properties of Restorative Materials for Primary Teeth. Materials. 2022; 15(21):7698. https://doi.org/10.3390/ma15217698
Chicago/Turabian StyleNiem, Thomas, Roland Frankenberger, Stefanie Amend, Bernd Wöstmann, and Norbert Krämer. 2022. "Damping Behaviour and Mechanical Properties of Restorative Materials for Primary Teeth" Materials 15, no. 21: 7698. https://doi.org/10.3390/ma15217698
APA StyleNiem, T., Frankenberger, R., Amend, S., Wöstmann, B., & Krämer, N. (2022). Damping Behaviour and Mechanical Properties of Restorative Materials for Primary Teeth. Materials, 15(21), 7698. https://doi.org/10.3390/ma15217698