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Abstract: In this study, the influence of Ag on the microstructures, precipitation behavior and
mechanical properties of the Al-4Mg alloy are investigated. For the as-cast alloys, Ag can reduce the
dimension of the precipitates and promote the precipitation of numerous fine-scale AlMgAg particles.
In the aging process, Ag promotes the precipitation of nanoscale MgAg phase and T-Mg32(Ag, Al)49

phase, which improves the aging hardening response of the alloy. At the peak-aged stage of 210 ◦C,
the ultimate tensile strength of the Ag-bearing alloy is 280 MPa, and the yield strength is 200 MPa,
which is much higher than that of Ag-free alloy.

Keywords: Al-4Mg alloy; Ag-additions; age hardening; nanoscale precipitates

1. Introduction

Al-Mg alloys have the advantages of small density, good welding performance and
excellent corrosion resistance [1]. In recent years, with the continuous improvement of the
application demand, people have higher requirements on the performance of the Al-Mg
alloy, especially its mechanical properties and corrosion resistance. Though the strength of
Al-Mg alloys can be improved by aging strengthening, solution strengthening and work
hardening, the β phase (Al3Mg2) was easy to precipitate along grain boundaries. Thus,
the corrosion resistance of the alloy decreases when the content of Mg exceeds 3 wt.%.
Therefore, the strength of the alloy was limited [2,3].

Aging strengthening is an important method to improve the strength of aluminum
alloys. The Guinier Preston (GP) zones played a key role in the course of heat treatment
strengthening. For Al-Mg alloys, due to the instability of the GP zones, it dissolved
at room temperature and the nucleation sites of the precipitates were limited. In the
artificial aging process of the Al-Mg alloys, only few coarse scale β’ or β phases can be
detected [4–6]. Therefore, the aging strengthening effect was limited. Recently, some
studies show that the addition of Sc in Al-Mg alloys can improve the properties of alloys
evidently, as numerous nanoscale Al3Sc were drawn into the alloys [7,8]. However, Sc
atoms were easy to precipitate in the process of hot working, and once precipitated it is
hard to dissolve back into the matrix. Therefore, Sc was difficult to apply in solution-aging
process. Some studies have reported that small amounts of Ag can induce age-hardening
in Al-Mg alloys. The strengthening phase was thought to be a T phase (Mg32(Al, Ag)49) in
Al-Mg-Ag alloys because the cell closely resembles those of the ternary phase Al6CuMg4
and (Mg32(Al, Zn)49 [9]. However, the evidence showed deficiency due to the restriction
of detection technology at that time. In recent years, some research has reported that
Ag played a positive role on aging hardening of an aluminum alloy [10,11]. For 5xxx
aluminum alloys, the influence of Ag is mainly focused on the high-Mg content (>10 wt.%)
Al-Mg alloys [12,13]. Due to the poor corrosion resistance and inferior processability, the
application of high-Mg content Al-Mg alloys was limited. In addition, the content of Mg
played a crucial role in the structure and component of precipitates. Therefore, it is essential
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to study the effects of Ag on the low-magnesium content Al-Mg alloys. In this paper, the
influence of Ag on the initial as-cast microstructures, precipitation behavior and mechanical
properties of low-magnesium content Al-Mg-Ag alloys is discussed in detail.

2. Experimental

Alloy ingots of the nominal composition Al-4wt.%Mg with or without 0.6 wt.% Ag
(hereafter referred to as Al-4Mg-0.6Ag or Al-4Mg alloy) were prepared by medium fre-
quency furnace using 99.8 wt.% Al, 99.99 wt.% Mg and 99.99 wt.% pure Ag. The size of
each ingot was about 165 mm × 100 mm × 28 mm. After homogenization treatment at
500 ◦C for 24 h, alloy ingots were hot-rolled to 5 mm and cold-rolled to 2 mm. After that,
the alloy plates were solution treated for 2 h at 500 ◦C followed by water-cooling, and then
aged for 0–32 h at 120–240 ◦C, respectively.

The Leica DMI5000M-type optical microscope (OM) and SSX-550 scanning electron
microscope (SEM) were used to analyze the microstructures of the two alloys. Energy
dispersive spectrometer (EDS) was used to ensure the compositions of precipitate phases.
All specimens for transmission electron microscopy (TEM) were thinned to perforate by a
twin-jet electro polishing technique at −25 ◦C. The electrolyte was a solution of 33 vol.%
HNO3 and 67 vol.% CH3OH. The aging microstructures were observed using Tecnai G220
transmission electron microscope (TEM) operating at 200 kV. Tensile tests were carried out
using CSS-44100 type universal testing machine with a crosshead speed of 2 mm/min. The
width and length of gauge of specimens were 12.5 mm and 50 mm, respectively. The tensile
test results of each sample were the average of three measurements. Micro-hardness was
measured using Vickers hardness instrument at a load of 5 KG and loading time of 15 s.
The hardness value of each sample had an average of 7 data points.

3. Results and Discussions
3.1. Microstructural Observations

Figure 1 represents the microstructures of the as-cast Al-4Mg alloys with or without
Ag additions. For the Ag-free alloy, in Figure 1a,c, the microstructure contains many bone-
like particles and granulate-shaped phases. The magnified morphology of the particles
was shown in Figure 1e. Corresponding EDS results in Table 1 indicate that Al6Fe was
the primary second phase in the as-cast Al-4Mg alloy [14]. However, after the addition
of 0.6 wt.% Ag, the amount of the particles increases evidently, as shown in Figure 1b,d.
According to Figure 1f and Table 1, the size of the Al6Fe decreases in a certain extent and
some Ag adheres to the edge of Al6Fe phases during solidification. In addition, many
fine-scale circle-like particles can also be detected in the as-cast microstructures of the
Ag-bearing alloy. The EDS results in Table 1 illustrates these circle-like particles contain Al,
Mg and Ag elements and can be defined as AlMgAg ternary phase.

Table 1. Composition of test points as marked in Figure 1 (wt.%).

Position Mg Ag Fe Si Al

001 0.95 31.96 67.09
002 4.39 15.98 79.63
003 4.16 21.05 74.79
004 1.12 0.82 32.72 65.33
005 2.26 53.51 3.23 1.83 39.17
006 6.97 23.31 0.91 82.65
007 17.64 28.92 1.37 52.07

For Al-4Mg alloy, as the solubility of Mg varies greatly with temperature, the faster
cooling rate in the water-cooling copper mold can inhibit the precipitation of Al3Mg2. Most
of Mg atoms dissolve into the Al-matrix. Therefore, Al6Fe particles are the primary second
phases in the as-cast microstructures. However, for the Al-4Mg-0.6Ag alloy, Ag may act as
the nucleation sites of Al6Fe particles and refine the size of these particles. For another, Ag
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and Mg atoms can reduce the solubility of each other and exhibit strong binding energy
between them [15]. So numerous circle-like AlMgAg particles precipitate in the as-cast
microstructures of the Al-4Mg-0.6Ag alloy.
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After rolling, as shown in Figure 2a,b, a large number of fiber structures can be
detected. Obviously, fiber structures are nearly parallel to the rolling direction (RD), and
fine recrystallized grains nucleate within the fiber bands after solution treatment, as shown
in Figure 2c,d. Most of the grains are about 10–20 µm in size and there is little difference in
grain size between the two alloys. This reflects that Ag has little effect on grain refinement.
The main role of Ag-addition comes from the numerous fine-scale Ag-containing phases
distributed along rolling direction, which can promote work hardening. In addition, the
Ag-containing particles can dissolve into the matrix easily during solution treatment and
provide oversaturation conditions for subsequent aging treatment.
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Figure 2. Microstructures of (a) as-rolled Al-4Mg alloy, (b) as-rolled Al-4Mg-0.6Ag alloy, (c) as-
quenched Al-4Mg alloy and (d) as-quenched Al-4Mg-0.6Ag alloy.

3.2. Mechanical Properties and Precipitation Process

Figure 3 shows the hardness curves of the two alloys aging at different temperatures.
For the Ag-free alloy, the hardness changes slightly with aging temperatures and times,
as shown in Figure 3a. However, as shown in Figure 3b, the age hardening response is
significantly enhanced by the addition of Ag. The hardness of the Al-4Mg-0.6Ag alloy
increases sharply with aging temperatures and times. This reflects that there must be some
particles precipitated in the aging process, which leads to the increasing of the hardness
of the alloy. Additionally, the higher the temperature is, the faster the hardness increases,
the shorter the time to reach the peak hardness. In the aging process, the nucleation,
growth and coarsening of precipitates are controlled by the diffusion of vacancies and
solute atoms. The effect of temperature on precipitates can be expressed by the Arrhenius
equation: D = D0exp(−Q/RT) [16]. The diffusion coefficient increases with aging tempera-
tures. Thus, the higher the aging temperature is, the faster the atoms diffuse and the more
rapidly the hardness increases. By comparing the hardness curves of the Al-4Mg-0.6Ag
alloy at different aging temperatures, the best aging temperature is 210 ◦C.

In order to illustrate the effect of Ag on the precipitation strengthening mechanism of
Al-Mg alloys, TEM images of the aged Al-4Mg (-0.6Ag) alloys are shown in Figures 4 and 5.
For the Al-4Mg alloy, at the early aged stage (210 ◦C/1 h), the microstructure contains
massive dislocations, forming dislocation tangles. There is no precipitated particle in the
matrix, as shown in Figure 4a. When aged for 8 h at 210 ◦C, with the movement of vacancies
and dislocations, the opposite dislocations offset each other and the amount of dislocations
decrease. There is no particles at this stage, as shown in Figure 4b. At the over-aged
stage (210 ◦C/32 h), in Figure 4c, some lath-shaped particles with dimension of 0.1–0.2µm
distribute in the matrix sparsely. According to the morphology of the particles and the
precipitation sequence of Al-Mg alloys [4], the lath-shaped particles can be defined as β’
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with the component of Al3Mg2. For Al-Mg alloys, the clusters of Mg atoms are unstable
and prefer to dissolve at artificial aging temperature. Due to the lack of nucleation sites,
it is difficult for nanoparticles to precipitate uniformly. Only few coarse scale β’ phases
distribute in the matrix sparsely. Due to the coarse scale and discrete distribution, the β’
phase has little effect on the strengthening of Al-Mg alloys.
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Figure 4. TEM micrographs of Al-4Mg alloy aged for (a) 1 h, (b) 8 h, (c) 32 h at 210 ◦C, respectively.

In the aging process, the size, distribution and type of the precipitates change signif-
icantly, compared with the Ag-free alloy. At the early stages (210 ◦C/1 h), in Figure 5a,
numerous nanoscale circle-like particles distribute in the matrix uniformly and they can be
identified as GP zones according to their dimension and aging condition. The GP zones
can be speculated as the accumulation of Mg and Ag atoms, as the two kinds of atoms had
strong binding energy [17,18]. At the peak-aged stage, the circle-like GP zones transformed
into the MgAg phase, which may have independent lattice structure. The circle-like MgAg
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phase promotes the aging strengthening effect of Al-Mg-Ag alloy efficaciously. Some circle-
like particles transformed into rod-like phases and the microstructures contained both
circle-like and rod-like particles, which formed multiscale coexistence phase structures.
This multi-size structures can hinder and twine the dislocations efficaciously in the plastic
deformation process and improve the strength of the alloy. The corresponding selected
area electron diffraction (SAED) pattern in Figure 5d indicates that the rod-like particles
have a body-centered cubic structure with a lattice parameter of a = 1.41 nm. A higher
magnification image of the precipitates is shown in the top left corner of Figure 5b. The EDS
results of the rod-like particles indicate that this phase contains elements of Al, Mg and
Ag. Based on the results above, the rod-like particles can be speculated as T phase with a
composition of (Mg32(Ag, Al)49. The results are also in agreement with the high-Mg content
of the Al-Mg-Ag alloys [9,19]. At the over-aged stages, with the increasing aging times,
the size of the precipitates keeps on coarsening and the amount decreases, as shown in
Figure 5c. The effect of precipitates on hindering the movement of dislocations is weakened.
As a result, the hardness of the alloy decreases.
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For Al-Mg alloys, the formation of GP zones is attributed to the movement of vacancies.
Therefore, the gathered solute atoms must be coherent with the matrix. If the atomic
volume of precipitates and matrix varied widely (Al is 2.862 Å and Mg is 3.196 Å), as
shown in Figure 6a, the matrix and precipitates will produce lattice distortion. Therefore,
the influence of Mg atoms on the lattice constant of the Al matrix is conspicuous. The
elastic strain energy between GP zones and aluminum matrix is large and Gibbs-free energy
improves. GP zones are unstable and transformed to equilibrium phase quickly. Therefore,
it is difficult to detect GP zones in the artificial aging process of Al-Mg alloys. Due to
the absence of GP zones, which act as nucleation sites for the transient phases, the aging
strengthening effect is limited [20,21].
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For the Ag-addition alloy, Ag modifies the precipitation process from the earliest stage
of the decomposition through a preferred Mg-Ag interaction. After the addition of Ag, the
precipitation sequence of Al-4Mg-0.6Ag alloy in this passage can be summarized as follows:
GP zones→MgAg phase→ T phase (Mg32(Ag, Al)49). After the addition of 0.6 wt.% Ag
in the Al-4Mg alloy, as the atomic radii of Al and Ag differ by only 0.5% [22], the lattice
distortion of GP zones is alleviated and the elastic strain energy between GP zones and
aluminum matrix reduces, as shown in Figure 6b. Therefore, the GP zones can exist in
the matrix stably. In addition, Ag is easier to bond with Mg and increased the amount of
vacancy, which promotes the formation of GP zones [23]. Numerous GP zones provide
nucleation sites for the nanoscale dispersed precipitates. As a result, the strength of the
Al-4Mg alloy is improved by the addition of Ag.

Figure 7 presents the mechanical properties of the two alloys under each aging condi-
tion. As the uniformly distributed precipitates can impede dislocation movement in plastic
deformation process, the strength of the aged Al-4Mg-0.6Ag alloy is visibly improved. The
effects of the nanoscale precipitates on hindering the movement of dislocations are shown
in Figure 8. At the under-aged stage of the Ag-bearing alloy, the dislocations can pass
the coherent precipitates by cutting or bypassing in the plastic deformation process. At
the peak-aged stages (210 ◦C/8 h), the circle-like and rod-shaped particles with different
dimensions and orientations can heavily impede the dislocations, forming dislocation
stacking. However, for the Ag-free alloy, the dislocation slip is easier, as no precipitates are
detected. Therefore, at the peak-aged stage, the ultimate tensile strength (UTS) and yield
strength (YS) of the Ag-bearing alloy increased by 40 MPa and 94 MPa, which increased by
16.7% and 88.7% than that of the Ag-free alloy, respectively. At the over-aged stage of the
Ag-containing alloy, precipitates become coarser and the amount of which decreases. The
hindrance of precipitates on dislocations is weakened, which leads to the reduction in the
strength of the alloy.

Figure 9 shows the tensile fracture surfaces of the peak-aged samples of the two alloys.
The fracture surfaces of each sample show ductile rupture with characteristic dimples. In
Figure 9a, the dimples of the Ag-free alloy are tiny and uniform, which manifests excellent
ductility of the alloy. However, for the Ag-bearing alloy, in addition to the fine dimples,
some small planes can also be detected, as shown in Figure 9b, which leads to the ductility
degradation. This can be explained as follows: for the Al-4Mg alloy, there are fewer barriers
to dislocation slip and the dislocations can overcome the petty deformation resistance and
pass through crystal readily in the process of plastic deformation. For the Ag-bearing alloy,
the dislocations cannot pass through the particles and lead to dislocations stacks. The
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dislocations stacks bring about stress concentration and reduce the dislocation storage
capacity. As a result, the work-hardening rate decreases and the ductility is deteriorated.
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In this paper, the influence of Ag on microstructure, precipitation behavior and me-
chanical properties of Al-4Mg alloy are investigated systematically. Detailed results are
as follows:

(1) For the as-cast Al-4Mg alloy, the addition of Ag can reduce the dimension of the
precipitates and promote the precipitation of numerous fine-scale AlMgAg particles.
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(2) During aging, Ag promotes the precipitation of the nanoscale (Mg32(Ag, Al)49. The
best aging temperature was 210 ◦C.

(3) For the peak-aged stage, the UTS of the Ag-bearing alloy was 280 MPa and the YS
is 200 MPa, which is 40 MPa and 94 MPa higher than that of the Ag-free alloy, respectively.
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