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Abstract: Climate change has become trending news due to its serious impacts on Earth. Initiatives
are being taken to lessen the impact of climate change and mitigate it. Among the different initiatives,
researchers are aiming to find suitable alternatives for cement. This study is a humble effort to
effectively utilize industrial- and agricultural-waste-based pozzolanic materials in concrete to make it
economical and environmentally friendly. For this purpose, a ternary blend of binders (i.e., cement,
fly ash, and rice husk ash) was employed in concrete. Different variables such as the quantity of
different binders, fine and coarse aggregates, water, superplasticizer, and the age of the samples were
considered to study their influence on the compressive strength of the ternary blended concrete using
gene expression programming (GEP) and artificial neural networking (ANN). The performance of
these two models was evaluated using R2, RMSE, and a comparison of regression slopes. It was
observed that the GEP model with 100 chromosomes, a head size of 10, and five genes resulted in an
optimum GEP model, as apparent from its high R2 value of 0.80 and 0.70 in the TR and TS phase,
respectively. However, the ANN model performed better than the GEP model, as evident from its
higher R2 value of 0.94 and 0.88 in the TR and TS phase, respectively. Similarly, lower values of RMSE
and MAE were observed for the ANN model in comparison to the GEP model. The regression slope
analysis revealed that the predicted values obtained from the ANN model were in good agreement
with the experimental values, as shown by its higher R2 value (0.89) compared with that of the GEP
model (R2 = 0.80). Subsequently, parametric analysis of the ANN model revealed that the addition of
pozzolanic materials enhanced the compressive strength of the ternary blended concrete samples.
Additionally, we observed that the compressive strength of the ternary blended concrete samples
increased rapidly within the first 28 days of casting.

Keywords: compressive strength; fly ash; rice husk ash; ANN; GEP; parametric and sensitivity analyses

1. Introduction

Different agricultural products such as wheat, sugarcane, rice, and cotton, among
others, are produced in large quantities around the globe. However, the waste that is
produced at the time of harvesting these crops should be studied to prevent environmental
pollution. For example, a large amount of rice husk and bagasse is available after their
respective utilization, and this waste must be effectively disposed of, or suitable appli-
cations for it must be found, in accordance with the principles of circular economy and
sustainability. Talking of sustainability, the applications of vegetable fibers in cementitious
matrix composites have also been explored by Marvila et al. [1]. The researchers observed
that the plant fibers reduced the density and enhanced the water absorption capacity and
tensile strength of the composites. It was also recommended by the researchers that the
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cellulose, lignin, and sugars present in the vegetable fibers must be removed before their
application in cementitious composites. Similarly, Aquino et al. [2] used corn straw fiber
in cement-lime mortars used during coating and laying blocks. It was found that corn
straw fibers treated with sodium hydroxide improved the performance of specimens by
demonstrating higher compressive strength and lower water absorption than the untreated
fiber specimens.

Concrete is a widely used construction material with numerous benefits such as
high compressive strength (CS), the ability to be cast in any desired shape, and the ready
availability of its fundamental materials. The integral materials are bonded by a suitable
binder, typically cement, which may or may not be convoyed with pozzolanic materials.
The mechanical and durability properties of concrete depend mainly upon the gradation
and physical properties of the fine and coarse aggregates used, the type of cement used, the
presence of pozzolanic materials, the cement used, and the water–cement ratio [3–5]. The
hydration of cement imparts the fusing action due to its reaction with water to form a binder
gel such as calcium–silicate hydrate (C-S-H) gel and calcium–aluminate hydrate (C-A-H)
gel, which are mainly used in addition to portlandite [5,6]. Different pozzolanic materials
such as fly ash (FA) [7], silica fume [8], pumice (Pu) [9], blast furnace slag [10], rice husk ash
(RHA) [11], and metakaolin [12] have also been used in mortar and concrete. It is important
to note that pozzolans need a high-pH environment and a cation for activation to form
secondary binder gels. Therefore, portlandite, produced as a result of cement hydration, is
consumed by the pozzolans and results in the formation of a secondary binder gel (C-S-H,
C-A-H, or C-A-S-H). The composition of secondary binder gels is highly dependent upon
the chemical composition of the pozzolanic material used [13,14].

Numerous studies have shown that the partial replacement of cement with FA in
the mortar and/or in the concrete improved its mechanical properties and densified its
microstructure over time [15,16]. The inclusion led to a lower porosity in the samples
and a higher resistance against aggressive environments. Similarly, RHA is produced by
burning rice husk at around 700 ◦C. It is an excellent pozzolanic material and comprises
a large proportion of silica, which imparts the pozzolanic property. It is important to
mention here that the chemical composition and crystallinity percentage of RHA samples
depends on the type of nutrients present in the soil where the crop had been sown and
the burning temperature of rice husk [11,17]. Previous studies have also revealed that
the partial replacement of cement with RHA improved its mechanical, durability, and
microstructural properties [17]. Similarly, Pu is a natural pozzolanic material and is a type
of igneous rock. It is mostly comprised of silicon dioxide in addition to other compounds
such as aluminum oxide. It has been effectively used in cement mortars, improving its
mechanical properties and densifying its microstructure, leading to fewer voids [18]. In
addition to the use of a single pozzolanic material in mortar and concrete, the literature
also reveals the influence of utilizing binary and ternary blends of different materials on
different properties of concrete. For example, Tahir and Kirca [19] employed FA, SF, and
blast furnace slag as ternary cementitious blends. It was observed that the ternary blend
had a higher CS than the binary blend (cement and SF only). In an another attempt, Rahman
et al. [20] observed that a ternary blend of MK, palm oil fuel ash, and cement improved the
workability of paste, and attained high early CS with a reduced porosity in comparison
with the binary blend (cement and MK only). Similarly, Anwar and Emarah [21] used a
ternary blend of cement, FA, and SF to study their influence on the carbonation and ingress
of chloride ions in samples. It was observed that the ternary blend improved the resistance
of specimens against the ingression of these ions.

Thus, the performance of mortar and concrete is highly dependent on their constituent
materials and chemical compositions. Therefore, several experimental trials must be
undertaken to determine the influence of a particular constituent on the resulting properties
of mortar and concrete. However, such experimental trials are arduous and time- and
resource-consuming tasks [22]. Lately, artificial intelligence (AI) techniques have gained
fame due to their swift learning capabilities for modeling different processes and/or
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phenomena, allowing models to accurately predict output(s) with the consideration of
several inputs [23,24]. For instance, Baykasoglu et al. [25] made use of an artificial neural
network (ANN) and gene expression programming (GEP) to forecast the CS of high-
strength concrete. Topcu et al. [26] used an ANN and an adaptive neuro-fuzzy inference
system (ANFIS) to forecast the CS of cement mortar containing MK. Similarly, Saridemir [27]
used ANN and fuzzy logic to study the effect of MK on the CS of cement mortar. Likewise,
several other models such as the radial basis function network (RBFNN), multi-layer neural
networks (MLNNs) [28], decision tree models, gradient-boosting tree models [29], and
extreme learning machines (ELMs) [30] have been successfully used for modeling the
CS of concrete with various constituents and additives integrated. In addition to these,
Nour and Mete [31] used GEP to model the ultimate strength of axially loaded, recycled-
aggregate, concrete-filled steel tubular columns. It was observed that GEP successfully
modelled the ultimate strength values with higher R2 values (0.995 and 0.996 in the training
and testing phases, respectively). The researchers also provided an empirical equation
to estimate the axial load capacity of tubular columns with recycled aggregate. Similarly,
Gholampour et al. [32] employed GEP to predict the mechanical properties and their
empirical models of concrete containing natural and recycled aggregates. A large dataset
comprising 650, 421, 346, and 152 datapoints for the CS, elastic modulus, splitting–tensile
strength, and flexure strength, respectively, were used to develop the model. It was
observed that GEP successfully predicted the CS of concrete, as evident from the lower
RMSE value of 7.8 and the coefficient of variation of 0.19.

A survey of the literature shows that different AI models have been successfully
employed to model the mechanical properties of concrete containing different constituents;
however, there are some problems associated with their prediction capabilities such as the
production of unexpected outcomes for new datasets and the overfitting of data. Such
shortcomings limit their use for forecasting in different situations. Therefore, ANN and
other traditional machine learning models are considered to be black-box models [33,34]. In
contrast, white-box models do not possess these limitations, and the associated information
about its working and the influential variables can be extracted. One example of such
models includes the gene expression programming (GEP) model, whose basic principle is
based on making complex trees of chromosomes, with genes connected through linking
functions; the model learns by changing their sizes and shapes [35]. Different researchers
have made use of GEP models to model different properties of concrete, incorporating
various materials. For instance, a study led by Iqbal et al. [36] used GEP to model the
mechanical properties of green concrete with waste foundry sand integrated. GEP has also
been successfully used to model the resilient modulus of stabilized soils [37]. The use of
GEP algorithms has enabled researchers to accurately predict the output (R2 > 0.85), and at
the same time, provide an empirical equation for the output in terms of the input variables.

Considering the ability of different AI models to predict the properties of concrete,
this study aimed to perform a comparative analysis of the ANN and GEP models to
predict the compressive strength of ternary blended concrete to avoid laborious and time-
and resource-consuming experimentation. The ANN and GEP models were utilized to
model the compressive strength of ternary blended concrete using different input variables
such as the amounts of cement, fine aggregate, coarse aggregate, water, superplasticizer,
fly ash, and rice husk ash, and the age of the sample. In addition to the performance
comparison, we took advantage of the white-box nature of the GEP model to derive an
empirical equation for the compressive strength of ternary blended concrete in terms of
the above-mentioned inputs. Finally, parametric analysis was also conducted to study and
understand the influence of the different input parameters on the compressive strength
of ternary blended concrete. These analyses will be a significant contribution to the field
of civil engineering materials as it employs both black-box and white-box AI models to
predict the compressive strength of concrete by incorporating two different pozzolanic
materials and comparing their performance.
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2. Methodology
2.1. Database Description and Statistics

In order to model the CS of ternary blended concrete using GEP, a database comprising
the input and output parameters is required. For this purpose, one could use one’s own
experimental database or an aggregation of the results from past research articles, published
in well-reputed journals. The latter approach was adopted for this study and, upon a survey
of the literature, it was revealed that none of the articles had the correct ternary blend
(cement, RHA, and fly ash); therefore, the articles with a binary blend (cement and one
pozzolan) and a ternary blend (cement and two pozzolans) were explored, comprising
one or two of the above-mentioned materials. As a result of this effort, a database was
prepared from the studies conducted by Iftikhar et al. [38], Ozcan and Emin [18], and
Saridemir [39]. Our database was comprised of 310 data points with nine input parameters,
viz. the amount of cement, the fine aggregate (F.ag.), the coarse aggregate (C.ag.), the
water, the superplasticizer (SP), the FA, the RHA, the age of the sample, and one output
(i.e., CS). The AI models, which will be trained and validated using the above-mentioned
input parameters, will be able to predict the CS of ternary blended concrete. However, it is
pertinent to mention here that the values of the input parameters must be within the range
at which the AI models have been trained and validated. For this purpose, the descriptive
details of the dataset are presented in Table 1 including the minimum and maximum values
of the input parameters. Similarly, Figure 1 shows the frequency histograms of the input
parameters. It can be inferred from Figure 1 and the kurtosis values in Table 1 that the
distribution of several input parameters such as the amount of cement, F.ag., C.ag., and
RHA has a sharp peak. Similarly, the negative values of skewness in Table 1 also confirms
the presence of a fatter tail in the distribution curves of F.ag., C.ag., and water on the left
side of Figure 1. Similarly, Tables 2 and 3 present the physical properties and chemical
composition of ordinary Portland cement, RHA, and FA.
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Table 1. Descriptive statistics of the input variables.

Descriptive
Statistics

Cement
(Kg/m3)

F.ag.
(Kg/m3)

C.ag.
(Kg/m3)

Water
(Kg/m3) SP, % FA, %

(Kg/m3)
RHA, %
(Kg/m3)

Age,
Days CS, MPa

Mean 352.40 745.73 938.38 186.90 4.22 10.95 (39.16) 0.92 (38.60) 34.56 43.29
Standard Error 6.68 6.32 8.35 1.68 0.24 0.94 (3.29) 0.23 (2.53) 1.82 1.04

Standard Deviation 117.70 111.30 146.90 29.58 4.17 16.49 (57.97) 4.08 (44.57) 32 18.32
Sample Variance 13,849 12,401 21,603 874 17.42 272.10 (3361) 16.71 (1986) 1023 335

Kurtosis 2.33 0.92 1.58 −0.36 −0.52 −0.90 (−1.27) 21.32 (0.09) −0.80 0.42
Skewness 1.01 −1.22 −0.32 −0.20 0.68 0.94 (0.80) 4.66 (0.93) 0.82 0.67
Minimum 136.10 439.60 576.90 112.50 0 0 0 1 9.49
Maximum 783 905.40 1433.50 238 18 54.50 (168.3) 25 (171) 90 104.10

Table 2. Physical properties of cement, rice husk ash, and fly ash.

Material Specific Gravity Blaine’s Fineness (m2/g)

Cement 3.15 [17] 0.36 [17]

Rice Husk Ash 2.83 [17] 0.62 [40]

Fly Ash 2.22 [41] >0.38 [42]

Table 3. Chemical composition of cement, rice husk ash, and fly ash.

Ordinary Portland Cement [13] Rice Husk Ash [17] Fly Ash [13]

Compound Percentage Compound Percentage Compound Percentage

SiO2 21.00% SiO2 96.11 SiO2 40.00%

Al2O3 6.00% Al2O3 - Al2O3 26.32%

Fe2O3 2.58% Fe2O3 0.39 Fe2O3 15.16%

CaO 60.02% CaO 1.03 CaO 7.83%

SO3 9.30% SO3 0.21 SO3 6.14%

TiO2 0.29% TiO2 0.03 TiO2 2.55%

K2O 0.81% - 1.16 K2O 1.41%

2.2. Tuning of Hyperparameters during GEP Modeling

GeneXprotools was employed for the successful development and training of the
GEP models. The process involved retrieving the data into its interface and dividing the
attributes into input and output variables. Similarly, the dataset was also divided into two
subsets, namely the training dataset and the testing dataset. The dataset was split into the
aforementioned subsets in a 70/30 percentage. As a result, 70% of the dataset (217 data
points) was used for the training (TR) phase and the remaining 93 data points were used
for the testing (TS) phase. The next step involved setting the parameters of the GEP model.
For this reason, the number of chromosomes (Nc) varied from 30 to 200, while the head
size (Hs) varied from 8 to 12. Similarly, the number of genes (Ng) also plays a vital role in
improving the performance of the GEP model. For this purpose, three distinct numbers of
genes (i.e., 3, 4, and 5) were used to evaluate their effect on the performance of the models.
The addition function was used as a linking function among genes. This was selected after
a rigorous exercise, which involved exploring numerous linking functions (+, −, ×, /)
among the genes. The root mean square error (RMSE) was used as the cost function. The
flowchart of GEP modeling is shown in Figure 2, while Table 4 provides the values of the
hyperparameters for the best-performing GEP model.
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Table 4. Performance of the optimal GEP and ANN models.

Model No. of Variables No. of Chromosomes Head Size No. of Genes
TR Phase TS Phase

R2 RMSE MAE R2 RMSE MAE

GEP 8 100 10 5 0.80 8.52 6.31 0.70 9.30 7.38
ANN - - - - 0.94 6.23 4.01 0.88 8.27 6.07

Usually, a trial-and-error-based approach is adopted for setting the parameters of GEP
models. Previously, researchers used to program GEP algorithms to randomly select the
datapoints for the TR and TS datasets. As a result of this practice, the developed models
used to overfit the data during the TR process, with a subsequent improvement in their
performance in the TS phase; however, this practice led to a reduction in the performance
of the validation data. This problem was resolved by the approach followed by Gandomi
and Roke [35], who selected a model with a minimum objective function (OF) [36]. The
values of the OF ranged between 0 and the maximum value, and models with an OF value
approaching zero were considered to be better models. Similarly, different performance
indices such as the coefficient of determination (R2), the RMSE, and the mean absolute
error (MAE) were employed for assessing the performance of the proposed models. The
ideal values of these statistical indices are presented in Table 5.

Table 5. Ideal values of the performance indices.

Index Range/Ideal Value

R2 (0–1)/1
RMSE (0–∞)/0
MAE (0–∞)/0

In order to determine the best-performing model, the hyperparameters of the GEP
model were tuned a number of times (trial-and-error-based approach). As a result, a
number of models were developed with different numbers of chromosomes, different
numbers of genes, and different head sizes. At first, the Nc values were changed from
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30 to 200, while keeping the Hs (i.e., 8) and the Ng (i.e., 3) values constant. An optimal
model performance was obtained when Nc = 100. Similarly, the Hs value was changed
from 8 to 12, keeping the other two variables constant, in order to obtain an optimal model
performance for a particular value of Hs. A similar procedure was followed to determine
the optimal number of Ng. As a result of the hyperparameter tuning process, the Nc, Hs,
and Ng values for an optimally performing GEP model were determined to be 100, 10,
and 5, respectively. Table 4 presents the details of the performance of the optimum model,
obtained as a result of this tuning process.

2.3. Artificial Neural Network Modeling

An ANN is a soft-computing algorithm that simulates the biological neural networks of
learning algorithms. Its architecture comprises an input layer, a hidden layer, and an output
layer. The input layer is comprised of non-computational neurons, which are equal to the
number of input variables, while the output layer has computational neurons equaling the
number of target variables. The number of neurons in the hidden layer depends on the trial,
which yields the best performance. The neurons in the input layer receive information from
outside source(s) in terms of inputs, whereas the computational neurons conduct linear and
nonlinear operations on the input data. Every neuron combines the weighted values from
the related input neuron obtained in the linear phase. Additionally, an activation function
is added before the outcome can be transmitted as an output. Similarly, the neurons of
the hidden layers are linked together by nodes with different weights. These are used to
connect the non-computing and computing neurons. The number of neurons in the input
layers depends upon the number of influential features, while the number of neurons in
the output layer is equal to the number of output variable(s). The Levenberg–Marquardt
back-propagation algorithm was used to train the models. The number of neurons in the
hidden layers was changed from 8 to 12 and the optimum performance was obtained with
10 neurons [43–46].

3. Results and Discussion
3.1. Performance of the Models

The performances of the GEP and ANN models were assessed using different ap-
proaches such as statistical evaluation, slope of regression line, and the predicted–experimental
(P/E) ratio.

3.1.1. Statistical Evaluation

As discussed previously, different statistical indices were employed to judge the
performance of both of the models. The reason for adopting other indices such as RMSE
and MAE was that a higher value of R2 indicates a good agreement between the predicted
and actual values. However, determining the performance of a model based on “R2” alone
is not sufficient, and other statistics must also be considered. In this regard, this study
calculated the values of RMSE and MAE to evaluate the performances of the models, in
addition to the R2 values, as shown in Table 4. The same indices were employed to rank
the performances of these models, as shown in Table 6. It is evident from Table 6 that
the ANN model performed better, as shown by their higher R2 (0.94 and 0.88) and lower
RMSE (6.23 and 8.27) and MAE (4.01 and 6.07) in the TR and TS phases, respectively. The
performance indices also reveal that the performance of the ANN model was slightly
reduced in the TS phase.

Table 6. Ranking of models based on R2 and RMSE.

Statistic R2 RMSE MAE

Rank 1st 2nd 1st 2nd 1st 2nd
TR and TS Phase ANN GEP ANN GEP ANN GEP
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3.1.2. Regression Slopes Analysis

The analysis of regression slopes is a useful technique for evaluating the performance
of a model against the experimental/actual values. The theoretical/experimental/actual
values are plotted on the x-axis, while the predicted values are plotted on the y-axis. The
slope of the line between the actual and forecasted values is noted. This assessment method
was employed here and the regression slope lines were plotted for the best-performing
GEP and ANN models. It is important to reiterate that an ideal line, with a slope equal
to one, will make an angle of 45◦ with the x-axis. The performance of the model will be
excellent (i.e., the predicted values will be closer to the actual values), if the plotted points
lie close to the standard line. A regression line whose slope value is closer to 1 and with
correlation values ≥ 0.8 will have minimal values for the error indices [47,48].

Figure 3 shows the comparison of regression slopes for the best-performing GEP and
ANN models for the TR and TS phases, respectively. It is evident from Figure 3 that the
value of R2 was higher for the TR dataset (i.e., 0.80 and 0.89 for the GEP and ANN models,
respectively), while higher slope values were observed for the ANN model (0.94 and 0.88
during the TR and TS phases, respectively) than for the GEP model. Similarly, Figure 3
demonstrates that the value of the slope for the ANN model was reduced in the TS phase
(m = 0.88) from m = 0.94 in the TR phase.
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3.1.3. Model of Predicted–Experimental Ratio

The performances of the different models, produced through different trials, were
investigated using the P/E ratio. Figure 4 depicts the P/E ratios for the best-performing
GEP and ANN models for both the TR and TS phases. Figure 4a,b shows that a higher
number of counts could be observed for the P/E ratio around 1 for the GEP model during
the TR and TS phases. However, there were a few counts of the P/E ratio exceeding 3 for the
GEP model during both phases. Similarly, the ANN model performed comparatively better,
and a larger count for the P/E ratio values equaling one could be observed during both
phases; however, some higher values (i.e., P/E ratio >2) could also be observed for the ANN
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model during the TS phase, as evident from Figure 4d. This is another visual justification
for the ANN model performing better than the GEP model in accurately predicting the CS
values of ternary blended concrete; the values derived by the ANN model were in good
agreement with the experimental values.
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Table 7 presents the comparison of the currently proposed models for predicting the
CS of ternary blended concrete with previous studies. It is important to note here that the
CS of binary blended concrete has successfully been modeled using different AI models in
the past (Table 7). For example, Song et al. [49] modeled the CS of binary blended concrete
(cement and FA) using GEP and ANN. He observed that the GEP model was more robust
than the ANN model by securing a higher R2 of 0.86. The current study modeled the CS of
ternary blended concrete satisfactorily while considering two different pozzolanic materials
(i.e., RHA and FA).
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Table 7. A comparison of the proposed model performance with previous studies.

Research Study Binder(s) AI Model R2

Iftikhar et al. [38] Cement and RHA GEP and Random Forest Regression (RF) GEP = 0.96 and RF = 0.91

Song et al. [49] Cement and FA GEP and ANN GEP = 0.86 and ANN = 0.81

Salami et al. [50] Cement, FA, and furnace slag Least square support vector machine
(LSSVM), GEP, ANN and RF

LSSVM = 0.95, GEP = 0.89,
ANN = 0.91, and RF = 0.86

This study Cement, RHA, and FA GEP and ANN GEP = 0.70 and ANN = 0.77

Considering the excellent performance of the proposed AI models (especially ANN),
as demonstrated in Sections 3.1.1–3.1.3 of this manuscript, it is without any doubt that the
proposed models can predict the CS of ternary blended concrete accurately. The statistical
analysis in the preceding sections revealed that the ANN model performed better (higher
R2 and lower RMSE and MAE values), however, due to its black-box nature, no empirical
equation could be derived for the CS of the ternary blended concrete. In contrast, the
performance of the GEP model was slightly poorer than the ANN model, however, it
could provide an empirical equation for future use. The empirical equation as discussed
in Section 3.2 is capable of calculating the CS of ternary blended concrete as a function
of the considered input parameters. However, it is important to recall here that these AI
models can work efficiently and accurately predict the CS of ternary blended concrete only
if the values of the input parameters lie within the range (i.e., between the minimum and
maximum values of input parameters, as illustrated in Table 1). Similarly, the models will
not work accurately if the mix design of ternary blended concrete contains other admixtures
and/or additives.

3.2. GEP Formulations

GEP, being a white-box model, enables researchers to derive empirical equations for the
intended output in terms of the influential input variables. This can be achieved by utilizing
the expression tree and the GEP model of the best-performing model. Considering this
advantage, the expression tree (Figure 5) and the GEP model of the optimally performing
GEP model were utilized in order to obtain an empirical equation for the CS of ternary
blended concrete. This equation can be further used for the sensitivity and parametric
analysis of input variables. Equation (1) presents the expression for computing the CS of
ternary blended concrete in terms of the input variables, viz., the amount of cement, the
fine aggregate, the coarse aggregate, the water, the superplasticizer, the fly ash, the rice
husk ash, and the age of the sample.

CS = A + B + C + D + E (1)

where
A = Water − 11.67

2 × F.ag. − SP − 2 × C.ag. − 0.24 + RHA
(2)

B = ((Cement × (−1.02 + Age)) + SP)
1
3 (3)

C =
F.ag.

(−8.37 − RHA) + (Age × Water)− (C.ag. + SP + d4)
− Water (4)

D =
((Age × SP) + (12.37 × Cement)− (42.51 × FA))− Age

Water
(5)

E =

(
1.59 −

(
Age × SP

9.49 − RHA

)
× (−8.39 + RHA) + 9.49

) 1
3

(6)

It is important to mention here that, while using the above equation for computing
the CS of ternary blended concrete, the amount of cement, F.ag., C.ag., and water must be
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expressed in Kg/m3; superplasticizer and fly ash and rice husk ash must be expressed by
the percentage of binder used (i.e., cement). Similarly, age must be expressed in days.
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3.3. Parametric Analysis

Parametric analysis, also called monotonicity analysis, is normally carried out to au-
thenticate the reliability of AI models. For this purpose, its performance is evaluated based
on the simulated datasets. Similarly, sensitivity analysis can also be performed for such
purposes, as it illustrates the response of the prediction model to the variation in the input
parameters [37,51]. Therefore, a parametric analysis was conducted in this study to assess
the influence of each input feature on the CS of the ternary blended concrete specimens.

Parametric analysis of all of the input variables (cement, F.ag., C.ag., water, SP, FA,
RHA, and age) was carried out using the ANN model (the ANN model was chosen due
to its superior performance in comparison with the GEP model) in order to assess their
influence on the resulting CS of the concrete specimens. Table 8 displays the possible
combinations of the different input parameters adopted for the parametric analysis. The
analysis was executed by changing one input parameter from its minimum value to its
maximum value while maintaining the rest of the input variables at their average values.
For example, the CS values of the concrete specimens were evaluated by varying the
amount of cement from its minimum value to its maximum value while maintaining the
rest of the input variables at their mean values. This practice was performed for all of
the input variables. Figure 6 illustrates the variation in the CS values in response to the
changes in each input variable, as per the above-described procedure. It is clear from
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Figure 6a–c,e,h that the CS improved with the amount of cement, fine aggregate, coarse
aggregate, superplasticizer, and the age of the sample. Similarly, Figure 6f,g shows that
the CS of the ternary blended concrete samples improved with the addition of fly ash
and rice husk; however, their addition in higher replacement amounts led to a decrease
in CS. These findings are in accordance with previous studies because both the cement
and the pozzolanic materials contribute toward primary and secondary binder gel (C-S-H,
C-A-H and C-A-S-H) formation, and because pozzolanic materials need time, a sufficient
amount of portlandite, and a high pH value for their activation; these factors subsequently
increase their contribution to strength [52,53]. Similarly, the application of superplasticizer
improves the workability of the mix, thereby allowing for better compaction of the sample
with reduced air voids and higher density. Furthermore, Figure 6d demonstrates that the
CS decreased with the amount of water. This is supported by the fact that only a reasonable
amount of water is needed for cement hydration and subsequent pozzolanic reaction [13].
Similarly, Figure 6h shows that the rate of increase in CS was higher during the initial
28 days and was subsequently decreased with a further increase in age (beyond 28 days
of age).
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Table 8. Dataset used for the parametric analysis.

Input Variables
Constant Input Parameters No. of Data Points

Parameter Range

Cement 136.1–783 F.ag. = 745.74, C.ag. = 938.37, Water = 186.88, SP = 4.22, FA = 39.16,
RHA = 0.92, Age = 34.56

10

F.ag. 439.59–905.4 Cement = 352.44, C.ag. = 938.37, Water = 186.88, SP = 4.22, FA = 39.16,
RHA = 0.92, Age = 34.56

C.ag. 576.88–1433.50 Cement = 352.44, F.ag. = 745.74, Water = 186.88, SP = 4.22, FA = 39.16,
RHA = 0.92, Age = 34.56

Water 112.5–238 Cement = 352.44, F.ag. = 745.74, C.ag. = 938.37, SP = 4.22, FA = 39.16,
RHA = 0.92, Age = 34.56

SP 0–18 Cement = 352.44, F.ag. = 745.74, C.ag. = 938.37, Water = 186.88,
FA = 39.16, RHA = 0.92, Age = 34.56

FA 0–168.3 Cement = 352.44, F.ag. = 745.74, C.ag. = 938.37, Water = 186.88,
SP = 4.22, RHA = 0.92, Age = 34.56

RHA 0–25 Cement = 352.44, F.ag. = 745.74, C.ag. = 938.37, Water = 186.88,
SP = 4.22, FA = 39.16, Age = 34.56

Age 1–90 Cement = 352.44, F.ag. = 745.74, C.ag. = 938.37, Water = 186.88,
SP = 4.22, FA = 39.16, RHA = 0.92
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4. Conclusions

This study was performed with the aim of effectively utilizing fly ash, an industrial
waste, and rice husk ash, an agricultural waste, in concrete to understand their influence
on the compressive strength of concrete using gene expression programming and artificial
neural networks. Different variables such as the quantity of cement, fly ash, rice husk ash,
fine and coarse aggregates, water, and superplasticizer and the age of the samples were
considered to determine their influence on the compressive strength of the ternary blended
concrete samples. The main conclusions drawn from this study are as follows:

1. The GEP model with the optimal performance was obtained with 100 chromosomes,
a head size of 10, and five genes. This model showed high R2 values of 0.80 and 0.70,
low RMSE values of 8.52 and 9.30, and low MAE values of 6.31 and 7.38 in the TR and
TS phases, respectively.

2. The regression slopes analysis revealed that the predicted values produced by the
ANN model were in good agreement with the experimental values, as evidenced by
its higher R2 values (0.89 and 0.77 in the TR and TS phases, respectively). Similarly,
the P/E ratio analysis revealed that the ANN model performed better than the GEP
model, with a larger frequency observed for the P/E ratio equaling one during both
the TR and TS phases; however, during the TS phase, a small number of counts were
observed for the P/E ratio >2.

3. Similarly, a parametric analysis of the best-performing model (the ANN model)
showed that the compressive strength of the ternary blended concrete samples im-
proved with the amount of pozzolanic materials and superplasticizer added and the
age; therefore, the experimental observations were confirmed. It was also verified that
the amount of water plays a prominent role in controlling the compressive strength
of concrete; attention must be paid to decisions surrounding the amount of water
and the workability requirements in order to achieve the desired strength of a given
sample. Finally, it was observed that the compressive strength of the ternary Yes
blended concrete samples enhanced rapidly within the first 28 days of casting; after
this period, the strength gain rate reduced slightly due to pozzolanic reactions.

5. Future Work

It is recommended that the proposed AI models trained on previous research studies
are also validated by conducting new experimental trials incorporating these waste materi-
als and their prediction performance can be judged. Similarly, the influence of these waste
materials on other mechanical properties such as the split-tensile strength and modulus of
elasticity of concrete can also be modeled using these AI techniques.
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