Recent Progress in Double-Layer Honeycomb Structure: A New Type of Two-Dimensional Material
Abstract
:1. Introduction
2. Discussion
2.1. Theoretical Prediction
2.2. Experimental Fabrication
2.3. Excitonic Insulator
2.4. Topological Insulator
2.5. Optical Properties
2.6. Defect and Absorption of Metal Atoms
2.7. Multilayer and Heterojunction
3. Conclusion and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H.J.; Fan, Z.; Gong, C.; et al. Recent Progress on Two-Dimensional Materials. Acta Phys. Chim. Sin. 2021, 37, 2108017. [Google Scholar] [CrossRef]
- Miró, P.; Audiffred, M.; Heine, T. An Atlas of Two-Dimensional Materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef]
- Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P.S.; Hinsche, N.F.; Gjerding, M.N.; Torelli, D.; Larsen, P.M.; Riis-Jensen, A.C.; et al. The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals. 2D Mater. 2018, 5, 042002. [Google Scholar] [CrossRef]
- Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; et al. Bandgap Engineering of Two-Dimensional Semiconductor Materials. Npj 2D Mater. Appl. 2020, 4, 29. [Google Scholar] [CrossRef]
- Low, T.; Chaves, A.; Caldwell, J.D.; Kumar, A.; Fang, N.X.; Avouris, P.; Heinz, T.F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in Layered Two-Dimensional Materials. Nat. Mater. 2017, 16, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Qiao, Z.; Niu, Q. Topological Phases in Two-Dimensional Materials: A Review. Rep. Prog. Phys. 2016, 79, 066501. [Google Scholar] [CrossRef] [Green Version]
- Akinwande, D.; Petrone, N.; Hone, J. Two-Dimensional Flexible Nanoelectronics. Nat. Commun. 2014, 5, 5678. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-Dimensional Material Nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van Der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [Green Version]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef]
- Khan, K.; Khan Tareen, A.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent Developments in Emerging Two-Dimensional Materials and Their Applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, X.; Chen, N.; Chen, B.; Rao, F.; Zhang, S. Phase-Change-Memory Process at the Limit: A Proposal for Utilizing Monolayer Sb2 Te3. Adv. Sci. 2021, 8, 2004185. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D Materials: To Graphene and Beyond. Nanoscale 2011, 3, 20–30. [Google Scholar] [CrossRef]
- Guzmán-Verri, G.G.; Lew Yan Voon, L.C. Electronic Structure of Silicon-Based Nanostructures. Phys. Rev. B 2007, 76, 075131. [Google Scholar] [CrossRef] [Green Version]
- Drummond, N.D.; Zólyomi, V.; Fal’ko, V.I. Electrically Tunable Band Gap in Silicene. Phys. Rev. B 2012, 85, 075423. [Google Scholar] [CrossRef]
- Liu, C.-C.; Feng, W.; Yao, Y. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Phys. Rev. Lett. 2011, 107, 076802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-C.; Jiang, H.; Yao, Y. Low-Energy Effective Hamiltonian Involving Spin-Orbit Coupling in Silicene and Two-Dimensional Germanium and Tin. Phys. Rev. B 2011, 84, 195430. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yan, B.; Zhang, H.-J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S.-C. Large-Gap Quantum Spin Hall Insulators in Tin Films. Phys. Rev. Lett. 2013, 111, 136804. [Google Scholar] [CrossRef] [Green Version]
- Bachra, M.E.; Zaari, H.; Benyoussef, A.; Kenz, A.E.; Hachimi, A.G.E. First-Principles Calculations of van Der Waals and Spin Orbit Effects on the Two-Dimensional Topological Insulator Stanene and Stanene on Ge(111) Substrate. J. Supercond. Nov. Magn. 2018, 31, 2579–2588. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef] [Green Version]
- Özçelik, V.O.; Azadani, J.G.; Yang, C.; Koester, S.J.; Low, T. Band Alignment of Two-Dimensional Semiconductors for Designing Heterostructures with Momentum Space Matching. Phys. Rev. B 2016, 94, 035125. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Li, X.-B.; Chen, N.-K.; Xie, S.-Y.; Tian, W.Q.; Chen, Y.; Xia, H.; Zhang, S.B.; Sun, H.-B. Monolayer II-VI Semiconductors: A First-Principles Prediction. Phys. Rev. B 2015, 92, 115307. [Google Scholar] [CrossRef] [Green Version]
- Lucking, M.C.; Xie, W.; Choe, D.-H.; West, D.; Lu, T.-M.; Zhang, S.B. Traditional Semiconductors in the Two-Dimensional Limit. Phys. Rev. Lett. 2018, 120, 086101. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Kuznetsov, V.G.; Fons, P.; Saito, Y.; Elets, D.I.; Hyot, B. Polymorphism of CdTe in the Few-Monolayer Limit. Phys. Status Solidi RRL 2021, 15, 2100358. [Google Scholar] [CrossRef]
- Wan, B.; Gao, Z.; Huang, X.; Yang, Y.; Chen, L.; Wang, Q.; Fang, C.; Shen, W.; Zhang, Y.; Ma, H.; et al. Bonding Heterogeneity Inducing Low Lattice Thermal Conductivity and High Thermoelectric Performance in 2D CdTe2. ACS Appl. Energy Mater. 2022, 5, 9549–9558. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y. Excitonic Instability and Electronic Properties of AlSb in the Two-Dimensional Limit. Phys. Rev. B 2021, 104, 085133. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Z.-H.; Jiang, Z.; Fan, K.; Zhang, W.-H.; Tang, Q.-Y.; Xia, H.-N.; Meng, F.; Zhang, Q.; Gu, L.; et al. Realization of AlSb in the Double-Layer Honeycomb Structure: A Robust Class of Two-Dimensional Material. ACS Nano 2021, 15, 8184–8191. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Jalil, A.; Ilyas, S.Z.; Mufti, H.; Agathopoulos, S. The First-Principles Prediction of Two-Dimensional Indium-Arsenide Bilayers. Mat. Sci. Semicon. Proc. 2021, 134, 106041. [Google Scholar] [CrossRef]
- Andryushechkin, B.V.; Zhidomirov, G.M.; Eltsov, K.N.; Hladchanka, Y.V.; Korlyukov, A.A. Local Structure of the Ag(100) Surface Reacting with Molecular Iodine: Experimental and Theoretical Study. Phys. Rev. B 2009, 80, 125409. [Google Scholar] [CrossRef]
- Andryushechkin, B.; Pavlova, T. Adsorption of Molecular Iodine on the Ag(111) Surface: Phase Transitions, Silver Reconstruction, and Iodide Growth. J. Chem. Phys. 2022, 156, 164702. [Google Scholar] [CrossRef]
- Mustonen, K.; Hofer, C.; Kotrusz, P.; Markevich, A.; Hulman, M.; Mangler, C.; Susi, T.; Pennycook, T.J.; Hricovini, K.; Richter, C.; et al. Toward Exotic Layered Materials: 2D Cuprous Iodide. Adv. Mater. 2022, 34, 2106922. [Google Scholar] [CrossRef]
- Huang, X.; Yan, L.; Zhou, Y.; Wang, Y.; Song, H.-Z.; Zhou, L. Group 11 Transition-Metal Halide Monolayers: High Promises for Photocatalysis and Quantum Cutting. J. Phys. Chem. Lett. 2021, 12, 525–531. [Google Scholar] [CrossRef]
- Jérome, D.; Rice, T.M.; Kohn, W. Excitonic Insulator. Phys. Rev. 1967, 158, 462–475. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Z.; Li, Y.; Duan, W. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors. Phys. Rev. Lett. 2017, 118, 266401. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, Y.; Zhang, S.; Duan, W. Realizing an Intrinsic Excitonic Insulator by Decoupling Exciton Binding Energy from the Minimum Band Gap. Phys. Rev. B 2018, 98, 081408. [Google Scholar] [CrossRef] [Green Version]
- Marrazzo, A.; Gibertini, M.; Campi, D.; Mounet, N.; Marzari, N. Relative Abundance of Z2 Topological Order in Exfoliable Two-Dimensional Insulators. Nano Lett. 2019, 19, 8431–8440. [Google Scholar] [CrossRef] [PubMed]
- Akiyma, T.; Hasegawa, Y.; Nakamura, K.; Ito, T. Realization of Honeycomb Structures in Octet AN B8− N Binary Compounds under Two-Dimensional Limit. Appl. Phys. Express 2019, 12, 125501. [Google Scholar] [CrossRef]
- Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Ghergherehchi, M.; Sarsari, I.A.; Ziabari, A.A. Novel Two-Dimensional AlSb and InSb Monolayers with a Double-Layer Honeycomb Structure: A First-Principles Study. Phys. Chem. Chem. Phys. 2021, 23, 18752–18759. [Google Scholar] [CrossRef]
- Faraji, M.; Bafekry, A.; Fadlallah, M.M.; Jappor, H.R.; Nguyen, C.V.; Ghergherehchi, M. Two-Dimensional XY Monolayers (X = Al, Ga, In; Y = N, P, As) with a Double Layer Hexagonal Structure: A First-Principles Perspective. Appl. Surf. Sci. 2022, 590, 152998. [Google Scholar] [CrossRef]
- Seifert, M.; Kawashima, M.; Rödl, C.; Botti, S. Layered CuI: A Path to 2D p-Type Transparent Conducting Materials. J. Mater. Chem. C 2021, 9, 11284–11291. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.-B.; Han, D.; Tian, W.Q.; Sun, H.-B. Engineering Two-Dimensional Electronics by Semiconductor Defects. Nano Today 2017, 16, 30–45. [Google Scholar] [CrossRef]
- Bafekry, A.; Faraji, M.; Karbasizadeh, S.; Jappor, H.R.; Sarsari, I.A.; Ghergherehchi, M.; Gogova, D. Investigation of Vacancy Defects and Substitutional Doping in AlSb Monolayer with Double Layer Honeycomb Structure: A First-Principles Calculation. J. Phys. Condens. Matter 2022, 34, 065701. [Google Scholar] [CrossRef]
- Wang, D.; Han, D.; Li, X.-B.; Xie, S.-Y.; Chen, N.-K.; Tian, W.Q.; West, D.; Sun, H.-B.; Zhang, S.B. Determination of Formation and Ionization Energies of Charged Defects in Two-Dimensional Materials. Phys. Rev. Lett. 2015, 114, 196801. [Google Scholar] [CrossRef]
- Wang, D.; Han, D.; Li, X.-B.; Chen, N.-K.; West, D.; Meunier, V.; Zhang, S.; Sun, H.-B. Charged Defects in Two-Dimensional Semiconductors of Arbitrary Thickness and Geometry: Formulation and Application to Few-Layer Black Phosphorus. Phys. Rev. B 2017, 96, 155424. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Li, X.-B.; Wang, D.; Chen, N.-K.; Fan, X.-W. Doping in the Two-Dimensional Limit: P/n -Type Defects in Monolayer ZnO. Phys. Rev. B 2022, 105, 024104. [Google Scholar] [CrossRef]
- Yi, S.; Liu, G.; Liu, Z.; Hu, W.; Deng, H. Double-Layer Honeycomb AlP: A Promising Anode Material for Li-, Na-, and K-Ion Batteries. J. Phys. Chem. C 2020, 124, 2978–2986. [Google Scholar] [CrossRef]
- Yi, S.; Liu, G.; Wan, H.; Liu, Z.; Hu, W.; Deng, H. Double-Layer Honeycomb AlP as a Promising Catalyst for Li-O2 and Na-O2 Batteries. Appl. Surf. Sci. 2021, 550, 149392. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.-Y.; Du, S. Recovery of the Dirac States of Graphene by Intercalating Two-Dimensional Traditional Semiconductors. J. Phys. Condens. Matter 2019, 31, 194001. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, X.-B.; Sun, H.-B. Modulation Doping: A Strategy for 2D Materials Electronics. Nano Lett. 2021, 21, 6298–6303. [Google Scholar] [CrossRef] [PubMed]
- Mamiyev, Z.; Tegenkamp, C. Sn Intercalation into the BL/SiC(0001) Interface: A Detailed SPA-LEED Investigation. Surf. Interfaces 2022, 34, 102304. [Google Scholar] [CrossRef]
- Karakachian, H.; Rosenzweig, P.; Nguyen, T.T.N.; Matta, B.; Zakharov, A.A.; Yakimova, R.; Balasubramanian, T.; Mamiyev, Z.; Tegenkamp, C.; Polley, C.M.; et al. Periodic Nanoarray of Graphene Pn-Junctions on Silicon Carbide Obtained by Hydrogen Intercalation. Adv. Funct. Mater. 2022, 32, 2109839. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, T.; Ito, T. Computational Discovery of Stable Phases of Graphene and H-BN van Der Waals Heterostructures Composed of Group III-V Binary Compounds. Appl. Phys. Lett. 2021, 118, 023101. [Google Scholar] [CrossRef]
- Marrazzo, A.; Gibertini, M. Twist-Resilient and Robust Ferroelectric Quantum Spin Hall Insulators Driven by van Der Waals Interactions. Npj 2D Mater. Appl. 2022, 6, 30. [Google Scholar] [CrossRef]
Ref. | Material | Substrate | Experimental Method | Temperature |
---|---|---|---|---|
[34] | AlSb | Graphene-covered SiC (0001) | molecular beam epitaxy | substrate optimal temperature Ts = 170 °C |
[36] | AgI | I buffer layer covered Ag (100) | Chemisorption of monolayer iodine atoms under ultra-high vacuum (UHV) conditions | Room temperature |
[37] | AgI | I buffer layer covered Ag (111) | Chemisorption of molecular iodine atoms under ultra-high vacuum (UHV) conditions | Room temperature |
[38] | CuI/AgI | Two Graphene layers on Graphene oxide | Synthesized directly between graphene encapsulation by wet-chemical process | Room temperature |
Ref. | Materials | Band Gap | Method | Position of Absorption Peak | Main Absorption Regions |
---|---|---|---|---|---|
[30] | AlAs | 2.0 eV (I) | HSE + SOC + D3 | 3.14 eV (First) | Excitonic insulator with same parity CBM and VBM |
[33] | AlSb | 1.35 eV (D) | G0W0 | 0.82 eV (First) | exciton adsorption, with a binding energy of 0.53 eV. |
0.74 eV (D) | G0W0 + SOC | 0.65 eV (First) | just 0.09 eV lower than the quasiparticle gap | ||
[35] | InAs | 0.24 eV (D) | HSE06 | Nearly 1.1 eV (First) | visible, ultraviolet |
[45] | AlSb | 0.08 eV (D) | GGA + SOC | 0.75 eV for the first peak and 5 eV for the main peak | visible, infrared spectra, and activated in the ultraviolet region. |
0.9 eV (D) | HSE | ||||
0.7 eV (D) | HSE + SOC | ||||
InSb | 0.10 eV (D) | GGA + SOC | |||
0.06 eV (D) | HSE | ||||
0.09 eV (D) | HSE + SOC | ||||
[46] | AlN | 3.54 eV (I) | PBE | above 4.0 eV (First) | ultraviolet |
4.71 eV (I) | HSE06 | ||||
GaN | 1.78 eV (I) | PBE | above 3 eV (First) | ultraviolet | |
2.99 eV (I) | HSE06 | ||||
InN | 0.18 eV (I) | PBE | below 1.0 eV (First) | visible, ultraviolet | |
1.16 eV (I) | HSE06 | ||||
AlP | 1.68 eV (I) | PBE | 4.2 eV (main peak, xx directions) and 6.0 eV (main peak, zz directions) | ultraviolet | |
2.41 eV (I) | HSE06 | ||||
AlAs | 1.28 eV (I) | PBE | 3.8 eV (main peak, xx directions) and 5.8 eV (main peak, zz directions) | visible, ultraviolet | |
1.93 eV (I) | HSE06 | ||||
[39] | CuBr | 3.198 eV (D) | HSE06 | About 8 eV (main peak) | ultraviolet |
CuI | 3.117 eV (D) | HSE06 | |||
AgBr | 3.358 eV (D) | HSE06 | |||
AgI | 3.163 eV (D) | HSE06 | |||
[47] | CuI | 3.7 eV (D) | PBE0 + SOC | About 7 eV | transparency in the visible and near ultraviolet spectral range |
1.8 eV (D) | PBE + SOC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.-Y.; Han, D.; Chen, N.-K.; Wang, D.; Li, X.-B. Recent Progress in Double-Layer Honeycomb Structure: A New Type of Two-Dimensional Material. Materials 2022, 15, 7715. https://doi.org/10.3390/ma15217715
Ma M-Y, Han D, Chen N-K, Wang D, Li X-B. Recent Progress in Double-Layer Honeycomb Structure: A New Type of Two-Dimensional Material. Materials. 2022; 15(21):7715. https://doi.org/10.3390/ma15217715
Chicago/Turabian StyleMa, Ming-Yu, Dong Han, Nian-Ke Chen, Dan Wang, and Xian-Bin Li. 2022. "Recent Progress in Double-Layer Honeycomb Structure: A New Type of Two-Dimensional Material" Materials 15, no. 21: 7715. https://doi.org/10.3390/ma15217715
APA StyleMa, M. -Y., Han, D., Chen, N. -K., Wang, D., & Li, X. -B. (2022). Recent Progress in Double-Layer Honeycomb Structure: A New Type of Two-Dimensional Material. Materials, 15(21), 7715. https://doi.org/10.3390/ma15217715