Energy Dissipation and Dynamic Fragmentation of Alkali-Activated Rubber Mortar under Multi-Factor Coupling Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mix Design and Mortar Preparation
2.2. Experimental Program and Analysis
3. Results and Discussion
3.1. SHPB Absorption Energy Dissipation
3.1.1. Relationship between Compressive Strength and Energy Dissipation
3.1.2. Effect of Factor Level on Dissipated Energy
3.2. The Relationship between Absorption Energy and Crushing Morphology
3.3. Microstructure Analysis
3.3.1. SEM Test Procedure
3.3.2. Image Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girskas, G.; Nagrockienė, D. Crushed rubber waste impact of concrete basic properties. Constr. Build. Mater. 2017, 140, 36–42. [Google Scholar] [CrossRef]
- Siddika, A.; Al Mamun, M.A.; Alyousef, R.; Amran, Y.M.; Aslani, F.; Alabduljabbar, H. Properties and utilizations of waste tyre rubber in concrete: A review. Constr. Build. Mater. 2019, 224, 711–731. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Cheng, B. Mechanical properties of alkali-activated concrete containing crumb rubber particles. Case Stud. Constr. Mater. 2022, 16, e00803. [Google Scholar] [CrossRef]
- Gupta, T.; Chaudhary, S.; Sharma, R.K. Assessment of mechanical and durability properties of concrete containing waste rubber tyre as fine aggregate. Constr. Build. Mater. 2014, 73, 562–574. [Google Scholar] [CrossRef]
- Shao, J.; Zhu, H.; Xue, G.; Yu, Y.; Borito, S.M.; Jiang, W. Mechanical and restrained shrinkage behaviors of cement mortar incorporating waste tyre rubber particles and expansive agent. Constr. Build. Mater. 2021, 296, 123742. [Google Scholar] [CrossRef]
- Segre, N.; Monteiro, P.J.; Sposito, G. Surface characterization of recycled tyre rubber to be used in cement paste matrix. J. Colloid Interface Sci. 2002, 248, 521–523. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J. Concrete made with used tyre aggregate: Durability-related performance. J. Clean. Prod. 2012, 25, 42–50. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; De, P.P.; Tripathy, D.K.; De, S.K. Influence of surface oxidation of carbon black on its interaction with nitrile rubbers. Polymer 1996, 37, 353–357. [Google Scholar] [CrossRef]
- Elzeadani, M.; Bompa, D.V.; Elghazouli, A.Y. Preparation and properties of rubberised geopolymer concrete: A review. Constr. Build. Mater. 2021, 313, 125504. [Google Scholar] [CrossRef]
- Dou, Y.; Feng, G.; Xu, L.; Yang, Y.; Zhang, Z.; You, L.; Zhong, S.; Gao, Y.; Cui, X. Modification of rubber particles and its application in rubberized concrete. J. Build. Eng. 2022, 51, 104346. [Google Scholar] [CrossRef]
- Attia, N.F.; Mohamed, G.G.; Ismail, M.M.; Abdou, T.T. Influence of organic modifier structures of 2D clay layers on thermal stability, flammability and mechanical properties of their rubber nanocomposites. J. Nanostructure Chem. 2020, 10, 161–168. [Google Scholar] [CrossRef]
- Attia, N.F.; Hegazi, E.M.; Abdelmageed, A.A. Smart modification of inorganic fibers and flammability mechanical and radiation shielding properties of their rubber composites. J. Therm. Anal. Calorim. 2018, 132, 1567–1578. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, W.; Xuan, D.; Wang, X.; Liu, Y. Application potential of alkali-activated concrete for antimicrobial induced corrosion: A review. Constr. Build. Mater. 2022, 317, 126169. [Google Scholar] [CrossRef]
- Valente, M.; Sambucci, M.; Chougan, M.; Ghaffar, S.H. Reducing the emission of climate-altering substances in cementitious materials: A comparison between alkali-activated materials and Portland cement-based composites incorporating recycled tyre rubber. J. Clean. Prod. 2022, 333, 130013. [Google Scholar] [CrossRef]
- Miller, S.A.; Horvath, A.; Monteiro, P.J. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environ. Res. Lett. 2016, 11, 074029. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Bu, M.; Zhang, Z.; Xu, W.; Yuan, Q.; Niu, D. Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review. Engineering 2021. [Google Scholar] [CrossRef]
- Madan, C.S.; Munuswamy, S.; Joanna, P.S.; Gurupatham, B.G.A.; Roy, K. Comparison of the Flexural Behavior of High-Volume Fly AshBased Concrete Slab Reinforced with GFRP Bars and Steel Bars. J. Compos. Sci. 2022, 6, 157. [Google Scholar] [CrossRef]
- Madan, C.S.; Panchapakesan, K.; Anil Reddy, P.V.; Joanna, P.S.; Rooby, J.; Gurupatham, B.G.A.; Roy, K. Influence on the flexural behaviour of high-volume fly-ash-based concrete slab reinforced with sustainable glass-fibre-reinforced polymer sheets. J. Compos. Sci. 2022, 6, 169. [Google Scholar] [CrossRef]
- Pham, T.M.; Liu, J.; Tran, P.; Pang, V.L.; Shi, F.; Chen, W.; Hao, H.; Tran, T.M. Dynamic compressive properties of lightweight rubberized geopolymer concrete. Constr. Build. Mater. 2020, 265, 120753. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, R. Dynamic mechanics and damage evolution characteristics of rubber cement mortar under different curing humidity levels. J. Mater. Civ. Eng. 2020, 32, 04020309. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.Y.; Bai, E.L.; Li, W. Research on the dynamic compressive test of highly fluidized geopolymer concrete. Constr. Build. Mater. 2013, 48, 166–172. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.; Luo, Z. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete. Compos. Part B Eng. 2020, 185, 107776. [Google Scholar] [CrossRef]
- Yao, W.; Shi, Y.; Xia, K.; Peterson, K. Dynamic fracture behavior of alkali-activated mortars: Effects of composition, curing time and loading ratio. Eng. Fract. Mech. 2019, 208, 119–130. [Google Scholar] [CrossRef]
- Yao, W.; Xia, K.; Liu, Y.; Shi, Y.; Peterson, K. Dependences of dynamic compressive and tensile strengths of four alkali-activated mortars on the loading ratio and curing time. Constr. Build. Mater. 2019, 202, 891–903. [Google Scholar] [CrossRef]
- Feng, W.; Liu, F.; Yang, F.; Li, L.; Jing, L.; Chen, B.; Yuan, B. Experimental study on the effect of strain ratios on the dynamic flexural properties of rubber concrete. Constr. Build. Mater. 2019, 224, 408–419. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Bai, E.; Luo, X.; Zhu, J.; Nie, L. Static and dynamic mechanical properties of high early strength Alkali-activated slag concrete. Ceram. Int. 2015, 41, 12901–12909. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.-Y.; Li, W.; Bai, E. Effect of alkali-activator types on the dynamic compressive deformation behavior of geopolymer concrete. Mater. Lett. 2014, 124, 310–312. [Google Scholar]
- Ma, Q.; Shi, Y.; Xu, Z.; Ma, D.; Huang, K. Research on a multivariate non-linear regression model of dynamic mechanical properties for the alkali-activated slag mortar with rubber tire crumb. Case Stud. Constr. Mater. 2022, 17, e01371. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.; Peng, Z.; Formela, K.; Wang, S. Dynamic mechanical properties and flexing fatigue resistance of tire sidewall rubber as function of waste tire rubber reclaiming degree. J. Appl. Polym. Sci. 2021, 138, 51290. [Google Scholar] [CrossRef]
- Cao, Y.; Li, L.; Liu, M.; Wu, Y. Mechanical behavior of FRP confined rubber concrete under monotonic and cyclic loading. Compos. Struct. 2021, 272, 114205. [Google Scholar] [CrossRef]
Oxide Component | SO3 | SiO2 | ZnO | Na2O | CaO | Al2O3 | Fe2O3 | SrO | Other Oxides |
---|---|---|---|---|---|---|---|---|---|
(%) | 37.62 | 24.51 | 15.36 | 7.02 | 5.21 | 3.58 | 1.83 | 1.28 | 3.59 |
Oxide Component | CaO | SiO2 | Al2O3 | MgO | SO3 | TiO2 | Fe2O3 | K2O |
---|---|---|---|---|---|---|---|---|
(%) | 36.21 | 26.24 | 16.16 | 13.21 | 4.82 | 2.21 | 0.79 | 0.24 |
Experimental Factors | Level | Definition |
---|---|---|
Alkali equivalent | D1 | 2.17 (EC1) |
D2 | 3.39 (EC2) | |
D3 | 4.7 (EC3) | |
Total volume of RRA | V1 | 6% |
V2 | 12% | |
V3 | 24% | |
RRA size | S1 | 2.1~1.6 mm |
S2 | 1.25~0.8 mm | |
S3 | 0.48~0.3 mm | |
S4 | 0.2~0.14 mm |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | Significance |
---|---|---|---|---|---|
Corrected Model | 795.088 | 7 | 113.584 | 41.965 | √ |
Intercept | 8923.114 | 1 | 8923.114 | 3296.741 | √ |
D | 537.768 | 2 | 268.884 | 99.342 | √ |
S | 114.563 | 3 | 38.188 | 14.109 | √ |
V | 142.756 | 2 | 71.378 | 26.371 | √ |
Error | 75.786 | 28 | 2.707 | ||
Total | 9793.987 | 36 |
Group | Fractal Dimension | Group | Fractal Dimension | Group | Fractal Dimension |
---|---|---|---|---|---|
D1V1S1 | 2.248 | D2V1S1 | 1.841 | D3V1S1 | 1.605 |
D1V1S2 | 2.121 | D2V1S2 | 1.256 | D3V1S2 | 1.106 |
D1V1S3 | 1.555 | D2V1S3 | 1.253 | D3V1S3 | 1.074 |
D1V1S4 | 1.58 | D2V1S4 | 1.493 | D3V1S4 | 1.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Ma, Q.; Xu, Z.; Ma, D.; Yang, X.; Gu, Y. Energy Dissipation and Dynamic Fragmentation of Alkali-Activated Rubber Mortar under Multi-Factor Coupling Effect. Materials 2022, 15, 7718. https://doi.org/10.3390/ma15217718
Shi Y, Ma Q, Xu Z, Ma D, Yang X, Gu Y. Energy Dissipation and Dynamic Fragmentation of Alkali-Activated Rubber Mortar under Multi-Factor Coupling Effect. Materials. 2022; 15(21):7718. https://doi.org/10.3390/ma15217718
Chicago/Turabian StyleShi, Yuhang, Qinyong Ma, Zifang Xu, Dongdong Ma, Xuan Yang, and Yuqi Gu. 2022. "Energy Dissipation and Dynamic Fragmentation of Alkali-Activated Rubber Mortar under Multi-Factor Coupling Effect" Materials 15, no. 21: 7718. https://doi.org/10.3390/ma15217718
APA StyleShi, Y., Ma, Q., Xu, Z., Ma, D., Yang, X., & Gu, Y. (2022). Energy Dissipation and Dynamic Fragmentation of Alkali-Activated Rubber Mortar under Multi-Factor Coupling Effect. Materials, 15(21), 7718. https://doi.org/10.3390/ma15217718