Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Systems
2.2. Calculation Method
3. Results and Discussion
3.1. Mechanical Properties
3.2. Interfacial Shear Strength (ISS)
3.3. Hydrogen Bonds (H-Bonds)
4. Conclusions
- Young’s modulus of tobermorite is enhanced when incorporating nanotubes in its composition;
- Young’s modulus presents higher values when the concentration of carboxyl groups in the CNT is increased. This means that compounds with functionalized nanotubes show better mechanical properties, if compared to pristine nanotubes;
- The obtained values for E are significantly higher than those obtained by other authors with experimental techniques, since it is not possible to simulate the porosity of the cement matrix. When correcting the values with the equation proposed by Knudsen and Helmuth [66], it is possible to obtain values with an order of magnitude very similar to other authors, keeping the tendency of a higher E as a function of the number of functional groups; and
- The functionalization of CNT with carboxyl groups promotes the formation of a H-bond network with tobermorite. The larger the number of functional groups, the more H bonds established at the interphase, causing enhanced adhesion and thus, improving mechanical properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawreen, A.; Bogas, J.A.; Dias, A.P.S. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr. Build. Mater. 2018, 168, 459–470. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Al Ansari, M.S.; Taha, R.; Al Nuaimi, N.; Taqa, A.A. Carbon nanotube effect on the ductility, flexural strength, and permeability of concrete. J. Nanomater. 2019, 2019, 6490984. [Google Scholar] [CrossRef]
- Kaur, M.; Murari, K.; Singh, G. Influence of Multi-walled carbon nanotubes on mechanical properties of cement concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 814, 012001. [Google Scholar] [CrossRef]
- Silvestro, L.; Jean Paul Gleize, P. Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review. Constr. Build. Mater. 2020, 264, 120237. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Li, Y.; Maruyama, S. Single-Walled Carbon Nanotubes: Preparation, Properties and Applications, 1st ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Manikandan, N.; Suresh Kumar, V.P.; Siva Murugan, S.; Rathis, G.; Vishnu Saran, K.; Shabariganesh, T.K. Carbon nanotubes and their properties-The review. Mater. Today Proc. 2021, 47, 4682–4685. [Google Scholar]
- Camilli, L.; Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Muhulet, A.; Miculescu, F.; Voicu, S.I.; Schütt, F.; Thakur, V.K.; Mishra, Y.K. Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy 2018, 9, 154–186. [Google Scholar] [CrossRef]
- Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624. [Google Scholar] [CrossRef] [Green Version]
- Annin, B.D.; Baimova, Y.A.; Mulyukov, R.R. Mechanical properties, stability, and buckling of graphene sheets and carbon nanotubes (review). J. Appl. Mech. Tech. Phys. 2020, 61, 834–846. [Google Scholar] [CrossRef]
- Shi, T.; Li, Z.; Guo, J.; Gong, H.; Gu, C. Research progress on CNTs/CNFs-modified cement-based composites—A review. Constr. Build. Mater. 2019, 202, 290–307. [Google Scholar] [CrossRef]
- Zhao, Z.; Qi, T.; Zhou, W.; Hui, D.; Xiao, C.; Qi, J. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnol. Rev. 2020, 9, 349–368. [Google Scholar] [CrossRef]
- Du, M.; Jing, H.; Gao, Y.; Su, H.; Fang, H. Carbon nanomaterials enhanced cement-based composites: Advances and challenges. Nanotechnol. Rev. 2020, 9, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Metaxa, Z.S.; Tolkou, A.K.; Efstathiou, S.; Rahdar, A.; Favvas, E.P.; Mitropoulos, A.C. Nanomaterials in Cementitious Composites: An Update. Molecules 2021, 26, 1430. [Google Scholar] [CrossRef]
- Du, Y.; Gao, P.; Yang, J.; Shi, F.; Shabaz, M. Experimental Analysis of Mechanical Properties and Durability of Cement-Based Composite with Carbon Nanotube. Adv. Mater. Sci. Eng. 2021, 2021, 8777613. [Google Scholar] [CrossRef]
- Gamal, H.A.; El-Feky, M.S.; Alharbi, Y.R.; Abadel, A.A.; Kohail, M. Enhancement of the Concrete Durability with Hybrid Nano Materials. Sustainability 2021, 13, 1373. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Q.; Zhao, M.; Wei, F. A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering. Chin. Sci. Bull. 2012, 57, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Pirard, S.L.; Douven, S.; Pirard, J.P. Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front. Chem. Sci. Eng. 2017, 11, 280–289. [Google Scholar] [CrossRef]
- Da Silva, E.E.; Ladeira, L.O.; Lacerda, R.G.; De Oliveira, S.; Ferlauto, A.S.; Lorençon, E.; Ávila, E.D.S. Large Scale Production of Carbon Nanotubes in Portland Cement. U.S. Patent 9 085 487, 21 July 2015. [Google Scholar]
- Jianguo, D.; Xiaopeng, A. Method for Dispersing Carbon Nanotubes in Cement-Based Material. CN107337197A, 10 November 2017. [Google Scholar]
- Jianlin, L.; Qiuyi, L.; Guolin, Z.; Chunwei, Z. Intelligent Concrete for GO (Graphene Oxide) Strengthened CNT (Carbon Nano Tube) Precoated Sand, Wireless Sensor and Preparation Method. CN20171096272 20170222, 17 May 2017. [Google Scholar]
- Al-Rub, R.K.A.; Asce, M.; Tyson, B.M.; Asce, S.M.; Yazdanbakhsh, A.; Grasley, Z. Mechanical Properties of Nanocomposite Cement Incorporating Surface-Treated and Untreated Carbon Nanotubes and Carbon Nanofibers. J. Macromech. Micromech. 2012, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Cui, H.; Qin, Q.; Tang, W.; Zhou, X. Study on Utilization of Carboxyl Group Decorated Carbon Nanotubes and Carbonation Reaction for Improving Strengths and Microstructures of Cement Paste. Nanomaterals 2016, 6, 153. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.; Cheng, C.; Wei, H.; Du, S.; Yan, J. Surface-treated carbon nanotubes in cement composites: Dispersion, mechanical properties and microstructure. Constr. Build. Mater. 2021, 310, 125262. [Google Scholar] [CrossRef]
- Murray, S.J.; Subramani, V.J.; Selvam, R.P.; Hall, K.D. Molecular Dynamics to Understand the Mechanical Behavior of Cement Paste. Transp. Res. Rec. J. Transp. Res. Board. 2010, 2142, 75–82. [Google Scholar] [CrossRef]
- Fu, J.; Bernard, F.; Kamali-Bernard, S. Assessment of the elastic properties of amorphous calcium silicates hydrates (I) and (II) structures by molecular dynamics simulation. Mol. Sim. 2017, 44, 285–299. [Google Scholar] [CrossRef]
- Mejia, S.; Hoyos, B.; Chandler, M.Q.; Peters, J.F.; Pelessone, D.; Huang, J. Molecular dynamics study on axial mechanical properties of calcium silicate hydrate. Mater. Res. Express 2020, 7, 085011. [Google Scholar]
- Sánchez, F.; Zhang, L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics. J. Colloid Interface Sci. 2008, 323, 349–358. [Google Scholar] [CrossRef]
- Hou, D.; Yang, T.; Tang, J.; Li, S. Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: Functional group de-protonation, interfacial bonding and strengthening mechanism. Phys. Chem. Chem. Phys. 2018, 20, 8773–8789. [Google Scholar] [CrossRef]
- Lushnikova, A.; Zaoui, A. Improving mechanical properties of C-S-H from inserted carbon nanotubes. J. Phys. Chem. Solids 2017, 105, 72–80. [Google Scholar] [CrossRef]
- Lushnikova, A.; Zaoui, A. Influence of single-walled carbon nantotubes structure and density on the ductility of cement paste. Constr. Build Mater. 2018, 172, 86–97. [Google Scholar] [CrossRef]
- Li, G.; Wang, P.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 337–382. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Surendra, P.S. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Balasubramaniam, B.; Mondal, K.; Ramasamy, K.; Palani, G.S.; Iyer, N.R. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers 2017, 5, 39. [Google Scholar] [CrossRef]
- Yilmaz, Y.I. Analyzing Single Fiber Fragmentation Test Data by Using Stress Transfer Model. J. Compos. Mater. 2022, 36, 537–551. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Xing, Y.M.; Lei, Z.K.; Lang, F.C. Interfacial stress transfer behavior in a specially-shaped fiber/matrix pullout test. Acta Mech. Sin. 2010, 26, 113–119. [Google Scholar] [CrossRef]
- Zu, M.; Li, Q.; Zhu, Y.; Dey, M.; Wang, G.; Lu, W. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon 2020, 50, 1271–1279. [Google Scholar] [CrossRef]
- Battisti, A.; Esqué-de los Ojos, D.; Ghisleni, R.; Brunner, A.J. Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Compos. Sci. Technol. 2014, 95, 121–127. [Google Scholar] [CrossRef]
- Rodríguez, M.; Molina-Aldareguía, J.M.; González, C.; Llorca, J. A methodology to measure the interface shear strength by means of the fiber push-in test. Compos. Sci. Technol. 2012, 72, 1924–1932. [Google Scholar] [CrossRef] [Green Version]
- Jean, J.H.; Yu, C.; Park, C.G. Bonding Characteristics of Macrosynthetic Fiber in Latex-Modified Fiber-Reinforced Cement Composites as a Function of Carbon Nanotube Content. Int. J. Polym. Sci. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chandra, Y.; Scarpa, F.; Adhikari, S.; Zhang, J.; Saavedra Flores, E.I.; Peng, H.X. Pullout strength of graphene and carbon nanotube/epoxy composites. Compos. Part B Eng. 2016, 102, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chawla, R.; Sharma, S. Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos. Sci. Technol. 2017, 144, 169–177. [Google Scholar] [CrossRef]
- Fan, D.; Lue, L.; Yang, S. Molecular dynamics study of interfacial stress transfer 1 in graphene-oxide cementitious composites. Comput. Mater. Sci. 2017, 139, 56–64. [Google Scholar] [CrossRef]
- Alkhateb, H.; Al-Ostaz, A.; Cheng, A.H.D.; Li, X. Materials Genome for Graphene-Cement Nanocomposites. J. Macromech. Micromech. 2013, 3, 67–77. [Google Scholar] [CrossRef]
- Merodio-Perea, R.G.; Páez-Pavón, A.; Lado-Touriño, I. Reinforcing cement with pristine and functionalized carbon nanotubes: Experimental and simulation studies. Int. J. Smart Nano Mater. 2020, 11, 370–386. [Google Scholar]
- Talayero, C.; Aït-Salem, O.; Gallego, P.; Páez-Pavón, A.; Merodio-Perea, R.G.; Lado-Touriño, I. Computational Prediction and Experimental Values of Mechanical Properties of Carbon Nanotube Reinforced Cement. Nanomaterials 2021, 11, 2997. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Nasution, M.K.M.; Hekmatifar, M.; Sabetvand, R.; Kamenskov, P.; Toghraie, D. The improvement of mechanical properties of conventional concretes using carbon nanoparticles using molecular dynamics simulation. Sci. Rep. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Materials Studio Materials Modeling & Simulation Application. Dassault Systèmes BIOVIA. Available online: https://www.addlink.es/productos/materials-studio (accessed on 2 November 2022).
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1998, 81, 3684. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Ren, P.; Fried, J.R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Molecular Dynamics Simulation of Elastic Properties of Ordered CSH Gel: Case Study of Tobermorite and Jennite. In Proceedings of the 5th International Symposium of Nanotechnology in Construction (NICOM-5), Chicago, IL, USA, 24–26 May 2015. [Google Scholar]
- Bhuvaneshwari, B.; Palani, G.S.; Karunya, R.; Iyer, N.R. Nano mechanical properties on the mineralogical array of calcium silicate hydrates and calcium hydroxide through molecular dynamics-CSIR-SERC. Curr. Sci. 2015, 108, 1058–1065. [Google Scholar]
- Li, K.; Shui, Z.H.; Dai, W. Molecular dynamic simulation of structural and mechanical properties of cement hydrates: From natural minerals to amorphous phases. Mater. Res. Innov. 2012, 16, 338–344. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Molecular dynamics simulation of elastic properties of tobermorite family. In Proceedings of the 4th RILEM International Symposium on Concrete Modeling (CONMOD 2014), Beijing, China, 12–14 October 2014. [Google Scholar]
- Hajilar, S.; Shafei, B. Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations. Comput. Mater. Sci. 2015, 101, 216–226. [Google Scholar] [CrossRef]
- Afsharhashemkhani, S.; Jamal-Omidi, M.; Tavakolian, M. A molecular dynamics study on the mechanical properties of defective CNT/epoxy nanocomposites using static and dynamic deformation approaches. Int. Polym. Process. 2022, 37, 176–190. [Google Scholar] [CrossRef]
- Chung, D.H.; Buessem, W.R. The Voigt-Reuss-Hill Approximation and Elastic Moduli of Polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe. J. Appl. Phys. 2004, 38, 2535. [Google Scholar] [CrossRef]
- Gou, J.; Minaie, B.; Wang, B.; Liang, Z.; Zhang, C. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 2004, 31, 225–236. [Google Scholar] [CrossRef]
- Arar, M. Elastic Properties of Cement Phases Using Molecular Dynamic Simulation. Master’s Thesis, Toronto Metropolitan University, Toronto, ON, Canada, 2016. [Google Scholar]
- Eftekhari, M.; Mohammadi, S. Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C-S-H) composite. Compos. Part A Appl. Sci. Manuf. 2016, 82, 78–87. [Google Scholar] [CrossRef]
- Sindu, B.S.; Sasmal, S. Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite. Constr. Build. Mater. 2020, 253, 119190. [Google Scholar]
- Musso, S.; Tulliani, J.M.; Ferro, G.; Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990. [Google Scholar] [CrossRef]
- Páez-Pavón, A.; Touriño, M.L.; Asenjo, F.; Caballero, J.A.; Cerpa, A.; Galindo, A. Effect of Single-Walled Carbon Nanotubes on the Physical Properties of Cement Paste. Int. J. Waste Resour. 2021, 11, 398. [Google Scholar]
- Wang, J.F.; Zhang, L.W.; Liew, K.M. Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites. Comput. Methods Appl. Mech. Eng. 2017, 319, 393–413. [Google Scholar] [CrossRef]
- Ramezani, M.; Dehghani, A.; Sherif, M.M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Constr. Build. Mater. 2022, 315, 125100. [Google Scholar] [CrossRef]
- Velez, K.; Maximilien, S.; Damidot, D.; Fantozzi, G.; Sorrentino, F. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cem. Concr. Res. 2001, 31, 555–561. [Google Scholar] [CrossRef]
- Jennings, H.M. A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res. 2000, 30, 101–116. [Google Scholar] [CrossRef]
- Yoshimura, H.N.; Molisani, A.L.; Narita, N.E.; Cesar, P.F.; Goldenstein, H. Porosity dependence of elastic constants in aluminum nitride ceramics. Mater. Res. 2007, 10, 127–133. [Google Scholar] [CrossRef] [Green Version]
- González-Teresa, R.; Morales-Florez, V.; Manzano, H.; Dolado, J.S. Modelos estructurales del empaquetamiento aleatorio de partículas esféricas de Tobermorita: Una aproximación computacional sencilla. Mater. Constr. 2010, 60, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Constantinides, G.; Ulm, F.J. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 2004, 34, 67–80. [Google Scholar] [CrossRef]
- Diop, M.B. Etude du Béton à L’échelle Mesoscopique: Simulation Numérique et Tests de Micro-Indentation. Ph.D. Thesis, INSA de Rennes, Rennes, France, 2014. [Google Scholar]
- Kai, M.F.; Zhang, L.W.; Liew, K.M. Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding. Carbon 2019, 146, 181–193. [Google Scholar] [CrossRef]
- Hou, D.; Lu, Z.; Li, X.; Ma, H.; Li, Z. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms. Carbon 2017, 115, 188–208. [Google Scholar] [CrossRef]
- Al-Muhit, B.; Sanchez, F. Nano-engineering of the mechanical properties of tobermorite 14 Å with graphene via molecular dynamics simulations. Constr. Build. Mater. 2020, 233, 117237. [Google Scholar] [CrossRef]
Mechanical Property | Lattice Parameter (Å) | SWCNT | SWCNT Length (Å) |
---|---|---|---|
Young’s Modulus (E) Poisson’s Ratio (ν) Shear Modulus (G) Bulk Modulus (K) | a = 20.205 b = 36.920 c = 44.974 | Pristine 2 COOH 4 COOH | 10.16 |
Interfacial Shear Strength (τ) | a = 500 b = 29.540 c = 44.974 | Pristine 4 COOH 6 COOH | 17.24 |
Composition | E (GPa) | ν | K (GPa) | G (GPa) |
---|---|---|---|---|
T | 57.98 | 0.26 | 40.24 | 23.03 |
T + CNT | 60.56 | 0.22 | 36.52 | 24.74 |
T + CNT + 2COOH | 76.74 | 0.27 | 55.18 | 30.13 |
T + CNT + 4COOH | 83.03 | 0.29 | 65.79 | 32.21 |
Composition | E (GPa) | E (GPa) p = 0.26 | E (GPa) p = 0.36 |
---|---|---|---|
T | 57.98 | 23.95 | 17.05 |
T + CNT | 60.56 | 25.02 | 17.81 |
T + CNT + 2COOH | 76.74 | 31.70 | 22.56 |
T + CNT + 4COOH | 83.08 | 34.33 | 24.43 |
System | ISS (MPa) | ΔEnon-bond (kJ/mol) |
---|---|---|
Tobermorite + pristine CNT | 220.99 | 18744.32 |
Tobermorite + CNT 4-COOH | 280.85 | 23819.51 |
Tobermorite + CNT 6-COOH | 491.07 | 41651.72 |
Structure | NHb | Distance Hb (Å) |
---|---|---|
T + CNT | 0 | 1.95 * |
T + CNT + 2 COOH | 2.6 | 1.83 |
T + CNT + 4 COOH | 9.6 | 1.82 |
Structure | NHb | D (Å) |
---|---|---|
Tobermorite + pristine CNT | 0 | 2.06 * |
Tobermorite + CNT 4-COOH | 6 | 1.81 |
Tobermorite + CNT 6-COOH | 10 | 1.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merodio-Perea, R.G.; Lado-Touriño, I.; Páez-Pavón, A.; Talayero, C.; Galán-Salazar, A.; Aït-Salem, O. Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies. Materials 2022, 15, 7734. https://doi.org/10.3390/ma15217734
Merodio-Perea RG, Lado-Touriño I, Páez-Pavón A, Talayero C, Galán-Salazar A, Aït-Salem O. Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies. Materials. 2022; 15(21):7734. https://doi.org/10.3390/ma15217734
Chicago/Turabian StyleMerodio-Perea, Rosario G., Isabel Lado-Touriño, Alicia Páez-Pavón, Carlos Talayero, Andrea Galán-Salazar, and Omar Aït-Salem. 2022. "Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies" Materials 15, no. 21: 7734. https://doi.org/10.3390/ma15217734
APA StyleMerodio-Perea, R. G., Lado-Touriño, I., Páez-Pavón, A., Talayero, C., Galán-Salazar, A., & Aït-Salem, O. (2022). Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies. Materials, 15(21), 7734. https://doi.org/10.3390/ma15217734