Profile Change Law of Clad Rebars and the Formation Mechanism of Composite Interfaces during Hot Rolling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inner and Outer Layer Materials
2.2. Rolling Process
2.3. Detection Methods
3. Results
3.1. Cladding Profile Analysis
3.2. Composite Interface Metallographic Analysis
3.3. Composite Interface EBSD Analysis
3.4. Composite Interface Oxide Distribution and Elemental Diffusion Analysis
3.5. Composite Interface Bond Strength Analysis
3.6. Tensile Property Test
4. Conclusions
- Compared with HRB400 bars, clad rebars have a greater tendency to deform along the radial direction during rolling; thus, the pass filling degree should be within 0.85–0.9 when designing hole sizes for clad rebars.
- As the cumulative reduction rate increases, the decarburization zone, width of the composite zone, and diffusion distance of each element gradually decrease. The composite interface oxides change from long strips to granular particles.
- As the cumulative reduction rate increases, the composite interface dislocations aggregate, grain refinement continues, and the tensile and bonding properties of the specimens are significantly improved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulholland, E.; Feyen, L. Increased risk of extreme heat to European roads and railways with global warming. Clim. Risk Manag. 2021, 34, 100365. [Google Scholar] [CrossRef]
- Wang, C.J.; Yao, C.R.; Zhao, S.G.; Zhao, S.D.; Li, Y.D. A Comparative Study of a Fully-Connected Artificial Neural Network and a Convolutional Neural Network in Predicting Bridge Maintenance Costs. Appl. Sci. 2022, 12, 3595. [Google Scholar] [CrossRef]
- Cadenazzi, T.; Dotelli, G.; Rossini, M.; Nolan, S.; Nanni, A.S. Cost and environmental analyses of reinforcement alternatives for a concrete bridge. Struct. Infrastruct. Eng. 2020, 16, 787–802. [Google Scholar] [CrossRef]
- Chu, W.R.; Wang, H.; Zhou, H. Application of anti-corrosion technology in reinforced concrete. J. Interdiscip. Math. 2018, 12, 1345–1350. [Google Scholar] [CrossRef]
- Sun, C.T.; Sun, M.; Liu, J.D.; Dong, Z.P.; Fan, L.; Duan, J.Z. Anti-Corrosion Performance of Migratory Corrosion Inhibitors on Reinforced Concrete Exposed to Varying Degrees of Chloride Erosion. Materials 2022, 15, 5138. [Google Scholar] [CrossRef] [PubMed]
- Hartt, W.H. Testing of Chloride Exposed Reinforced Concrete and Potential Misrepresentation of Service Performance. Corrosion 2016, 72, 368–376. [Google Scholar] [CrossRef]
- Lollini, F.; Carsana, M.; Gastaldi, M.; Redaelli, E.; Bertolini, L. The challenge of the performance-based approach for the design of reinforced concrete structures in chloride bearing environment. Constr. Build. Mater. 2015, 79, 245–254. [Google Scholar] [CrossRef] [Green Version]
- De Anda, L.; Courtier, C.; Moehle, J.P. Bond strength of prefabricated epoxy-coated reinforcement. ACI Struct. J. 2006, 103, 226–234. [Google Scholar]
- Hegyi, A.; Vermesan, H.; Vermesan, G.; Rus, V. Study on the Hot Dip Galvanized Rebars Cohesion in Concrete Structures. Metal. Int. 2010, 15, 20–25. [Google Scholar]
- Yuan, J.; Ou, Z.N. Research Progress and Engineering Applications of Stainless Steel-Reinforced Concrete Structures. Adv. Civ. Eng. 2021, 2021, 9228493. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhang, Y.; Zhou, Y.Y. Fatigue Tests of Concrete Slabs Reinforced with Stainless Steel Bars. Adv. Mater. Sci. Eng. 2018, 2018, 5451389. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.K.; Xiao, H.; Xie, H.B.; Gu, L.C. The preparation and property research of the stainless steel/iron scrap clad plate. J. Mater. Process. Technol. 2014, 214, 1205–1210. [Google Scholar] [CrossRef]
- Kukreja, D.N.; Napier, C.S. Trial Use of a Stainless Steel-Clad Steel Bar in a New Concrete Bridge Deck in Virginia; No. FHWA/VTRC 04-R5; Virginia Transportation Research Council: Charlottesville, VA, USA, 2003. [Google Scholar]
- Sawicki, S. Properties of Bimetallic “Carbon Steel-Stainless-steel” Bars with Periodic Texture Obtained by Explosive Cladding and Rolling. Met. Sci. Heat Treat. 2012, 54, 303–308. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Yu, H.; Luo, Z.A.; Misra, R.D.; Xie, G.M. The Impact of Process Parameters on Microstructure and Mechanical Properties of Stainless Steel/Carbon Steel Clad Rebar. Materials 2019, 12, 2868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.M.; Feng, G.H.; Liu, X.; Wang, B.S.; Zhang, H.L. Trial Production of Stainless Steel Cladding Rebar by Liquidsolid Casting and Hot Rolling Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 612, 2127. [Google Scholar] [CrossRef]
- Gao, Y.N.; Zhang, Y.J.; Hao, R.C.; Xiao, H.; Zhang, G.Y. Finite Element Simulation and Experimental Study on Stainless Steel/Low Carbon Steel Clad Rebar by Thrust/Tension Rolling. Spec. Steel 2013, 34, 5–9. [Google Scholar]
- Hua, J.; Wang, F.; Huang, L.; Wang, N.; Xue, X. Experimental study on mechanical properties of corroded stainless-clad bimetallic steel bars. Constr. Build. Mater. 2021, 287, 123019. [Google Scholar] [CrossRef]
- Xie, H.B.; Gao, Y.N.; Wang, T.; Xiao, H. Effect of Multipass Hot Rolling on the Property and Bonding Interface of Clad Bar. Acta Metall. Sin. 2011, 47, 1513–1519. [Google Scholar]
- Xiao, F.; Wang, D.; Hu, W.; Cui, L.; Gao, Z.; Zhou, L. Effect of Interlayers on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate. Acta Metall. Sin. 2019, 33, 679–692. [Google Scholar] [CrossRef]
- Liu, X.F.; Bai, Y.L.; Li, J.K.; Qin, H.Y.; Chen, X. Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composite plates. Cailiao Gongcheng 2020, 48, 119–126. [Google Scholar]
- Li, Z.; Tan, J.P.; Qian, X.H.; Xiang, Y.; Zeng, L.; Zhuang, Z.C. Influence of Different Base Materials on the Microstructure and Properties of Clad Rebar. Appl. Sci. 2022, 12, 10475. [Google Scholar] [CrossRef]
- Li, Z.; Tan, J.P.; Qian, X.H.; Xiang, Y.; Zeng, L.; Zhao, Y. Interfacial Microstructure and Properties of Clad Rebar Prepared by Clean-Interface Assembly and Vacuum Hot-Rolling. Appl. Sci. 2022, 12, 9519. [Google Scholar] [CrossRef]
- Sawicki, S.; Dyja, H. Production of Bimetallic Bars Steel-steel Resistant to Corrosion of the Method Explosive Cladding. Metall. Min. Ind. 2011, 7, 63–73. [Google Scholar]
- Yu, C.; Deng, Z.J.; Liang, S.J.; Xiao, H.; Zhao, Y.P. Effect of pure iron interlayer on microstructure and properties of hot-rolled stainless steel clad plate. Mater. Today Commun. 2021, 28, 102497. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.X.; Chen, C.X.; Feng, J.H.; Yin, F.X. Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios. J. Alloys Compd. 2018, 766, 517–526. [Google Scholar] [CrossRef]
- Liu, P.T.; Ma, L.F.; Jia, W.T.; Jiang, Z.Y.; Wang, T.; Zhao, G.H. Effect of cumulative reduction on the microstructure and properties of the NM400/Q345R composite plate. Mater. Res. Express 2019, 6, 096534. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, G.H.; Li, J.; Ma, L.F.; Huang, Q.X.; Li, Y.G. Microstructure Evolution and Fracture Analysis of Hot-Rolled Explosive-Welded 06cr13/Q345r Composites. Mater. Tehnol. 2019, 53, 297–303. [Google Scholar] [CrossRef]
- Zhu, Z.C.; He, Y.; Zhang, X.J.; Liu, H.Y.; Li, X. Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2016, 669, 344–349. [Google Scholar] [CrossRef]
- Nomura, M.; Hashimoto, I.; Kozuma, S.; Kamura, M.; Omiya, Y. Effects of surface oxides on the phosphatability of the high strength cold rolled steels. Tetsu Hagane J. Iron Steel Inst. Jpn. 2006, 92, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Tarafder, S. Experimental investigation on martensitic transformation and fracture morphologies of austenitic stain less steel. Int. J. Plast. 2009, 25, 2222–2247. [Google Scholar] [CrossRef]
- Liu, B.X.; An, Q.; Yin, F.X.; Wang, S.; Chen, C.X. Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate. J. Mater. Sci. 2019, 54, 11357–11377. [Google Scholar] [CrossRef]
Materials | C | Si | Mn | P | S | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|
20MnSiV | 0.21 | 0.34 | 1.29 | 0.007 | 0.004 | 0.21 | 0.03 | − | Bal. |
316L | 0.02 | 0.71 | 1.77 | 0.021 | 0.007 | 16.9 | 12.9 | 2.25 | Bal. |
Rolling Speed (m/s) in K2 Pass | Rolling Speed (m/s) in K1 Pass | Rolling Mill Type | Roller Material |
---|---|---|---|
35.4 | 48.7 | Two-roller rolling mill | 55Mn2 alloy forged steel |
Specimen Type | Average Value (mm) | Percentage of Stainless Steel (%) |
---|---|---|
Rough-rolled specimen | 2.91 | 14.2 |
Intermediate-rolled specimen | 1.59 | 13.9 |
Clad rebar | 1.04 | 13.6 |
O | Fe | Si | Ca | Mn | Al | |
---|---|---|---|---|---|---|
Point 1 | 30.65 | 24.39 | 16.18 | 4.39 | 23.61 | 0.78 |
Point 2 | 28.57 | 39.17 | 12.52 | 3.19 | 15.66 | 0.89 |
Specimen Type | Average Bond Strength (MPa) |
---|---|
Rough-rolled specimen | 264 |
Intermediate-rolled specimen | 320 |
Clad rebar | 384 |
Specimen Type | Specimen Number | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) | Average Value (MPa-MPa-%) |
---|---|---|---|---|---|
Rough-rolled specimens | 1 | 405 | 584 | 22 | 407-588-22.7 |
2 | 408 | 590 | 23 | ||
3 | 408 | 592 | 23 | ||
Intermediate-rolled specimens | 1 | 478 | 659 | 32 | 477.3-658.3-32.6 |
2 | 476 | 658 | 33 | ||
3 | 478 | 658 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Qian, X.; Xiang, Y.; Zeng, L.; Zhuang, Z.; Tan, J. Profile Change Law of Clad Rebars and the Formation Mechanism of Composite Interfaces during Hot Rolling. Materials 2022, 15, 7735. https://doi.org/10.3390/ma15217735
Li Z, Qian X, Xiang Y, Zeng L, Zhuang Z, Tan J. Profile Change Law of Clad Rebars and the Formation Mechanism of Composite Interfaces during Hot Rolling. Materials. 2022; 15(21):7735. https://doi.org/10.3390/ma15217735
Chicago/Turabian StyleLi, Zhen, Xuehai Qian, Yong Xiang, Lei Zeng, Zecheng Zhuang, and Jianping Tan. 2022. "Profile Change Law of Clad Rebars and the Formation Mechanism of Composite Interfaces during Hot Rolling" Materials 15, no. 21: 7735. https://doi.org/10.3390/ma15217735
APA StyleLi, Z., Qian, X., Xiang, Y., Zeng, L., Zhuang, Z., & Tan, J. (2022). Profile Change Law of Clad Rebars and the Formation Mechanism of Composite Interfaces during Hot Rolling. Materials, 15(21), 7735. https://doi.org/10.3390/ma15217735