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Abstract: In this paper, a new method for fatigue life prediction under multiaxial stress-strain
conditions is developed. The method applies machine learning with the Gaussian process for
regression to build a fatigue model. The fatigue failure mechanisms are reflected in the model by
the application of the physics-based stress and strain invariants as input quantities. The application
of the machine learning algorithm solved the problem of assigning an adequate parametric fatigue
model to given material and loading conditions. The model was verified using the experimental
data on the CuZn37 brass subjected to various cyclic loadings, including non-proportional multiaxial
strain paths. The performance of the machine learning-based fatigue life prediction model is higher
than the performance of the well-known parametric models.

Keywords: fatigue life prediction; CuZn37 brass; machine learning

1. Introduction

In the production and operation of machines, especially the means of transport,
a constant effort to reduce costs and energy consumption is employed. This goal is achieved,
inter alia, by weight reduction, which can be achieved by lowering safety factors, topology
optimization, or by replacing traditional materials with alternative, less dense ones. More-
over, the design process departed from the infinite-life design strategy, which requires the
stress to be lower than the fatigue limit. Increasingly, the machines are designed according
to the safe-life design strategy for the durability estimated by the designer. When the repair
is very expensive (e.g., jet engines), a damage-tolerant design strategy is applied. Here,
the service of a machine with diagnosed damage was accepted [1]. Therefore, the design of
machines and structures in accordance with the savings trends and the recommendations
of the latest strategies requires accurate fatigue life estimation methods accompanied by an
uncertainty estimation of predictions.

The drive to reduce costs also applies to the design process. For example, the use
of computational models should not require expensive experimental studies to obtain
additional and more reliable material data. The high expenditure especially regards the
design against material fatigue because the fatigue damage process is difficult to model.
First, it consists of many fatigue crack development periods, such as crack nucleation, small
crack growth, and macroscopic crack growth, and these periods differ in physical damage
mechanisms also influenced by size and notch effects [2]. Each period is affected by different
driving forces and requires different approaches, such as the crack nucleation and crack
growth approaches [3]. Second, the fatigue behavior of machines and structures generally
exhibits spectacular stochastic behavior [4–6]. This results from the variability of fatigue
loadings, parts geometry, material properties, and microstructures. Such a significant
level of difficulty in fatigue assessment has led to the development of new fatigue models,
despite the numerous models that have been developed in the past few decades [7–10].
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These models simplified the complexity of material fatigue by using empirical or semi-
empirical approaches to relate the primary loading quantities and material properties with
the fatigue life. The empirical models adjust the parameters of the regression equation to the
experimental data. Semi-empirical models combine fundamental physical principles and
an empirical approach. Despite the use of some physical foundations to formulate models,
the selected stress/strain quantities and material parameters are related by arbitrarily
formulated parametric functions to obtain the best fit for the results of the experiment.

It is concluded that in the design process of engineering structures, the selection of
the fatigue model is the primary problem. The choice should theoretically depend on
the material properties (e.g., brittle or ductile), the type of loading (uniaxial or multiaxial,
deterministic or random, proportional or non-proportional, stress ratio), and the range of
deformation (elastic or elastic-plastic). In practice, owing to the multiplicity and complexity
of models, the choice is most often limited by the level of the designer’s knowledge.
Conversely, owing to the cost and time-consuming nature of fatigue tests, the choice also
results from the limited availability of data on the material and loading.

Based on the briefly presented problems of fatigue life prediction and existing solu-
tions, a machine learning (ML) approach is proposed as a substitute for the semi-empirical
fatigue models. The main advantage of this model is that it does not require the selection of
a parametric (predefined) form of the fatigue model. The fatigue ML-based model should
self-accommodate existing data and correctly reflect the fatigue behavior for testing data.
Among several ML approaches, the neural network (NN) is widely used [11–13] in the
fatigue field. According to Chen and Liu [12], NN modeling requires a large number of
data, and there is no standard procedure for selecting an optimal NN architecture. One
of the alternative ML approaches is the Gaussian process (GP) for regression with unique
features that favors its application in fatigue life prediction of materials.

− The GP-based model requires a considerably smaller sample size of training data than
other ML techniques [14–16]. The current analysis successfully applied a sample size
of 30. It is a size comparable to the sample size for the determination of two reference
stress or strain fatigue curves [17].

− The inherent feature of the GP is the estimation of the probability distribution for
the model outputs [18,19]. The probabilistic output of the GP is important for its
application in fatigue life prediction. Owing to this feature, a conservative design of
mechanical systems can be performed.

− The GP-based model for a limited dimension of the input data vector (it is considered
that the maximum five-dimensional vector of input data would be necessary for life
prediction, Section 2.4) is computationally very effective [20].

− The GP can estimate the relevance of each component of the input vector for effective
prediction [18,20]. This feature allows us to interpret the influence of the selected
input quantities on fatigue life.

Existing studies on the use of GP to predict the durability of engineering machines and
structures can be classified into approaches based on pure correlation of measured signals
with progressive degradation of mechanical systems and hybrid approaches, including
physics-based quantities.

In the first approach, the tested signals are not related to any model of the damage
mechanism. Therefore, the results of this approach have mainly practical and predictive but
not explanatory purposes. For example, Huchet et al. [21] used environmental parameters,
such as wind speed and direction, in the fatigue assessment of wind turbine structures.
In the research of Aye et al. [22] and Hong et al. [23], the prediction of the remaining life
of bearings was directly based on the acquired vibration signals. Mohanty et al. [24,25]
applied online signals from piezoelectric sensors attached to selected aircraft components
in the GP for fatigue crack growth prediction. Hirvoas et al. [26] applied the GP to reduce
uncertainties in a wind turbine numerical model considering different input data as support
and blade structural properties.
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Hybrid data-driven models involve input quantities related to the recognition of the
failure mechanisms of a system. Słoński [27] used the GP to identify concrete properties,
among others, using minimal and maximal uniaxial stress values. Hu et al. [28] applied GP
to estimate the uncertainty of fatigue crack growth in turbine discs in a study on fatigue
crack growth evaluation. Ling and Mahadevan [29] proposed replacing computationally
expensive finite element analysis for fatigue crack growth with the GP model. Farid [30]
predicted fatigue failure under stochastic loading using a stress signal at the critical section
of the mechanical component. The GP model was combined with an artificial neural
network to enhance the predictive performance and provide uncertainty quantification.

In the briefly reviewed papers, the GP models were adjusted and trained for a given
mechanical system. Consequently, the trained models cannot be applied to other mechani-
cal systems, and thus, they can be mostly classified as health monitoring systems [31].

Karolczuk and Słoński [32] proposed a novel approach in which the GP operates as a
multiaxial fatigue life prediction model. The normal and shear stress amplitudes on the
critical plane were selected as the physics-based input quantities for the GP model with the
application of the squared exponential covariance function. The model was successfully
verified on S355N steel and 2124 T851 aluminum alloy under the cyclic proportional
combination of bending and torsion loadings at the high cyclic fatigue regime (stress-based
condition). The proposed novel approach for fatigue life prediction requires further research
and validation, especially under multiaxial non-proportional loading and stress–strain
conditions.

This research aims to validate the GP applied to build a multiaxial fatigue model for
the life prediction of CuZn37 brass under proportional and non-proportional loadings and
stress–strain conditions.

The scope of this research involved an overview of selected classic (parametric) fatigue
life prediction models (Section 2), basic concepts (Appendix A), and covariance functions
(Appendix B) of the GP. Next, the fatigue life was estimated with GP using different covari-
ance functions. As a result of the calculations, the physical quantities of key importance
for the fatigue process were selected and compared with the quantities indicated in the
analysis of classic models. The GP results were validated by comparing the results with
the results obtained using the parametric models proposed by Fatemi-Socie, Brown-Miller,
Glinka et al., and Yu et al. The calculations were conducted for eight loading cases, that
is, axial, torsional, combined proportional axial-torsion loading, and non-proportional
loadings. The level of non-proportionality was different in the case of the applied loadings
owing to the phase shift (90◦ out-of-phase) and various frequencies of the applied strains
(four different asynchronous loadings).

2. Brief Review of Fatigue Life Prediction Models

Commonly applied semi-empirical fatigue models consist of fatigue damage parame-
ters, which are scalar functions of spatial stress/strain components and reference fatigue
curves. The fatigue damage parameter is used to reduce the spatial stress or strain state to
a scalar quantity of the dimensions of stress, strain, or energy. It is then compared with the
reference regression curves to calculate the fatigue life [33,34]. Uniaxial regression curves
show an explicit relationship between the applied stress, strain, or energy values and the
number of cycles to failure. These curves are the result of fatigue tests performed on a lim-
ited set of specimens and require the adoption of statistical assumptions [17]. Uncertainties
in material parameters, loading and geometry can also be included in life prediction by the
application of probabilistic modeling with sampling techniques [35–37].

The fatigue models differ in physical quantities, which were adopted as decisive
factors for the fatigue process—predictors for the GP. For example, stresses, strains, loading
non-proportionality factors, or strain energy, including elastic and plastic parts. These
quantities, which fluctuate with time, are mostly reduced before incorporating them into
the damage model to statistical parameters such as amplitudes, mean values, or maxima.
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In this section, several selected models representing different physical principles are
briefly described. A broader overview of the multiaxial fatigue models can be found
in the papers concerning the critical plane approach [7], energy approach [38], or non-
proportionality of loading [39].

2.1. Empirical Models

An example of a purely empirical model can be the “ellipse quadrant” proposed by
Gough and Pollard for ductile materials [40,41]. Because this is an equation for a particular
loading case, that is, torsion and bending, a model is a function of the applied shear τa and
normal σa stress amplitudes, as follows:(

τa

t−1

)2
+

(
σa

b−1

)2
= 1, (1)

where t−1 and b−1 are the fatigue limits for fully reversed torsion and bending, respectively.
For brittle materials, Gough proposed the “ellipse arc” equation as follows:(

τa

t−1

)2
+

(
b−1

t−1
− 1
)(

σa

b−1

)2
−
(

2− b−1

t−1

)
σa

b−1
= 1. (2)

The above equations define the fatigue limit state of the applied stress amplitudes. It
can be developed for a state at an arbitrary number of cycles to failure, as proposed in [42].
Empirical models have limited application (only combined torsion and bending loading)
because they are not consistent with invariant principles.

2.2. Stress Invariants Models

The two examples presented here are attempts to adopt the Huber–Mises yield cri-
terion for fatigue by considering the hydrostatic stress. Both are a linear combination of
the amplitude of the second deviator invariant J2, and the mean or maximum value of the
hydrostatic stress σH , as in the case of the Sines [43] or Crossland [44] model, respectively:√

J2,a + ks·σH,m = f
(

N f

)
,
√

J2,a + kc·σH,max = f
(

N f

)
, (3)

where ks, kc are material parameters, f
(

N f

)
is the reference fatigue curve.

The fatigue models based on stress invariants are criticized mainly because of prob-
lems in their implementation of random loading and non-proportional loading [7,45]. To
overcome these problems, special procedures must be implemented.

2.3. Critical Plane Models

Critical plane models are based on the observation of fatigue crack formation. Based
on the observation, the fatigue cracks in metallic materials nucleate and develop in certain
preferred planes within the material [46,47]. Thus, the critical plane approach assumes that
the stress/strain components on a specific plane are primary for fatigue crack initiation
and failure.

The stress-based Findley criterion is one of the first critical plane multiaxial fatigue
models [48]. This is a linear combination of the maximum normal stress σn,max and shear
stress amplitude τns,a on the plane for which the equation reaches its maximum, as follows:

max(τns,a + k·σn,max) = f
(

N f

)
, (4)

where k is a material parameter.
Brown and Miller [49] proposed a strain-based fatigue damage parameter composed

of shear γns,a and normal εn,a strain amplitudes on the plane experiencing the maximum
shear strain amplitude. Kandil et al. [50] proposed a fatigue life prediction model based on
this concept of the fatigue damage parameter, in the form
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γns,a + kBM·εn,a = f
(

N f

)
, (5)

where kBM is a material parameter.
Fatemi and Socie [51] proposed to relate the shear strain amplitude γns,a and maximum

normal stress σn,max normalized by the yield strength σyield, in the following form:

γns,a

(
1 + k·σn,max

σyield

)
= f

(
N f

)
. (6)

Carpinteri et al. [52] proposed a nonlinear function of amplitude and mean value
of normal stress and shear stress amplitude on the critical plane related to the average
principal stress directions in the following form:√

(σn,a + aCSσn,m)
2 + bCSτ2

ns,a = f
(

N f

)
, (7)

where aCS, bCS are material parameters.
Papuga–Růžička [53] also proposed a nonlinear function of amplitude and mean value

of normal stress and shear stress amplitude on the critical plane of its maximum, as follows

max
n

{√
aPRτ2

ns,a + bPR(σn,a + cPRσn,m)

}
= f

(
N f

)
, (8)

where aPR, bPR, cPR are material parameters. The proposed formula was developed [45,54]
to take into account the mean shear stress effect.

Glinka, Shen, and Plumtree [55] proposed the strain energy parameter accounting for
both strains and stresses in the plane of maximum shear strain, as follows:

γns,aτns,a + εn,aσn,a = f
(

N f

)
. (9)

This model was modified by Pan-Chun-Chen [56] by introducing a weighting factor
kG to normal components, as follows:

γns,aτns,a + kGεn,aσn,a = f
(

N f

)
. (10)

Ince and Glinka [57] introduced a generalized strain energy fatigue damage parameter
as a function of the elastic and plastic strain energy density contributed by the normal and
shear stresses and strains on the critical plane of its maximum in the following form:

max
n

(
τns,aγe

ns,a + τns,aγ
p
ns,a + σn,maxεe

n,a + σn,maxε
p
n,a

)
= f

(
N f

)
, (11)

where n is a unit vector that determines the orientation of the plane.
Yu et al. [58] modified the Ince-Glinka parameter and proposed the following model:

γns,aτns,a

τ′f
+

2εn,aσn,max

σyield + σ′f
= f

(
N f

)
, (12)

computed on the plane of maximum shear strain, where τ′f and σ′f are material parameters
deduced from the uniaxial reference curves.

2.4. Summary and Model Selection

It is assumed that the GP-based fatigue model (Appendix A) can substitute any para-
metric functions proposed for fatigue life prediction. The substitution should be effective
because the GP can map any fatigue behavior deduced from training data, and thus,
the selection problem of adequate parametric function, for example, Equations (1)–(12), are
omitted. The effectiveness of the GP-based model is the highest if the input data vector for
the GP includes fatigue damage-related quantities. Based on the effort of many researchers
and their attempt to fit the experimental data to parametric models, the primary quantities
(predictors for the GP) for fatigue damage of metallic materials can be selected from the
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shortlist presented in Table 1. The five predictors were selected from the critical plane mod-
els as being consistent with the observed fatigue damage mechanism of metallic materials.
The role of these quantities and their interaction are discussed in [59,60]. The quantities
from stress-invariant models could also be considered; however, owing to the ambiguous
definition of amplitudes for stress invariants [61], they were neglected in the present re-
search. Stress-based quantities are commonly applied at high cyclic fatigue (HCF), whereas
strain-based quantities are common at low cyclic fatigue (LCF). Under non-proportional
loading, the principal stresses rotate, which activates the higher number of slip systems
and induces the complex interaction between dislocation movements. However, applying
both quantities, i.e., strain and stress, the above mechanisms are reflected in predictors and
the machine learning model is able to recognize this pattern to more effectively predict
the fatigue life. The application of stress-and strain-based quantities reflects any possible
additional material hardening effects occurring under non-proportional loading for some
metallic materials. In the present research, we consider the plane or maximum shear strain
amplitude appropriate for a wide class of metallic materials with dominant shear or mixed
shear/tensile damage mechanisms.

Table 1. Primary predictors for fatigue life of metallic materials.

No Predictor Description

1 γns,a
Shear strain amplitude—primary parameter at LCF for materials with
dominant micro shear cracking

2 τns,a
Shear stress amplitude—primary parameter at HCF for materials with
dominant micro shear cracking

3 εn,a
Normal strain amplitude—primary parameter at LCF for materials with
dominant tensile cracking or materials with mixed shear/tensile cracking

4 σn,a
Normal stress amplitude—primary parameter at HCF for materials with
dominant tensile cracking or materials with mixed shear/tensile cracking

5 σn,m

Mean value of normal stress—primary parameter at HCF for materials with
dominant tensile cracking or materials with mixed shear/tensile cracking. It
reflects the beneficial effect of compressive mean stress for fatigue

The fatigue life prediction performance of the proposed GP-based model was com-
pared with the performance of four parametric fatigue models, including the proposal of
Brown–Miller (5), Fatemi–Socie (6), Glinka et al. (8), and Yu et al. (10). The selected models
required a more detailed description of the implemented reference fatigue curves f

(
N f

)
and weighting material parameters. The basic regression curve implemented in defining
the reference curve for each model is based on the Manson–Coffin curve [62] under fully
reversed cyclic torsion loading, as follows:

γ f

(
N f

)
=

τ′f
G

(
2N f

)b0
+ γ′f

(
2N f

)c0
, (13)

where τ′f is the shear fatigue strength coefficient, G is the shear modulus, b0 is the shear
fatigue strength exponent, γ′f is the shear fatigue ductility coefficient, and c0 is the shear
fatigue ductility exponent. The Brown–Miller, Fatemi–Socie, and Glinka et al. models
include the weighting material parameters that can have a life-dependent form [33,63] to
be fully consistent with two uniaxial strain-life curves obtained under tension-compression
and torsion loadings. The torsion strain-life curve is given by Equation (13), and the
tension-compression strain-life curve is

ε f

(
N f

)
=

σ′f
E

(
2N f

)b
+ ε′f

(
2N f

)c
, (14)
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where σ′f is the axial fatigue strength coefficient, E is Young’s modulus, b is the axial fatigue
strength exponent, ε′f is the axial fatigue ductility coefficient, and c is the axial fatigue
ductility exponent. The first component of Equations (13) and (14) are the elastic strain and
plastic strain, respectively. Decomposition into elastic and plastic parts is consistent with
the physical mechanism, and it is necessary to derive life-dependent material weighting
factors appropriately. This decomposition leads to the following notations:

εe
f

(
N f

)
=

σ′f
E

(
2N f

)b
, ε

p
f

(
N f

)
= ε′f

(
2N f

)c
, σf

(
N f

)
= σ′f

(
2N f

)b
, τf

(
N f

)
= τ′f

(
2N f

)b0
, (15)

where the upper indexes p and e indicate the plastic and elastic strain parts, respectively.
Implementing these notions, the detailed formulas for the parametric life prediction models
were obtained [63], as follows:

• Brown–Miller model:

f
(

N f

)
= γ f

(
N f

)
(16a)

kBM

(
N f

)
=

2
[
γ f

(
N f

)
− (1 + νe)εe

f

(
N f

)
− (1 + νp)ε

p
f

(
N f

)]
(1− νe)εe

f

(
N f

)
+ (1− νp)ε

p
f

(
N f

) , (16b)

where νe and νp are the elastic and plastic Poisson ratios, respectively.

• Fatemi–Socie model:

f
(

N f

)
= γ f

(
N f

)
(17a)

kFS

(
N f

)
=

 γ f

(
N f

)
(1 + νe)εe

f

(
N f

)
+ (1 + νp)ε

p
f

(
N f

) − 1

 2σyield

σf

(
N f

) (17b)

• Glinka et al. model:

f
(

N f

)
= γ f

(
N f

)
τf

(
N f

)
(18a)

kG

(
N f

)
=

4γ f
τf (N f )
σf (N f )

− 2
(
(1 + νe)εe

f

(
N f

)
+ (1 + νp)ε

p
f

(
N f

))
(1− νe)εe

f

(
N f

)
+ (1− νp)ε

p
f

(
N f

) (18b)

• Yu et al. model:

f
(

N f

)
= γ′f

(
2N f

)c0
+

τ′f
G

(
2N f

)2b0
. (19)

Substituting Equations (13)–(19) in (6) and (8)–(10) and implementing an iterative
gradient-based procedure results in the calculation of the fatigue life Ncal for each paramet-
ric model.

3. Experiment

Tubular unnotched thin-walled specimens made of CuZn37 brass were subjected to
fully reversed constant-amplitude fatigue loading under various loading paths. Because
the experimental test details can be found in [64], only the most important information is re-
ported. The strain-controlled fatigue tests were conducted according to the ASTM E2207-02
standard. The failure definition was a 10% drop in the axial force or torque. The monotonic
and cyclic mechanical properties of the CuZn37 brass are listed in Table 2. The regression
fatigue curves (13) and (14) are shown in Figure 1. The Monte Carlo sampling technique
was applied to generate the distribution of the fatigue curves ((i)-indexed curves in Figure 1)
using a multivariate normal distribution of regression coefficients [36,65]. A sample size
of 1000 was applied, estimated from the stability analysis of error indexes (Section 4.1).
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The blue vertical dashed lines in Figure 1 indicate the overlapping experimental fatigue
life regimes of the axial and shear fatigue curves. The experimental setup included eight
different loading paths with a fixed strain ratio of amplitudes γxy,a/εxx,a. Each loading path
was tested using 10 specimens at different strain loading amplitudes. The shapes of the
loading paths with applied strain ratios are presented in Figure 2a. The material responses
in the form of stress paths are displayed in Figure 2b. The stress amplitudes implemented
in the fatigue life prediction were determined for the half-life. The received experimental
fatigue lives 2Nexp were within the range of [383, 191000] reversals. The experimental
data file with the registered signals (strain and stress components) was uploaded to the
Mendeley data repository (https://data.mendeley.com/datasets/7fbkf6y7gv/1, accessed
on 25 October 2021).

Table 2. Mechanical properties of CuZn37 brass.

E (GPa) νe νp G (MPa) σu (MPa) σyield (MPa) K′ (MPa) n′

105 0.33 0.50 39.5 366 138 819 0.2142

γf
′ c0 τf

′ (MPa) b0 εf
′ c σf

′ (MPa) b

0.5065 −0.4370 204 −0.0475 0.3853 −0.5269 393 −0.0526

K′, n′ are cyclic strength coefficient and strain hardening exponent, respectively.
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Figure 2. Registered experimental strain paths in (a) axial-shear strain space, εxx − γxy and (b) axial-
shear stress space, σxx − τxy.

4. Results and Discussion

The normal and shear stress/strain components on the critical plane implemented
in the parametric (Section 2) and GP-based fatigue life prediction (Appendix A) models
were calculated based on the registered strain and stress tensor components. Searching
for the plane orientation with the maximum shear strain (the critical one), numerical
simulations were conducted with the application of Euler angles, ϕ, θ—describing the
plane orientation [66]. In the simulation, the step between subsequent values of the
Euler angles was equal to 1◦. For the non-proportional loading paths, instability in the
calculated fatigue lives was detected as a result of the existence of different planes with
the same maximum value of shear strain but with different normal stress and strain
components. To overcome this problem, the critical plane was searched within the boundary
〈1 − δ, 1〉max

ϕ,θ
γns, where δ = 0.0001 was applied. Within this boundary, the maximum

values of normal stress, normal strain, and shear stress were determined and applied
to the fatigue life calculations (the values could be found in the file uploaded to https:
//data.mendeley.com/datasets/7fbkf6y7gv/1, accessed on 25 October 2021).

4.1. Error Indexes

The calculated fatigue lives were compared with the experimental fatigue lives to
estimate the performance of each applied fatigue model. A few error indexes were im-
plemented in which the first group belongs to purely statistical parameters of fitting, and
the second group belongs to parameters to estimate the applicability of models to life
prediction. The first group is based on a percentage error, defined as

PE =
logNexp − logNcal

logNexp
× 100, (20)

where Nexp and Ncal are the experimental and calculated number of cycles to failure,
respectively. The statistics of PE provide information on the efficiency of the model in
fatigue life prediction. The mean values, MPE and standard deviation, SD of PE were
evaluated. The positive values of PE concern cases where the calculated life was shorter
than the experimental one (conservative estimate), whereas non-conservative estimates
were indicated by negative PE values. An MPE value equal to zero indicates a perfect
prediction-unreal case owing to fatigue life scatter.

The mean and standard deviation of PE estimate the fitting properties of the applied
model. However, to build (based on these parameters) the ranking of models with respect
to their acceptable uncertainty in life prediction can be questionable. First, the two param-

https://data.mendeley.com/datasets/7fbkf6y7gv/1
https://data.mendeley.com/datasets/7fbkf6y7gv/1
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eters are combined into a decisive one. Second, the values of these parameters are not
intuitive if the predicted fatigue lives are acceptable. The experimental fatigue life can vary
significantly even under a single loading condition [67,68]. The fatigue scatter factor is
defined as:

T =

{ Nexp
Ncal

f or Nexp ≥ Ncal
Ncal
Nexp

f or Nexp < Ncal
(21)

Fatigue scatter factor less than three is commonly accepted [69,70], and a value less
than or equal to two exhibits a very good estimation [71–73]. Thus, the statistical distribu-
tion of the T factor was used to define [74] a more intuitive error index as a 0.95-quantile
of the fatigue life scatter factor. The 0.95-quantile (T(0.95)) was calculated based on the
shape-preserving piecewise cubic interpolation of the empirical cumulative distribution
of T. The value of T(0.95) determines the minimum fatigue-life scatter band required to
include 95% of all experimental fatigue data.

4.2. The Parametric Fatigue Life Prediction Models

A comparison of the experimental 2Nexp and calculated 2Ncal fatigue lives for the four
analyzed parametric models is presented in Figure 3. Each panel in Figure 3 includes the
solid line of perfect life consistency enclosed by dashed lines of the scatter band T = 2.0.
The error bars indicate 95% prediction intervals computed using the Monte Carlo sampling
technique on strain-life fatigue curves. Additionally, the results for different loading paths
are marked, and the corresponding values of the error indexes are included in the legend
of the figure panels. The data used for the calibration of the model, i.e., uniaxial tension–
compression and pure torsion were labeled as ‘Train data’ and the remaining data as ‘Test
data’. For the labeled data, the MPE, SD, and T(0.95) error indexes were estimated and
presented in each panel.

The error indexes are identical for the analyzed models of Fatemi–Socie, Brown–Miller,
and Glinka et al., with the application of the life-dependent material parameters that
equalize the performance of the parametric models under data used for calibration. The
obtained error indexes MPE = −0.1%, SD = 2.5%, and T(0.95) = 1.5 for the training
data and the models characterize the experimental life scatter for the CuZn37 brass under
the fatigue test conditions. These values were treated in further analyses as the reference
consistency of fatigue lives. Yu et al. applied constant weighting factors of shear and normal
strain energy parameters, and the results for the analyzed CuZn37 brass were ineffective
even under uniaxial and pure torsion loadings with MPE = −23.7% and MPE = −9.8%,
respectively (Figure 3d).

The fatigue lives for the multiaxial proportional loading path were calculated using
models with life-dependent material parameters within the acceptable value of error
indexes (80% of the data is included within the scatter T = 2.0, and 100% of the data is
included within the scatter T = 3.0). For the non-proportional loading paths, the best life
prediction performance was exhibited using the Fatemi–Socie model (Figure 3a). However,
the fatigue life under loading path NPR4 was unsuccessfully estimated with MPE = 7.7%.
The performances of the models by Brown–Miller and Glinka et al. were the worst, with
MPE values exceeding 14% and 27% for the NPR4 path, respectively. The Brown–Miller
model with shear strain γns linearly combined with the normal strain εn resulted in a very
conservative life estimation under non-proportional loading paths (Figure 3b). This means
that the non-proportional loading paths led to a higher value of the normal strain on the
critical plane of the maximum shear than expected using the Brown–Miller model. The
same effect, but magnified by the shear stress on the critical plane, was observed in the
model by Glinka et al.
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Figure 3. Comparison of experimental and calculated fatigue lives for the models of (a) Fatemi–Socie,
(b) Brown–Miller, (c) Glinka et al., and (d) Yu et al.

The tendency of higher life underestimation (Ncal < Nexp) for longer experimental
fatigue lives was observed for all models with the life-dependent material parameters
under non-proportional loading paths. It is concluded that the CuZn37 brass experienced
additional hardening under non-proportional loading paths that resulted in higher stress
values than expected by the models, which were calibrated by uniaxial and pure torsion
loading paths. Yu et al. overestimated (Ncal > Nexp) the predicted fatigue lives for all
loading paths.

4.3. The Gaussian Process-Based Fatigue Model
4.3.1. Physics-Based Input Parameters (Predictors)

The GP model is assumed to substitute the semi-empirical fatigue criteria; thus,
the scalar output of the logarithm of the fatigue life must be invariant under the rotation of
coordinate systems. To meet this requirement, the covariance function for the GP must not
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directly implement the input parameters as stress and/or strain tensor components. The
rotation of the coordinate system transforms the stress/strain tensor components, and thus,
the model trained on the dataset valid for the original coordinate system would not apply
to the rotated coordinate system.

A state-of-the-art review of fatigue life prediction models (Section 2) indicates a few
commonly applied crucial physics-based quantities. These are derived from the concept
of the critical plane built on the experimental observation that fatigue cracks in metals are
initiated in the plane of maximum shear stress or strain [49,75], τns, γns. Furthermore, these
microcracks could not be developed if the maximum normal stress or strain σn, εn on this
plane were below the critical value. These four parameters are considered primary in most
multiaxial fatigue life prediction models (Table 1). Owing to the zero mean stresses in the
experimental data, the σn,m predictor is omitted for components of the input data vector x,
as follows:

x = [γns, εn, τns, σn]. (22)

The maximum shear strain plane was determined over the entire loading history and
fixed in the fatigue life calculation process. Thus, the selected predictors (22) are invariant
under the rotation of the coordinate system. Regarding the identification of multiple planes
with equal maximum values of shear strain, the plane with the highest normal stress
was selected as the critical plane. The relevance of each predictor was analyzed during
the training process, as presented in the next section. The diagram of data flow for the
fatigue life prediction based on the proposed GP fatigue model is presented in Appendix A,
Figure A1.

4.3.2. Training Process

The polycrystalline structure with preferred slip systems makes metallic materials
sensitive to the type of fatigue loading paths. For example, the non-proportional loading
characterized by the rotation of principal stresses could activate a larger number of slip
systems and their intensive interactions compared to the proportional loading path [76].
These phenomena could influence the fatigue life of materials; however, this effect depends
on many factors [77,78]. If the fatigue GP-based model is expected to be implemented
under non-proportional loading for materials sensitive to its effect, the training data should
include such a case. The analyzed experimental data included various non-proportional
loading paths (Section 3, Figure 2), and the most common one (easy to replicate) with a
90◦ phase shift (Path NPR in Figure 1) was selected for inclusion in the training process.
To analyze the effect of the non-proportional loading path on the fatigue life, two training
datasets were implemented. The first training dataset includes only loading paths com-
monly applied to identify the parametric fatigue life prediction models (Section 2), that is,
uniaxial push-pull (10 specimens) and pure torsion (10 specimens) loadings. The second
training dataset additionally included the NPR path (10 specimens).

Initially, the training process included all four predictors (22), five specified covari-
ance functions (Appendix B), and the first training dataset. The length scales li for each
covariance function and each predictor were used to calculate the relevance factor (RF),
defined as:

RF =

(
l

std(x)

)−1
, (23)

where l is the length scale, and std(x) is the standard deviation of the analyzed predictor ob-
served in the training data. The larger the length-scale parameter, the lower the covariance,
and thus the lower the influence of its predictor. However, it also depends on the analyzed
physic-based quantity; for example, the strains in the fatigue regime are several orders
of magnitude below the stresses. This can be considered by normalizing the length scale
using the standard deviation of the input of the analyzed predictor, std(x). The reverse of
l/std(x) is defined as the RF. An RF value approaching zero indicates that the analyzed
predictor can be ignored.



Materials 2022, 15, 7797 13 of 23

The RFs obtained for the first training dataset are shown in Figure 4. The vector of the
standard deviations for the first training dataset is std(x) = [0.0026 (−), 0.0009 (−), 6.6 (MPa),
62 (MPa)]. Two conclusions can be drawn. First, the exponential covariance function (EX)
exhibits the lowest values of the relevance factors compared to other kernels. This means
that the predicted values for the test data applying the EX kernel will be characterized
by a larger uncertainty than for the remaining kernels. Second, the predictor εn—of the
normal strain on the critical plane can be neglected for M5/2, RQ, and SE kernels (near
zero relevance factor). The mean percentage error (MPE), standard deviation of (PE), and
T(0.95) factor for all the covariance functions are in the ranges MPE = [−0.07,−0.06] %,
SD = [2.0, 2.5] %, T(0.95) = [1.53, 1.54]. Based on the obtained results, further analysis
was reduced to four covariance functions (M3/2, M5/2, RQ, and SE) and three predictors,
x = [γns, τns, σn]. The error-fitting indicators; MPE, SD, and T(0.95) were in the same
range as the initial selection. The estimated values of the hyperparameters for the analyzed
kernels for the first training dataset are presented in Table 3.
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Figure 4. RFs obtained by application of different kernels for the first training dataset (uniaxial
and torsion).

Table 3. Hyperparameters of the covariance functions for the first training dataset.

Kernel Length-Scales Scale-Mixture
Parameter

Standard Deviation
of the Noise

Standard Deviation of
the (Noise-Free) Signal

lγ, (-) lτ , (MPa) lσ , (MPa) α, (-) σy, (-) σk, (-)

M3/2 0.1239 480.5 2430 - 0.1099 6.74

M5/2 0.0921 262.8 1581 - 0.1106 6.12

RQ 0.0720 176.5 1091 1.527 × 105 0.1109 5.75

SE 0.0720 176.5 1091 - 0.1109 5.75

The relevance factors for the second training dataset, including the non-proportional
loading path NPR, are presented in Figure 5. Based on the previous analysis, estimation was
conducted on four covariance functions and three predictors. Here, the vector of standard
deviations of the predictors was found as std(x) = [0.0027(−), 22.4(MPa) 124(MPa)]. For
the second training dataset, all four kernels indicate the irrelevance of the shear stress τns on
the critical plane. Thus, in the final selection, the shear stress as a predictor was abandoned.
The error fitting indicators for both selections are in the ranges of MPE = [−0.07,−0.06] %,
SD = [2.15, 2.50] %, T(0.95) = [1.44, 1.67] %.
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Figure 5. RFs obtained by application of different kernels for the second training dataset (uniaxial,
torsion, and NPR path).

Inclusion of the non-proportional loading path NPR into the training data increased
the RFs for all kernels by approximately four times. The estimated values of the hyperpa-
rameters for the analyzed kernels for the second training dataset are presented in Table 4.

Table 4. Hyperparameters of the covariance functions for the second training dataset.

Kernel Length Scales Scale-Mixture
Parameter

Standard Deviation of
the Noise

Standard Deviation of the
(Noise Free) Signal

lγ, (-) lσ , (MPa) α, (-) σy, (-) σk, (-)

M3/2 0.0657 1996 - 0.1005 6.16

M5/2 0.0321 1094 - 0.1059 5.40

RQ 0.0361 1344 0.1301 0.1079 6.00

SE 0.0187 712.0 - 0.1096 5.83

4.3.3. Test Process

In contrast to the parametric models in which estimation of output uncertainty requires
additional methodologies, for example, Monte Carlo sampling [36], the inherent property
of the GP model is the variance estimation of the outputs. This property was utilized
in the fatigue life prediction shown in Figure 6 by additional vertical bars providing
95% prediction intervals. Figure 6 presents a comparison of the experimental and calculated
fatigue lives obtained by the implementation of M3/2, M5/2, RQ, and SE kernels trained
on the first dataset (only tension-compression and pure torsion paths).

The results demonstrated that within the test data (6 loading paths and 60 specimens),
only fatigue lives predicted for the multiaxial proportional loading can be accepted with
MPE = [3.7, 4.2]% and all data included within the fatigue scatter band T = 3.0. The
fatigue lives under the non-proportional loading paths with no exception are predicted
with high underestimation with MPE = [22.8, 37.6]% and T(0.95) = [13.2, 88.4]. Addi-
tionally, the 95% prediction intervals are approximately two and five times larger than those
estimated for the training data with the implementation of the M3/2 and M5/2 kernels. A
summary of the error indexes received for the analyzed kernels is presented in Figure 7.
The lowest error index was obtained for the M3/2 kernel, but with high (95%) prediction
intervals and unacceptable values of T(0.95) > 3.
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Figure 6. Comparison of experimental and calculated fatigue lives for the fatigue GP-based model
for the first training dataset and the following covariance functions: (a) Matern 3/2, (b) Matern 5/2,
(c) RQ/SE.

It is concluded that the fatigue GP-based model trained on the dataset without the
non-proportional loading paths cannot predict the material behavior of CuZn37 brass. The
non-proportional loading induced an additional fatigue phenomenon in the CuZn37 brass
compared to the phenomenon induced under proportional loading.
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GP-based model trained on the first training dataset.

The results obtained for the fatigue GP-based model trained on the second dataset,
including one non-proportional loading path NPR, are displayed in Figure 8. By adding
the results for one non-proportional loading path with 10 specimens to the training data,
the prediction performance of the GP model was improved. An improvement is observed
for all the applied covariance functions. The error indexes for the test dataset and analyzed
kernels are practically equal (Figure 9) with MPE = [−0.2,−0.1]% and T(0.95) = [2.4, 2.5].

The training dataset with 30 specimens successfully trained the GP model for fa-
tigue life prediction of CuZn37 brass subjected to proportional and non-proportional
loading paths with test data of 50 specimens. One standard non-proportional loading path
with a 90◦ phase shift provided sufficient information on the fatigue behavior of the GP
model. Consequently, the fatigue life was successfully predicted for the four tested non-
proportional loading paths (NPR1, NPR2, NPR3, NPR4) of different and complex shapes
(Figure 2) and for one proportional loading path (Prop). Furthermore, the common complex
measures of the non-proportional loading effect on fatigue life, such as non-proportional
factors [79–82], integral approaches [66,72,82] and enclosing surface methods [83,84], are
not needed.
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Figure 8. Comparison of experimental and calculated fatigue lives for the fatigue GP-based model
for the second training dataset and the following covariance functions: (a) Matern 3/2, (b) Matern
5/2, (c) RQ, and (d) SE.
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5. Summary and Conclusions

The Gaussian process (GP) was applied to build the fatigue model for the life prediction
of CuZn37 brass subjected to various multiaxial loading paths. The physics-based input
quantities in the form of stress and strain components on the critical plane of maximum
shear served as predictors in the GP-based model. These quantities are invariant under the
rotation of the coordinate system, and thus, the trained fatigue GP-based model is consistent
with the invariance principles. Five stationary covariance functions for the GP with length
scales assigned to each predictor (anisotropic kernels) were implemented and analyzed.
Two Matern class kernels (M3/2, M5/2), SE, and RQ were preliminarily accepted for final
validation based on the relevance analysis of predictors. The predictive performance of
the GP-based model was verified using two training datasets. The first training dataset
included only uniaxial and pure torsion loading paths, and the second dataset included
one non-proportional loading path. The detailed conclusions are as follows.

• The relevance analysis of the applied input quantities for the fatigue GP-based model
revealed that the maximum shear strain and normal stress on the plane of maximum
shear are the most decisive factors for the life prediction of CuZn37 brass.
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• The GP model trained on uniaxial and pure torsion loading paths was ineffective for
the prediction of the fatigue life of CuZn37 brass under non-proportional loading paths.

• Two Matern-class kernels (M3/2, M5/2), the SE kernel, and the RQ kernel were
successfully applied to the GP-based model with better prediction performance than
the parametric commonly applied multiaxial criteria of Fatemi–Socie, Brown–Miller,
Glinka et al., and Yu et al.

• The computational time was decreased approximately 7.8 times by applying the
GP-based model compared to the parametric fatigue models.

• The effect of mean loading can be simply implemented in the proposed fatigue GP-
based model by adding the mean components of stress/strain to the input quantities
(predictors).

The GP-based model can effectively substitute parametric fatigue life prediction mod-
els if physics-based predictors consistent with invariant principles are applied. Further
validation for different types of materials under the mean stress effect and a wider fatigue
life regime is needed.
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Appendix A

Gaussian Process for Regression

A Gaussian process (GP) defines a distribution p( f ) over the value of the function f (x)
at a finite set of points x1, . . . , xn, wherein the collection of the random variables f (x1), . . . ,
f (xn) has a joint Gaussian distribution p( f (x1), . . . , f (xn)) [20]. The GP is expressed as

f (x) ∼ GP(m(x), k(x, x′)) (A1)

where
m(x) = E[ f (x)], k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))] (A2)

are the mean and covariance functions, respectively. The covariance function (kernel)
defines the inputs of the covariance matrix K of the joint Gaussian distribution:

K =

 k(x1, x1) . . . k(x1, xn)
...

k(xn, x1) . . . k(xn, xn)

 (A3)

Because the joint Gaussian distribution is fully specified by the mean function m and
covariance matrix K, the function f can be randomly generated. The properties of function
f are determined by the mean function m(x) and kernel k(x, x′). However, the flexibility of
the GP simplifies the calculation by using a zero mean function m(x) = 0 [18,20]. Without
the incorporation of any knowledge about observed inputs and outputs, the GP defines
a prior distribution over the functions f . It can be transformed into a useful posterior
distribution upon the application of the training data.

http://doi.org/10.17632/7fbkf6y7gv.1
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In the case of fatigue life prediction of structural materials analyzed herein, the function
f (x) is not accessible; only the noisy version y can be observed, y = f (x) + ε ∼ N

(
0, σ2

y

)
,

where σ2
y is the variance. Thus, the diagonal of the covariance matrix K is increased as:

Ky = K + σ2
y I, (A4)

where I is an identity matrix of size n (the number of training points). The joint density of
the observed outputs y and predicted function outputs f∗[

y
f∗

]
∼ N

(
0,
[

Ky K∗
KT
∗ K∗∗

])
(A5)

involves the covariance matrix computed from the training X and test points X∗, where
X is a d × n matrix of the training inputs {xi}n

i=1, and X∗ is the d × n∗ matrix of the test
inputs (n∗ is the number of test points). Particularly, Equation (A5) includes the covariances
K∗ = k(X, X∗), Ky = k(X, X)+ σ2

y I, K∗∗ = k(X∗, X∗). The posterior predictive density
was obtained [18] by conditioning the joint Gaussian distribution prior to the observation,
as follows:

p(f∗|X∗, X, y) = N (f∗|µ∗, Σ∗) (A6)

where the searched median regression curve is represented by a vector of mean values µ∗
obtained for the test points X∗ with the final expression as

µ∗ = KT
∗K−1

y y (A7)

and the variance of the function values for the test points X∗ is included in the diagonal of
the covariance matrix Σ∗, denoted as

Σ∗ = K∗∗ −KT
∗K−1

y K∗ (A8)

The predicted outputs for the test points are specified by the above two equations,
where the training data (X, y) serve as the parameters for regression. The covariance
function k exclusively controls the predictive performance for a given set of training data.
The kernel parameters (called hyperparameters) are obtained by maximizing the marginal
likelihood, which is the maximum probability of y with noise for p(y|X, θ), where θ is a
vector of hyperparameters. The log marginal likelihood [20] is given by

log p(y|X, θ) = −1
2

yTK−1
y y− 1

2
log
∣∣Ky
∣∣− n

2
log 2π, (A9)

where
∣∣Ky
∣∣ is the determinant of the Ky matrix. The maximum marginal likelihood is found

using a gradient-based optimizer. A quasi-Newton optimizer with a trust-region method
was used in the analysis. The common stationary kernels were analyzed, as described in
the next section. The training process was the same for all the covariance functions without
the implementation of the cross-validation resampling procedure. The diagram of data
flow for the fatigue life prediction based on the proposed GP fatigue model is presented in
Figure A1. The diagram shows the exemplary data flow for four selected input parameters
(x = [γns, εn, τns, σn] described in Section 4.3.1). The outputs are mean values of the log of
fatigue lives for each test data point and its variance.
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Appendix B

Covariance Functions

The covariance function k
(
xp, xq

)
determines the measure of similarity between out-

puts yp and yq based on the input points xp, xq locations. For stationary kernels (analyzed
herein), only the distance between the point is used in the calculation, a radial basis func-
tion [18]. The smaller the distance between points, the higher the similarity between output
values expected with a higher value of covariance. Each predictor included in the input
vector x can be scaled by its length-scale parameter. If the value of the length-scale pa-
rameter (found by the maximum marginal likelihood optimization) approaches infinity,
the corresponding dimension (predictor) can be ignored. This type of kernel is called an
automatic relevance determination (ARD) covariance function. Such covariance functions
were implemented to determine the crucial fatigue damage quantities for the tested CuZn37
brass. The distance r between points xp, xq is defined as

r =
√(

xp − xq
)TM

(
xp − xq

)
(A10)

where M = diag(li)
−2 is a diagonal matrix of length-scale parameters li = l1, . . . , ld (each

is assigned to a particular predictor). Four popular covariance functions were analyzed for
fatigue life prediction, as presented below:

• Exponential (EX)

k
(
xp, xq

)
= σ2

k exp(−r) (A11)

• Matern 3/2 (M3/2)

k
(
xp, xq

)
= σ2

k

(
1 +
√

3r
)

exp
(
−
√

3r
)

(A12)

• Matern 5/2 (M5/2)
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k
(
xp, xq

)
= σ2

k

(
1 +
√

5r +
5
3

r2
)

exp
(
−
√

5r
)

(A13)

• Rational quadratic (RQ)

k
(
xp, xq

)
= σ2

k

(
1 +

r2

2α

)−α

(A14)

• Squared exponential (SE)

k
(
xp, xq

)
= σ2

k exp
(
−1

2
r2
)

. (A15)
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