Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy
Abstract
:1. Introduction
2. Experimental Procedures
3. Results
3.1. Initial Material
3.2. Materials Processed by HRDSR
3.2.1. Microstructures
3.2.2. Phase Transformation Temperatures
3.2.3. Precipitates
3.2.4. Texture
3.2.5. Mechanical Properties
4. Discussion
5. Conclusions
- 1.
- Severe plastic deformation by HRDSR and subsequent short-term annealing for 5 min at 873 K produces a partically recrystallized microstructure with a small grain size of 5.1 μm.
- 2.
- During the aging of the annealed HRDSR sample at 523 K for 16 h, a high density of Ni3Ti4 particles is densely and uniformly precipitated over the matrix, resulting in the formation of an R phase as the major phase at room temperature. For a long annealing time before aging, the dislocation substructure within the grain interiors is diminished, and the grain boundary area decreases, such that the precipitation of Ni3Ti4 during aging is small, and their distribution is inhomogeneous.
- 3.
- The difference between the yield strength and critical stress for the stress-induced martensitic transformation (Δσ) is found to be closely related to the superelastic strain. As Δσ increases, the superelastic strain increases.
- 4.
- Superelasticity and cyclability of a Ni-rich NiTi alloy can be enhanced by increasing the strength through effective grain refinement via SPD plus annealing and aging for precipitation of Ni3Ti4 and by decreasing the critical stress for stress-induced martensite through incorporation of the R-phase as a major phase at room temperature.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Khan, M.I.; Zhou, Y. Micro-welding of nitinol shape memory alloy. Join. Assem. Med. Mater. Devices 2013, 133–153. [Google Scholar]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Baigonakova, G.; Marchenko, E.; Kovaleva, M.; Vorozhtsov, A. Influence of Wire Geometry on the Mechanical Behavior of the TiNi Design. Metals 2022, 12, 1131. [Google Scholar] [CrossRef]
- Yasenchuk, Y.F.; Marchenko, E.S.; Gunter, S.V.; Baigonakova, G.A.; Kokorev, O.V.; Volinsky, A.A.; Topolnitsky, E.B. Softening Effects in Biological Tissues and NiTi Knitwear during Cyclic Loading. Materials 2021, 14, 6256. [Google Scholar] [CrossRef] [PubMed]
- Khelfaoui, F.; Gue´nin, G. Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti-Ni alloy. Mater. Sci. Eng. A 2003, 355, 292–298. [Google Scholar] [CrossRef]
- Kim, J.I.; Liu, Y.; Miyazaki, S. Ageing-induced two-stage R-phase transformation in Ti -50.9 at.%Ni. Acta Mater. 2004, 52, 487–499. [Google Scholar] [CrossRef]
- Mohamad, H.; Mahmud, A.S.; Nashrudin, M.N.; Razali, M.F. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy. AIP Conf. Proc. 2018, 1958, 020008. [Google Scholar] [CrossRef]
- Tirry, W.; Schryvers, D. Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi. Acta Mater. 2005, 53, 1041–1049. [Google Scholar] [CrossRef]
- Waitz, T.; Antretter, T.; Fischer, F.D.; Karnthaler, H.P. Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Mater. Sci. Technol. 2008, 24, 934–940. [Google Scholar] [CrossRef]
- Shi, X.; Guo, F.; Zhang, J.; Ding, H.; Cui, L. Grain size effect on stress hysteresis of nanocrystalline NiTi alloys. J. Alloy. Compd. 2016, 688, 62–68. [Google Scholar] [CrossRef]
- Sun, Q.; He, Y. A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. Int. J. Solids Struct. 2008, 45, 3868–3896. [Google Scholar] [CrossRef]
- Waitz, T.; Kazykhanov, V.; Karnthaler, H. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004, 52, 137–147. [Google Scholar] [CrossRef]
- Wang, X.; Pu, Z.; Yang, Q.; Huang, S.; Wang, Z.; Kustov, S.; Van Humbeeck, J. Improved functional stability of a coarse-grained Ti-50.8 at.% Ni shape memory alloy achieved by precipitation on dislocation networks. Scr. Mater. 2019, 163, 57–61. [Google Scholar] [CrossRef]
- Wang, X.; Li, K.; Schryvers, D.; Verlinden, B.; Humbeeck, J.V. R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti–50.8 at.% Ni thin wire. Scr. Mater. 2014, 72–73, 21–24. [Google Scholar] [CrossRef]
- Sittner, P.; Landa, M.; Luka´s, P.; Nova´k, V. R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mech. Mater. 2006, 38, 475–492. [Google Scholar] [CrossRef]
- Duerig, T.W.; Pelton, A.R.; Bhattacharya, K. The Measurement and Interpretation of Transformation Temperatures in Nitinol. Shape Mem. Superelasticity 2017, 3, 485–498. [Google Scholar] [CrossRef]
- Kim, J.I.; Miyazaki, S. Comparison of shape memory characteristics of a Ti-50.9 At. Pct Ni alloy aged at 473 and 673 K. Metall. Mater. Trans. 2005, 36A, 3301–3310. [Google Scholar] [CrossRef]
- Ryklina, E.; Polyakova, K.; Prokoshkin, S. Comparative Study of Shape Memory Effects in Ni-Rich Ti–Ni Alloy After Training in Various Phase States. Shape Mem. Superelasticity 2020, 6, 157–169. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, Y.; Wee, L.B.; Yu, H. Design and control of a novel compliant differential shape memoryalloy actuator. Sens. Actuators A 2015, 225, 71–80. [Google Scholar] [CrossRef]
- Ohkata, I.; Tamura, H. The R-Phase Transformation in the Ti-Ni Shape Memory Alloy and its Application. MRS Proc. 1996, 459, 345. [Google Scholar] [CrossRef]
- Lim, Y.G.; Kim, W.J. Characteristics and interrelation of recovery stress and recovery strain of an ultrafine-grained Ni-50.2Ti alloy processed by high-ratio differential speed rolling. Smart Mater. Struct. 2017, 26, 035005. [Google Scholar] [CrossRef]
- Lim, Y.G.; Han, S.H.; Choi, E.; Kim, W.J. Shape memory and superelasticity of nanograined Ti-51.2 at.% Ni alloy processed by severe plastic deformation via high-ratio differential speed rolling. Mater. Charact. 2018, 145, 284–293. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Y.; Zhao, L.; Zheng, Y. Influence of annealing on NiTi shape memory alloy subjected to severe plastic deformation. Intermetallics 2013, 32, 344–351. [Google Scholar] [CrossRef]
- Hu, L.; Jiang, S.; Zhang, Y. Role of Severe Plastic Deformation in Suppressing Formation of R Phase and Ni4Ti3 Precipitate of NiTi Shape Memory Alloy. Metals 2017, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Prokofyev, E.; Gunderov, D.; Prokoshkin, S.; Valiev, R. Microstructure, mechanical and functional properties of NiTi alloys processed by ECAP technique. In European Symposium on Martensitic Transformations; EDP Sciences: Metz, France, 2009; p. 06028. [Google Scholar]
- Shahmir, H.; Nili-Ahmadabadi, M.; Mansouri-Arani, M.; Langdon, T.G. The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature. Mater. Sci. Eng. A 2013, 576, 178–184. [Google Scholar] [CrossRef]
- Malard, B.; Pilch, J.; Sittner, P.; Gärtnerová, V.; Delville, R.; Schryvers, D.; Curfs, C. Microstructure and functional property changes in thin Ni–Ti wires heat treated by electric current—high energy X-ray and TEM investigations. Funct. Mater. Lett. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Delville, R.; Malard, B.; Pilch, J.; Sittner, P.; Schryvers, D. Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy. Acta Mater. 2010, 58, 4503–4515. [Google Scholar] [CrossRef]
- Tong, Y.; Hu, K.; Chen, F.; Tian, B.; Li, L.; Zheng, Y. Multiple-stage transformation behavior of Ti 49.2 Ni 50.8 alloy with different initial microstructure processed by equal channel angular pressing. Intermetallics 2017, 85, 163–169. [Google Scholar] [CrossRef]
- Han, S.H.; Kim, W.J. Achievement of nearly fully amorphous structure from NiTi alloys via differential speed rolling at 268 K and effect of annealing on superelasticity. Mater. Charact. 2020, 169, 110584. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Hu, L.; Liang, Y. Deformation mechanism of NiTi shape memory alloy subjected to severe plastic deformation at low temperature. Mater. Sci. Eng. A 2013, 559, 607–614. [Google Scholar] [CrossRef]
- Duerig, T.W.; Bhattacharya, K. The Influence of the R-Phase on the Superelastic Behavior of NiTi. Shape Mem. Superelasticity 2015, 1, 153–161. [Google Scholar] [CrossRef]
- Badji, R.; Chauveau, T.; Bacroix, B. Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint. Mater. Sci. Eng. A 2013, 575, 94–103. [Google Scholar] [CrossRef]
- Hossain, R.; Pahlevani, F.; Quadir, Z.; Sahajwalla, V. Stability of retained austenite in high carbon steel under compressive stress: An investigation from macro to nano scale. Sci. Rep. 2016, 6, 34958. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.-Y.; Zhang, Y.-Q.; Zhao, Y.-N.; Liu, S.-W.; Hu, L.; Zhao, C.-Z. Influence of Ni4Ti3 precipitates on phase transformation of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 4063–4071. [Google Scholar] [CrossRef]
- Miyazaki, S.; Kimura, S.; Otsuka, K.; Suzuki, Y. The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals. Scr. Met. 1984, 18, 883–888. [Google Scholar] [CrossRef]
- Saburi, T.; Yoshida, M.; Nenno, S. Deformation behavior of shape memory Ti-Ni alloy crystals. Scr. Met. 1984, 18, 363–366. [Google Scholar] [CrossRef]
- Šittner, P.; Heller, L.; Pilch, J.; Curfs, C.; Alonso, T.; Favier, D. Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires. J. Mater. Eng. Perform. 2014, 23, 2303–2314. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Kocich, R.; Tardif, S.; Dolbnya, I.P.; Kunčická, L.; Micha, J.-S.; Liogas, K.; Magdysyuk, O.V.; Szurman, I.; et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation. ACS Appl. Mater. Interfaces 2022, 14, 31396–31410. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, F.; Guo, B.; Tian, B.; Li, L.; Zheng, Y.; Gunderov, D.V.; Valiev, R.Z. Superelasticity and its stability of an ultrafine-grained Ti49.2Ni50.8 shape memory alloy processed by equal channel angular pressing. Mater. Sci. Eng. A 2013, 587, 61–64. [Google Scholar] [CrossRef]
- Zhang, P.; Li, S.; Zhang, Z. General relationship between strength and hardness. Mater. Sci. Eng. A 2011, 529, 62–73. [Google Scholar] [CrossRef]
Samples | Transformation Temperature (K) | |||||||
---|---|---|---|---|---|---|---|---|
Cooling | Heating | |||||||
Rs | Rf | Ms | Mf | Rs | Rf | As | Af | |
As-purchased | 246.7 | 227.3 | 262.1 | 277.7 | ||||
AR | 268.9 | 229.3 | 207.7 | 187.3 | - | - | 245.9 | 257.5 |
annealed at 873 K for | □ | □ | ||||||
5 min | - | - | 236.1 | 204.7 | - | - | 245.4 | 264.4 |
120 min | - | - | 215.6 | 208.2 | - | - | 236.2 | 258.4 |
5 min + aged at 523 K | 313.5 | 303.5 | 189.2 | 136.2 | 253.8 | 267.4 | 311.1 | 318.3 |
120 min + aged at 523 K | 309.4 | 304.2 | 189.3 | 159.3 | 253.3 | 265.1 | 310.7 | 313.7 |
HRDSR | - | - | - | - | - | - | - | - |
annealed at 873 K for | □ | □ | ||||||
5 min | - | - | 274.7 | 181 | - | - | 218.5 | 267.6 |
120 min | - | - | 217.7 | 195.8 | - | - | 238.8 | 256 |
5 min + aged at 523 K | 310.2 | 303.5 | 189.9 | 137.4 | 249.6 | 260.6 | 308.9 | 313.9 |
120 min + aged at 523 K | 322.3 | 308.4 | 210.6 | 187.8 | 264.9 | 273.8 | 314.5 | 319.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-J.; Kim, W.-J. Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy. Materials 2022, 15, 7822. https://doi.org/10.3390/ma15217822
Lee T-J, Kim W-J. Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy. Materials. 2022; 15(21):7822. https://doi.org/10.3390/ma15217822
Chicago/Turabian StyleLee, Tae-Jin, and Woo-Jin Kim. 2022. "Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy" Materials 15, no. 21: 7822. https://doi.org/10.3390/ma15217822
APA StyleLee, T. -J., & Kim, W. -J. (2022). Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy. Materials, 15(21), 7822. https://doi.org/10.3390/ma15217822