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Abstract: Establishing a rapid in vitro evaluation system for drug screening is essential for the devel‑
opment of new drugs. To reproduce tissues/organs with functions closer to living organisms, in vitro
three‑dimensional (3D) culture evaluation using microfabrication technology has been reported in
recent years. Culture on patterned substrates with controlled hydrophilic and hydrophobic regions
(Cell‑ableTM) can create 3D liver models (miniature livers) with liver‑specific Disse luminal struc‑
tures and functions. MRI contrast agents are widely used as safe and minimally invasive diagnostic
methods. We focused on anionic polysaccharide magnetic iron oxide nanoparticles (Resovist®) and
synthesized the four types of nanoparticle derivatives with different properties. Cationic nanopar‑
ticles (TMADM) can be used to label target cells in a short time and have been successfully visu‑
alized in vivo. In this study, we examined the morphology of various nanoparticles. The morphol‑
ogy of various nanoparticles showed relatively smooth‑edged spherical shapes. As 3D liver models,
we prepared primary hepatocyte–endothelial cell heterospheroids. The toxicity, CYP3A, and albu‑
min secretory capacity were evaluated in the heterospheroids labeled with various nanoparticles.
As the culture period progressed, the heterospheroids labeled with anionic and cationic nanoparti‑
cles showed lower liver function than non‑labeled heterospheroids. In the future, there is a need to
improve the method of creation of artificial 3D liver or to design a low‑invasive MRI contrast agent
to label the artificial 3D liver.

Keywords: contrast agents; magnetic iron oxide nanoparticles; cell labeling; 3D culture; primary
hepatocytes; endothelial cell; spheroid; liver function; functional evaluation

1. Introduction
Establishing a rapid in vitro evaluation system for drug screening is essential for the

development of new drugs [1–3]. The liver is an essential organ in vivo, andmany attempts
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have been made to artificially mimic the liver in vitro [4–8]. These cell culture techniques
are used in many fields including drug discovery, medicine, and cosmetics. For example,
two‑dimensional (2D) culture via a substrate or extracellular matrix (ECM) is simple and
effective for studying cell interactions with drugs [9,10] and is used for screening in drug
development. However, they exhibit behavior that differs from that of cell proliferation
and morphology. To reproduce tissues and organs with functions that are similar to those
of living organisms, in vitro evaluation using three‑dimensional (3D) culture has been con‑
ducted in recent years [4–8,11,12]. Specifically, it has been reported that 3D culture is su‑
perior to 2D culture in terms of tissue/organ structure, cell differentiation ability, prolifera‑
tion, drug toxicity, and metabolism, with results closer to those obtained in vivo [5,13–15].

It is necessary to determine the tissue/organ using 3D culture and select cells and
culture techniques that are appropriate to the conditions. There are a variety of 3D cul‑
ture techniques, including spheroid and organoid cultures [4–8,11–14,16–19], agitated cul‑
ture in a bioreactor [20], hydrogel culture (ECM and synthetic polymers) [21], and cell
sheet culture [22–24]. Whitesides et al. found that hepatocyte morphology and function
could be controlled using microfabrication techniques [25,26]. By creating patterned sub‑
strates with controlled hydrophilic and hydrophobic regions by microfabrication, the pre‑
pared primary hepatocyte–endothelial cell heterospheroids maintained albumin secretory
capacity for a longer time compared to 2D culture [4]. Furthermore, primary hepatocyte–
endothelial cell heterospheroid arrays were significantly superior in albumin secretory ca‑
pacity, CYP3A activity, and glucuronidation when compared with 2D cultures [4,5,17].
Transmission electron microscopy also revealed a liver‑specific Disse lumen structure be‑
tween endothelial cells and hepatocytes, indicating successful formation of miniature liv‑
ers [5].

As a safe and minimally invasive diagnostic method, MRI contrast agents are widely
used to contrast the condition of the blood vessels, various organs, and lesion areas. In par‑
ticular, iron‑ and gadolinium‑based contrast agents are expected to produce a high con‑
trast effect through interactions with the surrounding protons. We focused on anMRI con‑
trast agent already approved as a drug, polysaccharide magnetic nanoparticle composite
(Resovist®; ATDM), and synthesized several types ofmagnetic nanoparticleswith different
properties (cationic and anionic groups, particle size, zeta potential, etc.) [27–31]. In addi‑
tion, we investigated the stability of the synthesized nanoparticles in the culture medium
and their cellular uptake. The results showed that cationic polysaccharide magnetic par‑
ticles (TMADM) effectively take up various cells [27–31]. In particular, TMADM can be
labeled on pancreatic islets in a short time and visualized after implantation in mice [29].
Furthermore, transmission electron microscopy of the internal structure of human hep‑
atocellular carcinoma cells (HepG2) monospheroids labeled with TMADM showed that
TMADM accumulated in the central and inner cell lysosomes of spheroids [30].

We then examined the morphology of the four synthesized magnetic nanoparticles.
For the 3D livermodels, wepreparedprimary hepatocyte–endothelial cell heterospheroids,
that is, miniature livers with liver‑specific functions. The toxicity, CYP3A, and albumin se‑
cretory capacitywere evaluated in the heterospheroids labeledwith several polysaccharide
magnetic iron oxide nanoparticles.

2. Materials and Methods
2.1. Chemicals

Dulbecco’s modified Eagle’s medium with high glucose, L‑glutamine, phenol red,
sodium pyruvate (DMEM), William’s E Medium, Dulbecco’s phosphate‑buffered saline
without Ca2+ andMg2+ supplementation (DPBS‑free), and antibiotics (penicillin and strep‑
tomycin) were obtained from Thermo Fisher Scientific Inc. (Waltham, MA, USA). Fetal
bovine serum (FBS; BIO‑WEST) was obtained from Funakoshi Co., Ltd. (Tokyo, Japan).
Dimethyl sulfoxide (DMSO) (D2650), testosterone (UC339), and 6‑β‑hydroxytestosterone
(UC282) were purchased from Sigma‑Aldrich Fine Chemicals (St. Louis, MO, USA). Col‑
lagenase (032–10534 for cell isolation) was purchased from Wako Pure Chemicals (Osaka,
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Japan). All other materials and chemicals used in the studywere of the highest grade avail‑
able.

2.2. Polysaccharide Magnetic Iron Oxide Nanoparticles
Trimethylaminodextran‑coatedmagnetic iron oxide nanoparticles (TMADM), diethy‑

laminomethyl dextran‑coated magnetic iron oxide nanoparticles (EADM), alkali‑treated
dextran‑coated magnetic iron oxide nanoparticles (ATDM), and carboxymethyl dextran‑
coated magnetic iron oxide nanoparticles (CMDM) were provided by MEITO Sangyo Co.,
Ltd. (Kiyosu, Japan), as described previously [28,31] (Scheme 1). ATDM was the raw ma‑
terial for the iron‑based MRI contrast agent, Resovist®.
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Scheme 1. A schematic illustration of the magnetic iron oxide nanoparticles used in this study.

2.3. Size and Zeta Potential Measurement
The average hydrodynamic diameter and the polydispersity index of nanoparticles

were determined by dynamic light scattering (DLS) using an ELSZneo (Otsuka Electronics
Co., Ltd., Osaka, Japan) fitted with a 638 nm laser beam at a fixed angle of 165◦. Measure‑
ments were taken at 25 ◦C, with 0.89 × 10−2 Pa.s viscosity and a refractive index of 1.33.
The nanoparticles were concentrated at 0.025 mg/mL in 2.5 mM phosphate buffer solution
(pH 7.4), to enable measurements (performed in triplicate), in order to assure a convenient
scatter intensity on the detectors. Three measurements were carried out for each sample
and mean values with standard deviations were calculated. The zeta potential measure‑
ments were carried out using a ZetaSizer nano ZS (Malvern Instruments, Malvern, UK).
Each sample was properly diluted with 0.025 M phosphate buffer and maintain the tem‑
perature at 25 ◦C.

2.4. SEM and TEMMicrographs of Polysaccharide Magnetic Iron Oxide Nanoparticles
The morphology of polysaccharide magnetic iron oxide nanoparticles was observed

by a field emission scanning electron microscope (FE‑SEM) (Hitachi High‑Technologies
Co., SU9000) (Tokyo, Japan). Ultrasonically dispersed nanoparticles onto a collodionmem‑
brane were observed at an accelerating voltage of 15 kV. The structure and morphology
of polysaccharide magnetic iron oxide nanoparticles were observed using a transmission
electron microscopy (TEM) (H‑7650 type zero A, Hitachi) (Tokyo, Japan). Ultrasonically
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dispersed nanoparticles onto a collodion membrane were observed at an accelerating volt‑
age of 120 kV.

2.5. Cells and Animals
Bovine carotid artery normal endothelial cells (HH) (JCRB0099) were obtained from

the Japanese Collection of Research Bioresources Cell Bank (Osaka, Japan). Male Sprague‑
Dawley rats (6–7 weeks old, specific pathogen‑free) weighing approximately 200–250 g
were purchased from SLC Japan. The rats were housed under specific pathogen‑free con‑
ditions with a 12‑h light/dark cycle and had free access to food andwater. Rat studies were
approved by the review committee of Nagoya University Graduate School of Medicine.
Rat hepatic parenchymal cells (primary hepatocytes) were prepared from male Sprague–
Dawley rats by the collagenase perfusion method [32] Cell viability was >85%, as deter‑
mined by the trypan blue dye exclusion test using trypan blue stain (Gibco) at a final con‑
centration of 0.2%.

2.6. 3D Spheroids Culture of Hepatocytes and Endothelial Cells
The 12‑well cell culture plates for 3D spheroids culture (Cell‑ableTM) were supplied

by Sumitomo Bakelite (Tokyo, Japan). HH cells (3 × 105) were inoculated onto the cell
array and cultured in 1 mL of DMEM containing 10% FBS and antibiotics (100 U/mL peni‑
cillin and 100 U/mL streptomycin). Rat hepatic parenchymal cells (primary hepatocyte)
(4 × 105/well) were inoculated into the HH‑precultured cell array to form heterospheroids.
The heterospheroids were cultured in Williams Medium E containing 10% FBS, 1 µmol/L
insulin, 1 µmol/L dexamethasone, and antibiotics. The heterospheroids were incubated
for two days at 37 ◦C in an incubator with a humidified 5% CO2 atmosphere. The het‑
erospheroids were then incubated with polysaccharide magnetic iron oxide nanoparticles
(0, 0.1, 0.5, 1, 5, 15, 30, and 60 µg Fe/mL) for 24 h at 37 ◦C. Hepatic function and in vitro
cytotoxicity started 3 d after inoculation of the heterospheroids.

2.7. Functional Examination of Hepatocyte–Endothelial Cell Heterospheroids Labeled with
Polysaccharide Magnetic Iron Oxide Nanoparticles

Hepatocyte–endothelial cell heterospheroids labeled with polysaccharide magnetic
iron oxide nanoparticles were also assayed calorimetrically for metabolic activity using
formazan formation (Cell Counting Kit‑8 (WST‑8); Dojindo Molecular Technologies Inc.,
Kumamoto, Japan). Rat primary hepatocytes on the cell array were assayed for CYP3A ac‑
tivity by testosterone 6‑β‑hydroxylation, as described previously [33]. Cytochrome P450
subfamily CYP3A activity was estimated by the rate of testosterone 6‑β‑hydroxylation.
The heterospheroids were incubated with 150 µmol/L testosterone (T1500; Sigma, MO,
USA) for 4 h, and the formation of 6‑β‑hydroxytestosterone was determined by high per‑
formance liquid chromatography with a reversed‑phase analytical column (TSKgel Super‑
ODS18197, TOSOH, Tokyo, Japan). Albumin productionwas assessed bymeasuring its ac‑
cumulation in the culture medium for 24 h using a rat albumin ELISA (Enzyme‑Linked Im‑
munosorbent Assay) quantification kit according to the manufacturer’s instructions (E111‑
125; Bethyl Laboratories, Inc., Montgomery, TX, USA).

2.8. Statistical Data Analysis
Data are presented as mean ± standard error. Each experiment was repeated at least

in triplicates (n ≥ 3). Statistical significance was determined using Welch’s t‑test for com‑
parisons between two groups; Statistical significance was set at p‑values (p < 0.05, and
p < 0.01).

3. Results
3.1. Morphology, Size, and Zeta Potential of Polysaccharide Magnetic Iron Oxide Nanoparticles

We synthesized and evaluated variousmagnetic polysaccharide iron oxide nanoparti‑
cles (Scheme 1), as described previously [28,31]. The morphology of various nanoparticles
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was observed by FE‑SEM and TEM (Figure 1). The morphology of various nanoparticles
showed relatively smooth‑edged spherical shapes and the aggregate formation by FE‑SEM
micrograph (Figure 1A). The morphology of various nanoparticles showed nearly spheri‑
cal shapes and the aggregate formation by TEMmicrograph (Figure 1B). The nanoparticle
size and zeta potential weremeasured from dynamic light scattering and Zetasizer, respec‑
tively (Table 1). TMADMand EADMwere efficiently transduced into cells because of their
positive charges [28]. In contrast, the negatively charged nanoparticles ATDMandCMDM
were transduced to a lesser extent into the cells [28].
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Figure 1. (A) SEM micrograph of polysaccharide magnetic iron oxide nanoparticles ((a). TMADM,
(b). EADM, (c). ATDM, (d). CMDM). Scale bar: 50 nm; (B) TEM micrograph of polysaccharide
magnetic iron oxide nanoparticles ((a). TMADM, (b). EADM, (c). ATDM, (d). CMDM). Scale bar:
50 nm.

Table 1. Characteristic features of synthesized polysaccharide magnetic iron oxide nanoparticles.

Name Diameter (nm) Polydispersity Index Zeta Voltage (mV)

TMADM 51.5 ± 0.6 0.157 ± 0.005 +32.8
EADM 52.1 ± 0.9 0.256 ± 0.007 +30.1
ATDM 57.9 ± 0.5 0.349 ± 0.046 −14.7
CMDM 46.0 ± 1.2 0.231 ± 0.011 −23.6

3.2. Morphology of Hepatocyte–Endothelial Cell Heterospheroids Labeled with Polysaccharide
Magnetic Iron Oxide Nanoparticles

Figure 2 shows a phase‑contrast photomicrograph of hepatocyte–endothelial cell het‑
erospheroids labeled with various nanoparticles. After creating the endothelial cell mono‑
spheroids (Figure 2a,b), the heterospheroids were prepared by seeding primary hepato‑
cytes on the monospheroids. We have previously reported that the prepared hepatocyte–
endothelial cell heterospheroids have hepatocyte‑specific structures and functions [5,17].
The heterospheroids were incubated with 60 µg‑Fe/mL various nanoparticles (TMADM,
EADM, ATDM, and CMDM) in a culture medium for 24 h at 37 ◦C. The morphology color
of the heterospheroids labeledwith various nanoparticles (Figure 2e–l) is darker compared
to the control group (non‑labeled heterospheroids) (Figure 2c,d). These results are consis‑
tent with those reported for HepG2 cell monospheroids [30,31].
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nanoparticles. Endothelial cells (3× 105) were inoculated for 24 h onto a Cell‑able 12‑well plate (a,b).
Hepatocytes were seeded (4× 105/well) and cultured for 48 h on the endothelial monospheroids. Af‑
ter 48 h of cell culture, hepatocyte–endothelial cell heterospheroidswere incubatedwith 60µg‑Fe/mL
various nanoparticles in a culture medium for 24 h at 37 ◦C. The type of nanoparticle: Control (non‑
labeled) (c,d); TMADM (e,i); EADM (f,j); ATDM (g,k); CMDM (h,l). Scale bar: 500, 200, and 100 µm.

3.3. Metabolic Activity of Hepatocyte–Endothelial Cell Heterospheroids
The metabolic activities of hepatocyte–endothelial cell heterospheroids are shown

in Figure 3. The heterospheroids assessed in vitro cytotoxicity (the WST‑1 assay) of var‑
ious nanoparticles (Figure 3). As the concentration of nanoparticles increased, the hetero‑
spheroids showed a decrease in formazan, a metabolite formed by mitochondrial dehy‑
drogenase. The heterospheroids labeled with a high amount of nanoparticles inhibited
cell proliferation. The heterospheroids labeled with anionic nanoparticles (ATDM and
CMDM) showed higher activity than the cultured heterospheroids labeled with cationic
nanoparticles (TMADM and EADM). Relative WST‑1 activity was significantly different
in the control group (non‑labeled heterospheroids) and the labeled groups (control group
vs. various nanoparticles (concentration higher than 5 µg‑Fe/mL), p < 0.05; control group
vs. TMADM and EADM (concentration higher than 30 µg‑Fe/mL), p < 0.01).

Hepatocyte–endothelial cell heterospheroids maintained cytochrome P450‑mediated
monooxygenation [5]. Cytochrome P450 activity (CYP3A, estimated as testosterone 6‑β‑
hydroxylation) of heterospheroids was decreased with various nanoparticles (Figure 4).
The CYP3A activity was significantly different in the control group (non‑labeled hetero‑
spheroids) and the labeled groups (control group vs. TMADMand EADM, p < 0.01; control
group vs. ATDMandCMDM, p < 0.05). The heterospheroids labeledwith anionic nanopar‑
ticles (ATDM and CMDM) showed higher activity than the cultured heterospheroids la‑
beled with cationic nanoparticles (TMADM and EADM).
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Figure 3. Metabolic activity of hepatocyte–endothelial cell heterospheroids labeled with polysac‑
charide magnetic iron oxide nanoparticles was estimated by the accumulation of formazan (WST‑1
assay). The type of nanoparticle: (A) TMADM; (B) EADM; (C) ATDM; (D) CMDM. The hetero‑
spheroids were incubated for 2 d at 37 ◦C. After 48 h of cell culture, the heterospheroids were then
incubated with various nanoparticles (0, 0.1, 0.5, 1, 5, 15, 30, and 60 µg‑Fe/mL) for 24 h at 37 ◦C. The
assay started 3 d after the inoculation of the heterospheroids (mean ± range, n = 5). Relative WST‑1
activity of the heterospheroids at each concentration of nanoparticleswas converted using the control
group (non‑labeled heterospheroids, 0 µg‑Fe/mL) as the 1.0 value. p‑values are presented. Welch’s
t‑tests were used to compare WST‑1 activity of the control group vs. the labeled groups. No mark =
no significance, * p < 0.05, ** p < 0.01.
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Figure 4. Drug‑metabolizing activities of hepatocyte–endothelial cell heterospheroids labeled with
polysaccharide magnetic iron oxide nanoparticles (TMADM, EADM, ATDM, and CMDM). The het‑
erospheroidswere incubated for 2 d at 37 ◦C. After 48 h of cell culture, the heterospheroidswere then
incubatedwith various nanoparticles (30 µg‑Fe/mL) for 24 h at 37 ◦C. Testosterone 6‑β‑hydroxylation
was determined by 4 h incubation with 100 µmol/L testosterone. The data shown represent the
means and standard deviation (SD) of three independent experiments. Statistically significant dif‑
ferencewas observed in the control group (non‑labeled heterospheroids, 0µg‑Fe/mL) and the labeled
groups with various nanoparticles (* p < 0.01, ** p < 0.05).
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3.4. Albumin Synthesis of Hepatocyte–Endothelial Cell Heterospheroids
The amount of albumin secreted by hepatocyte–endothelial cell heterospheroids is

shown in Figures 5 and 6, respectively. Figure 5 shows the albumin secretion by the het‑
erospheroids on day 3. As the concentration of various nanoparticles increased, albumin
secretion of the heterospheroids decreased for various nanoparticles. Albumin secretion
was significantly different in the control group (non‑labeled heterospheroids) and the la‑
beled groups (control group vs. TMADM and EADM (concentration higher than 15 or
30 µg‑Fe/mL), p < 0.05; control group vs. ATDMandCMDM (60 µg‑Fe/mL), p < 0.05; control
group vs. TMADM and EADM (60 µg‑Fe/mL), p < 0.01). The heterospheroids labeled with
anionic nanoparticles (ATDMandCMDM) showedhigher albumin secretory capacity than
the cultured heterospheroids labeled with cationic nanoparticles (TMADM and EADM).
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Figure 5. Albumin secretion of hepatocyte–endothelial cell heterospheroids labeled with polysac‑
charide magnetic iron oxide nanoparticles. The type of nanoparticle: (A) TMADM; (B) EADM;
(C) ATDM; (D) CMDM. The heterospheroids were incubated for 2 d at 37 ◦C. After 48 h of cell
culture, the heterospheroids were then incubated with various nanoparticles (0, 5, 15, 30, and 60 µg‑
Fe/mL) for 24 h at 37 ◦C. The albumin secretion by heterospheroids on day 3 was measured with
ELISA. The data shown represent the means and SD of three independent experiments. p‑values are
presented. Welch’s t‑tests were used to compare albumin secretion of the control group (non‑labeled
heterospheroids, 0 µg‑Fe/mL) vs. the labeled groups. Nomark = no significance, * p < 0.05, ** p < 0.01.
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Figure 6. Time course of Albumin secretion of hepatocyte–endothelial cell heterospheroids labeled
with polysaccharide magnetic iron oxide nanoparticles. The type of nanoparticle: (A) TMADM;
(B) EADM; (C) ATDM; (D) CMDM. The heterospheroidswere incubated for 2 d at 37 ◦C.After 48 h of
cell culture, the heterospheroidswere then incubatedwith various nanoparticles (0, 15, 30, and 60 µg‑
Fe/mL) for 24 h at 37 ◦C. The addition conditions of various nanoparticle: control group (non‑labeled
heterospheroids, 0 µg‑Fe/mL) (closed orange squares, ■); 15 µg‑Fe/mL (closed sky‑blue circles, •);
30 µg‑Fe/mL (closed red triangles, ▲); 60 µg‑Fe/mL (open circles, #). The albumin secretion by het‑
erospheroids on days 3, 4, and 5wasmeasuredwith ELISA. The data shown represent themeans and
SD of three independent experiments. p‑values are presented. Welch’s t‑tests were used to compare
albumin secretion of the control group (non‑labeled heterospheroids, 0 µg‑Fe/mL) vs. the labeled
groups. No mark = no significance, * p < 0.05, ** p < 0.01.

Figure 6 shows the albumin secretion by the heterospheroids on days 3, 4, and 5. Sta‑
tistically, significant difference was observed in the control group and the labeled groups
with 60 µg‑Fe/mL various nanoparticles (TMADM and EADM: days 3, 4, and 5 p < 0.01;
ATDM and CMDM: days 3, 4, and 5 p < 0.05). As the culture period progressed, the al‑
bumin secretion of the labeled groups decreased significantly (control group vs. TMADM
and EADM: day 3 (15 or 30 µg‑Fe/mL, p < 0.05) vs. days 4 and 5 (30 µg‑Fe/mL, p < 0.01); con‑
trol group vs. ATDM and CMDM: day 3 (60 µg‑Fe/mL, p < 0.05) vs. days 4 and 5 (15 or 30
µg‑Fe/mL, p < 0.05). As the culture period progressed, the heterospheroids labeledwith an‑
ionic nanoparticles (ATDM and CMDM) showed higher albumin secretory capacity than
the cultured heterospheroids labeled with cationic nanoparticles (TMADM and EADM).

4. Discussion
It is critical to evaluate the effects of contrast agents and drugs, such as nanoparti‑

cles, on cells for purposes of medical and clinical research. We expect to modify the clin‑
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ical MRI contrast agents (Resovist®) and use them as a visualization tool for cell trans‑
plantation. The most common compounds utilized in MRI for contrast enhancement are
iron oxide and gadolinium [34]. Feridex® is a superparamagnetic iron oxide (SPIO) col‑
loid with low molecular weight dextran with a particle size of 120–180 nm. Resovist®
is carboxydextrane‑coated SPIO with a particle size of 45–60 nm. Primovist® is gadolin‑
ium ethoxybenzyl dimeglumine (Gd‑EOB‑DTPA) with a molecular weight of 725.71. This
study focused on ATDM (Resovist®) and evaluated the other iron‑based polysaccharide
nanoparticles (TMADM, EADM, and CMDM) for labeling target cells. We synthesized
and evaluated characteristic features of various nanoparticles (ATDM, TMADM, EADM,
andCMDM), as described previously [28,31]. Themorphology ofmagnetic polysaccharide
nanoparticles by FE‑SEM and TEM showed relatively smooth‑edged spherical shapes and
nearly spherical shapes, respectively. Similar to previous reports, dextran‑based nanopar‑
ticles exhibit aggregate formation [35,36]. The particle size of ATDM by TEM or DLS was
approximately 23–30 nm and 57.9± 0.5 nm, respectively. TEM sizes are smaller than those
obtained by DLS. Therefore, TEM determines the actual size of dried nanoparticle formu‑
lations. On the other hand, DLSmeasures the size of ATDM in an aqueous solution. These
results are consistent with previous reports by Resovist®, who measured the hydrody‑
namic diameter of Resovist® in an aqueous solution and incorporated the surface‑bound
water layer in DLS [35,36].

Many researchers have reported numerous comparisons between the 2D and 3D cul‑
tures of drugs [1–3,5,13–15,37,38]. Most importantly, the selection of 3D cultures allows for
longer retention of cellular function and better test sensitivity than 2D cultures. Therefore,
3D culture techniques have been widely used in drug discovery, medicine, and cosmetics.
The human body is composed of various cells, amongwhich the cells of the liver play an es‑
sential role in metabolism, detoxification, bile production, and secretion [4–8,11–15,39–41].
In order to investigate the effect of nanomaterials on the liver, a 3D liver model with
liver‑specific functions must be created in vitro. Several studies have been reported on
the effects of nanomaterials on 3D liver models [30,42–45]. Kermanizadeh A. et al. evalu‑
ated the hepatotoxicity of human liver cell heterospheroids by various nanomaterials (Ag,
ZnO, MWCNT, and a positively charged TiO2) [42]. Mekky G. et al. reported on the ef‑
fects of magnesium oxide nanoparticles using primary human liver cell heterospheroids
and animals [43]. Tee J.K. et al. reported on the effects of TiO2 nanoparticles using LO2
cell–sinusoidal endothelial cell heterospheroids [44]. Miyamoto Y. et al. reported on the
distribution of magnetic polysaccharide nanoparticles in HepG2 cell monospheroids [30].
Fleddermann J. et al. reported on the distribution of SiO2 nanoparticles in HepG2 cell
monospheroids [45]. Various types of nanoparticles can be evaluated for liver functions in
3D liver models [30,42–45], and the obtained results can support in vivo [43]. In our pre‑
vious reports, the heterospheroids of endothelial cells and primary hepatocytes exhibited
liver‑like structures, and maintained the albumin secretory capacity, CYP3A activity, and
glucuronidation for an extended period [4,5]. In this study, the heterospheroids were used
to investigate the effects of various nanoparticles.

The morphology of the heterospheroids labeled with various nanoparticles (Figure 2)
did not differ significantly from that of the HepG2 cell monospheroids labeled with
nanoparticles [30]. The heterospheroids labeled with ATDM and CMDM exhibited higher
WST‑1 activity than that labeled with TMADM and EADM (Figure 3). This result shows
that the nanoparticles have anionic and cationic characteristics, respectively (Table 1).

In our previous reports, Yukawa H. et al. reported the viability of adipose tissue‑
derived stem cells (ASCs) labeled with ATDM or TMADM [46]. The viability of ASCs
was significantly different in non‑labeled ASCs and ASCs labeled with TMADM (concen‑
tration 5–100 µg‑Fe/mL, p < 0.05). On the other hand, the viability of ASCs was not sig‑
nificantly different in non‑labeled ASCs, and ASCs labeled with TMADM (concentration
5–100 µg‑Fe/mL). The proliferation rate of ASCs labeled with TMADM (concentration 10–
50 µg‑Fe/mL) was also maintained compared to non‑labeled ASCs. Anionic iron‑based
polysaccharide nanoparticles (ATDM and CMDM) have been reported to exist primarily
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near the cell surface in 2D culture [27,30,31,46]. The cationic nanoparticles (TMADM and
EADM) are reported to bemainly taken up by cells and accumulate in lysosomes [30,31,46].
The quantitative determinations of theATDMandTMADMinternalized intoASCs bymea‑
suring the amount of Fe derived fromATDMor TMADMusing ICP‑AES [46]. The amount
of Fe in cells labeled with TMADMwas about four‑fold higher than that of ATDM. No sig‑
nificant differences in cell function were observed compared to ASCs labeled with ATDM
and non‑labeled ASCs.

However, WST‑1 activity significantly differed between heterospheroids labeledwith
anionic nanoparticles (ATDMandCMDM) andnon‑labeled heterospheroids (Figure 3C,D).
The CYP3A activity significantly differed between heterospheroids labeled with various
nanoparticles and non‑labeled heterospheroids (Figure 4). We evaluated the albumin se‑
cretory capacity of the heterospheroids labeled with various nanoparticles compared to
non‑labeled heterospheroids. Albumin secretion was significantly different between the
heterospheroids labeled with various nanoparticles and non‑labeled heterospheroids on
day 3 (60 µg‑Fe/mL, p < 0.05) (Figure 5). As the culture period progressed, the albumin se‑
cretion of the heterospheroids labeled with various nanoparticles decreased significantly
compared to non‑labeled heterospheroids (day 5, 15 µg‑Fe/mL, p < 0.05). The albumin
secretion of heterospheroids labeled with anionic nanoparticles (ATDM and CMDM) com‑
pared to non‑labeled heterospheroids were significantly different between day 3 and day
5 (day 3, 60 µg‑Fe/mL, p < 0.05; day 5, 15–60 µg‑Fe/mL, p < 0.05).

In previous reports, Kermanizadeh A. et al. evaluated the toxicity and hepatic func‑
tion of human liver cell heterospheroids (hepatocyte and non‑parenchymal cells) by ex‑
posure to various nanomaterials (Ag, ZnO, MWCNT, and a positively charged TiO2) [42].
The repeated exposure to nanomaterials for the heterospheroids was more toxic than a sin‑
gle exposure. The cytotoxicity and viability of the heterospheroidsweremarkedly reduced
by exposure to nanomaterials. On the other hand, there was no significant difference in
albumin secretion of heterospheroids by nanomaterial exposure. Albumin is a protein pro‑
duced by the liver and is a standard indicator of liver function. These differences in albu‑
min secretion of the heterospheroidsmay depend on the type of nanomaterials and various
cells. Tee J.K. et al. created the 3D liver models (heterospheroids) using LO2 cells and sinu‑
soidal endothelial cells [44]. The structure of these heterospheroids (Tee J.K. et al. [44]) is
similar to that of our created heterospheroids (Enosawa S. and Miyamoto Y. et al. [5]). Be‑
cause the hepatocyte is the core of the heterospheroids, and the endothelial cells are located
on the outside heterospheroids. As the concentration of TiO2 nanoparticles increased, the
sinusoidal endothelial cells in the heterospheroids decreased compared to the controls (het‑
erospheroidswithout TiO2 nanoparticles) [44]. TiO2 nanoparticles weakened the adhesion
between the sinusoidal endothelial cell layers and the core of the hepatocytes in the hetero‑
spheroids and detached the sinusoidal endothelial cells in the heterospheroids [44]. In our
previous reports, Enosawa S. and Miyamoto Y. et al. reported that the albumin secretion
in the hepatocyte–endothelial cell heterospheroids was approximately 2‑fold higher than
in hepatocyte monospheroids in short‑term cultures [5]. In this study, we also showed
that the albumin secretion of hepatocyte–endothelial cell heterospheroids labeled with
TMDM (day 5, 60 µg‑Fe/mL) was approximately 2‑fold lower than that of non‑labeled het‑
erospheroids (day 5, 0 µg‑Fe/mL) (Figure 6A). The decrease in albumin secretion may be
due to detaching the outer endothelial cells of the heterospheroids by labeling the nanopar‑
ticles.

In this study, we focused on anionic polysaccharide magnetic iron oxide nanoparti‑
cles (Resovist®) and synthesized four types of magnetic iron oxide nanoparticle deriva‑
tives with different properties. In our previous reports, the ASCs labeled with TMADM
(≥30 mg‑Fe/mL) could be detected byMRI imaging and could be traced for at least 14 days
after transplantationwith the skin in themice [46]. Therefore, we expect tomodify the clini‑
calMRI contrast agents and use them as a visualization tool for artificial 3D liver transplan‑
tation. However, the liver function of hepatocyte–endothelial cell heterospheroids labeled
with various nanoparticles decreased even at low concentrations (≥5 or 15mg‑Fe/mL). Pos‑
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sible causes are (1) primary hepatocyte damage and (2) detachment of endothelial cells
outside the heterospheroids [44] with the use of nanoparticles. To create an artificial 3D
liver, the selection of cell sources is essential, including primary cells [47,48], immortal‑
ized cells [49], lineage cells, and stem cells [50,51]. Human hepatic parenchymal and non‑
parenchymal cells are difficult to obtain due to a lack of donors. The hepatocytes differenti‑
ated from induced pluripotent stem cells (iPSCs) [52–55], embryonic stem cells (ESCs) [56],
and tissue stem cells [57] are expected to be a new cell source. Recently, in vitro 3D culture
techniques have been used to create liver and multi‑organ models [6,58]. Koike H. and
Takebe T. et al. reported a technique for continuously creating liver, bile, and pancreas
(HBP) structures from 3D cultures of human PSCs [58]. Peng W.C. and Nusse R. et al.
have successfully cultured hepatocytes for more than six months in 3D culture [59]. These
hepatocytes grown in 3D culture were transplanted into mice livers and significantly re‑
populated [59]. In the future, there is a need to improve the method of creation of artificial
3D liver or to design a low‑invasive MRI contrast agent to label the artificial 3D liver.

5. Conclusions
In this study, we examined the morphology of the four synthesized polysaccharide

magnetic iron oxide. The morphology of various nanoparticles showed relatively smooth‑
edged spherical shapes. For the 3D liver models, we prepared primary hepatocyte–endo‑
thelial cell heterospheroids. The toxicity, CYP3A, and albumin secretory capacity were
evaluated in the heterospheroids labeledwith various nanoparticles. As the culture period
progressed, the heterospheroids labeled with anionic and cationic nanoparticles showed
lower liver function than non‑labeled heterospheroids. In the future, there is a need to im‑
prove the method of creation of artificial 3D liver or to design a low‑invasive MRI contrast
agent to label the artificial 3D liver.
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