
Citation: Curecheriu, L.; Buscaglia,

M.T.; Lukacs, V.A.; Padurariu, L.;

Ciomaga, C.E. Role of Density and

Grain Size on the Electrocaloric Effect

in Ba0.90Ca0.10TiO3 Ceramics.

Materials 2022, 15, 7825. https://

doi.org/10.3390/ma15217825

Academic Editors: Hongyu Yang

and Hao Li

Received: 23 September 2022

Accepted: 1 November 2022

Published: 6 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Role of Density and Grain Size on the Electrocaloric Effect in
Ba0.90Ca0.10TiO3 Ceramics
Lavinia Curecheriu 1,* , Maria Teresa Buscaglia 2,*, Vlad Alexandru Lukacs 1, Leontin Padurariu 1

and Cristina Elena Ciomaga 3

1 Dielectrics, Ferroelectrics and Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi,
11 Carol I Bv., 700506 Iasi, Romania

2 Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council-CNR,
Via De Marini 6, Genoa I-16149, Italy

3 Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Al. I. Cuza University,
11 Carol I Bv., 700506 Iasi, Romania

* Correspondence: lavinia.curecheriu@uaic.ro (L.C.); mariateresa.buscaglia@ge.icmate.cnr.it (M.T.B.)

Abstract: Pure perovskite Ba0.90Ca0.10TiO3 ceramics, with a relative density of between 79 and
98% and grain sizes larger than 1 µm, were prepared by solid-state reaction. The dielectric and
electrocaloric properties were investigated and discussed considering the density and grain size of
the samples. Room temperature impedance measurements show good dielectric properties for all
ceramics with relative permittivity between 800 and 1100 and losses of <5%. Polarization vs. E loops
indicates regular variation with increasing sintering temperature (grain size and density), an increase
in loop area, and remanent and saturation polarization (from Psat = 7.2 µC/cm2 to Psat = 16 µC/cm2).
The largest electrocaloric effect was 1.67 K for ceramic with GS = 3 µm at 363 K and electrocaloric
responsivity (ζ) was 0.56 K mm/kV. These values are larger than in the case of other similar materials;
thus, Ba0.90Ca0.10TiO3 ceramics with a density larger than 90% and grain sizes of a few µms are
suitable materials for electrocaloric devices.

Keywords: Ca-BaTiO3; porosity; grain size; electrocaloric effect

1. Introduction

The electrocaloric effect (EC) is an adiabatic temperature change (∆T) to an externally
applied field due to the coupling of electrical and thermal properties [1]. In recent years, it
has become a challenging research topic in the field of ferroelectric materials due to their
possible application as solid-state cooling devices. The largest EC effects were discovered in
some lead-based ferroelectric films (∆T = 12 K in a Pb(Zr,Ti)O3 film [2]); however, because
of international limitations on lead use, another challenge was to develop lead-free EC
materials. BaTiO3 (BT)-based compounds are attractive because they are environmen-
tally friendly and have large thermal stability. Moreover, in BT-based systems, various
parameters (transition temperature, dielectric permittivity, piezoelectric and pyroelectric
coefficient, and ferroelectricity) can be tuned by suitable doping [3]. It is known that doping
either at a Ba or Ti site affects transition temperatures and offers the possibility to close it to
room temperature [4]. This aspect is being utilized by many research groups to enhance the
EC effect in ferroelectric materials because EC has a maximum near-phase transition as com-
pared to other temperature regions [5]. For example, Jian et al. have reported ∆T = 2.4 K
in BaZr0.05Ti0.95O3 at 113 ◦C and E = 30 kV/cm [6]; Bai et al. reported ∆T = 1.6 K in BT
single crystal at TC and E = 10kV/cm [7]; Niu et al. reported ∆T = 2.42 K and ∆T = 2.46
for Sr-doped BaTiO3 (0.35 and 0.40) at E = 50 kV/cm [8]; in a double substitute BaTiO3
(Ba0.85Ca0.15Ti0.94Hf0.06O3), Wang et al. reported ∆T = 1.03 K at E = 35 kV/cm [9].

Doping BT with Ca2+ (Ba1−xCaxTiO3-BCT) is one of the foremost potential candidates
for lead-free electrooptic modulators [10]. Few papers have reported the microstructure
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and dielectric properties of BCT ceramics prepared by solid-state reactions [11–14]. Early
papers [11,12] revealed that Ca2+ replaces Ba2+ with a solubility up to 0.21 causing a
small change in Curie point but strongly lowering the tetragonal-orthorhombic transition
temperature, which increases thermal stability, and it is important for many practical
applications. An interesting phenomenon is that a small amount of Ca2+ ions can substitute
Ti4+ if the solid-state technique is used [15]. In this case, the change in temperature transition
is completely different, and a crossover to a relaxor state can appear. If the substitution is
only in the Ba2+ site, the Ca ions might have greater atomic polarizability, which intensifies
the interactions with Ti ions [16].

Although some papers were published concerning dielectric and ferroelectric proper-
ties of BCT ceramics [10–16], only recently have the electrocaloric effect properties of these
ceramics been investigated, and mainly for the double substituted BaTiO3 [17–19]. The only
paper that reported electrocaloric properties in Ca-doped BT is that of AS Anokhin et al. [18].
The authors investigated the EC effect in 10% Ca-doped BaTiO3 and obtained a maximum
of EC at the transition temperature. Although that paper has no data about the microstruc-
ture properties of the samples and presented only this composition, the authors conclude
that BCT ceramics are more suitable for electrocaloric devices than BT.

Starting from these results, in the present paper, we proposed a systematic study of
the role of porosity and grain size on the electrocaloric properties of Ba0.90Ca0.10TiO3 (BCT)
ceramics. The paper reports, for the first time, BCT ceramics with large grain size distri-
bution (from one µm to tens of µms) and porosity between 21 and 2%, and discussed the
influence of these microstructural particularities on dielectric and electrocaloric properties.

2. Materials and Methods

Ba0.90Ca0.10TiO3 (BCT) nanopowders have been prepared by a classical ceramic method
using the following chemical reaction:

0.90 BaCO3 + 0.10 CaCO3 + TiO2 → Ba0.90Ca0.10TiO3 + CO2↑

BaCO3 (Solvay, 99.9% purity, Bucures, ti, Romania), TiO2 (Degussa-P25, 99.9% purity,
Bucures, ti, Romania), and CaCO3 (Solvay 99.9%, Bucures, ti, Romania) nanopowders were
weighted in stoichiometric proportions, then wet-mixed in distilled water for 24 h. After
freeze-drying, the powders were calcinated at 900 ◦C for 4 h. The final powders were
isostatically cold pressed at 1400 bar. The ceramic greens were sintered for 4 h in the air at
different temperatures between 1300 ◦C and 1450 ◦C to induce different porosity levels and
grain sizes. The density of ceramics was obtained by Archimedes’ method. The ceramics
were noted according to their porosity as shown in Table 1.

Table 1. Sample notation and dielectric and ferroelectric room temperature characteristics of
Ba0.90Ca0.10TiO3 ceramics.

Sample
Thermal

Treatment
(◦C/4 h)

Relative
Density

(%)

ε

(f = 10
kHz)

Psat
(µC/cm2)

Prem
(µC/cm2) Prem/Psat

BCT21 1300 79 815 7.21 2.17 0.30

BCT11 1350 89 861 11.08 4.88 0.44

BCT8 1375 92 907 14.10 8.73 0.62

BCT7 1400 93 927 15.09 9.89 0.65

BCT3 1425 97 1063 15.5 8.53 0.55

BCT2 1450 98 1099 16.11 9.19 0.57

Phase symmetry of the sintered ceramics was verified using X-ray diffraction (XRD)
with CuKα radiation (Shimadzu LabX 6000 diffractometer, Shimadzu, Bucures, ti, Romania).
The microstructure was observed through high-resolution scanning electronic microscopy
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LEO 1450VP (Carl Zeiss, Bucures, ti, Romania). For electrical measurements, Ag electrodes
were deposited on the polished surfaces of the ceramics. The room temperature dielectric
measurements were carried out using the Solartron 1260 (Solartron Analytical, Hampshire,
UK) for frequencies ranging from 1 Hz to 1 MHz. The electrocaloric effect was indirectly
determined from P(E) loops registered at different temperatures. The measurements were
performed on ceramic disks immersed in a silicon oil bath using the Radiant Precision
Multiferroic II Ferroelectric Test System (Radiant Technologies, INC., Albuquerque, NM,
USA) at 10 Hz with a double bipolar input as the electric signal.

3. Results and Discussion
3.1. Structural and Microstructural Characteristics

Figure 1 shows the XRD patterns of the BCT ceramics at a few selected porosity
levels (21%, 7%, and 2%). The lack of any Ba, Ca or Ti-rich secondary phases in the XRD
detection limit demonstrates that the solid-state reactions took place, and the Ca ions are
completely incorporated in the perovskite lattice. All diffraction peaks can be indexed
based on polycrystalline orthorhombic BaTiO3 (01–081–2197) with the space group Amm2.
Unlike our previous papers [20,21], in which porosity induced structural changes, in this
case, all the ceramics are in the orthorhombic phase at room temperature with a small
variation in peak ratio (022)/(200) from 1.39 to 1.14 when porosity decreased from 21%
to 2%.
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Figure 1. Room temperature XRD of a few selected BCT ceramics. 
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Figure 1. Room temperature XRD of a few selected BCT ceramics.

Figure 2 presents the SEM micrographs performed on freshly fractured ceramics
revealing the microstructural features of BCT ceramics. While ceramics sintered at low
temperatures (<1375 ◦C) present irregular pores and grain sizes between 1 and 3 µm,
the ceramics obtained at high temperatures (>1400 ◦C) are fully densified with a small
intergranular porosity and grain sizes of tens of µm. For the ceramics with small grains,
the insets in the bottom right corner of the SEM images (Figure 2a–c) show the histograms
corresponding to the GS distribution and the average GS. In the case of ceramics with
larger grains, the size distribution could not be carried out; however, we can conclude
that by increasing the sintering temperature, the porosity becomes very small, pores are
well isolated, and grains increase to tens of µm. This kind of porosity is similar to that one
obtained for Ba(Zr, Ti)O3 ceramics [22] and is due to the sintering strategy. By classical
sintering method (cold isostatic press and thermal treatment) it is difficult to achieve good
densification and small grain size [23]. However, unlike BZT ceramics, these ceramics have
a homogeneous microstructure without bimodal grain size distribution.
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Figure 2. SEM images of Ba0.90Ca0.10TiO3 ceramics with different porosity levels and grain size:
(a) 21% porosity; (b) 11% porosity; (c) 8% porosity; (d) 7% porosity; (e) 3% porosity; (f) 2% porosity.

3.2. Low Field Properties

The frequency dependence of the permittivity and dielectric losses at room tempera-
ture are shown in Figure 3a,b. They indicate an increase in relative permittivity with density
and grain size from 815 for BCT21 to 1100 for BCT2 at a fixed frequency of f = 10 kHz. This
result can be regarded as a sum property, a direct proportion between the permittivity
value and the amount of the ferroelectric phase. The samples present a small dispersion
in frequency (~12% difference between permittivity at 1 Hz and permittivity at 1 MHz)
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except ceramic BCT8. This sample has a difference in permittivity values of ~22% at 1 Hz
and 1 MHz. Furthermore, this ceramic presents the largest dielectric loss for f of <103 Hz.
An interesting feature of this ceramic is the comparable value of permittivity with BCT7,
which has an exaggerated grain growth. The dielectric losses of all ceramics are smaller
than 5% of all investigated frequencies without any relaxation.
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3.3. Ferroelectric Properties

The P(E) polarization-field loops in the dynamic ac regime have been first recorded at
room temperature to assess the role of porosity and grain size on the switching properties
of BCT ceramics. The P(E) major loops represented in Figure 4 indicate that porosity causes
a strong reduction in remanent and saturation polarization, together with a loop tilting
that accompanies the reduction in hysteresis area and Prem/Psat rectangularity loop factor
(Table 1). The maximum polarization is in the range of 7.2–16 µC/cm2, with a remanent
polarization in the range of 2–9.9 µC/cm2, as shown in Table 1. Both results are in good
agreement with the other literature data reported for this system [24]. The ferroelectric
behavior seems to be affected only by porosity. In our previous papers, we demonstrated
by Finite Element Calculation [25,26] that the electric field acting on the active material in
porous ceramics is inhomogeneous and smaller than the applied one, and this determined
the reduction in rectangularity and tilting P(E) loops.

3.4. Electrocaloric Properties

The EC effect was investigated in lead-free BCT ceramics for assessing the suitability
of eco-friendly solid-state cooling devices. Two approaches to obtaining the adiabatic tem-
perature change (∆T) can be used. One is called the indirect method, which used Maxwell
relations and the polarizations extracted from P(E) loops at different temperatures and
electric fields, and the other is called the direct method, which measures the temperature
change when applied to an external electric field in an adiabatic condition. In this paper,
we used the indirect method.

Figure 5 shows the temperature dependence of the ferroelectric hysteresis loop for
a few selected samples, which are BCT11, BCT8, BCT3, and BCT2. For all the samples,
the loops are well saturated, and the remanent polarization decreases with the increase
in temperature, and finally, the loops turn into a slimmer loop (paraelectric state) for all
porosities. In the insets of Figure 5, we present P(T) under different electric fields from
30 kV/cm up to 0 kV/cm. It can be observed that the polarization decreases as a function
of temperature followed by an abrupt drop at Curie temperature for all the ceramics
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irrespective of grain size or porosity. A particular behavior is in the case of BCT8, which
presents a small increase in polarization for temperatures between 300 and 320 K.
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Figure 4. Room temperature P€ hysteresis loops for Ba0.90Ca0.10TiO3 ceramics.
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To calculate the adiabatic electrocaloric temperature change (∆T), the Maxwell relation
was used:

∆T = − T
ρCE

∫ E2

E1

(
∂P
∂T

)
E

dE (1)

where ρ is the density of the ceramics, CE is the specific heat capacity at a fixed field, and
E1 and E2 represent the limits for the applied electric fields. The values for the specific
heat of the dense sample are taken from the literature (CE = 0.40 J/gK) [27], and the porous
ceramics are calculated from [28]:

C′E = CExβ (2)

β = 1−
ρporous

ρdense
(3)

because the specific heat of pores is less than dense materials, resulting in a decrease in
the specific heat of porous ceramics. Figure 6 shows ∆T as a function of temperature for
all BCT ceramics at a few selected applied fields. Irrespective of porosity or grain size, all
the samples have the maximum ∆T around the ferroelectric–paraelectric phase transition
temperature. Additionally, a few remarks can be made: (i) by increasing the applied field,
the maximum ∆T shifts to higher temperatures because the transition temperatures also
shift to higher temperatures with fields, as already shown in our previous papers [21,29];
(ii) BCT8 and BCT2 present small peaks around between 300 and 320 K that correspond
to peaks in P(T) dependences. These are not field-dependent and cannot be attributed to
a structural phase transition; (iii) BCT8, BCT7, and BCT3 have the largest values of ∆T
(almost the same). Considering that these ceramics have a variation of density of 5% and
grain size from 3 µm to 10 µm, it seems that the effect of porosity was canceled by the
grain sizes.

To compare our results with similar systems reported in the literature, the electrocaloric
responsivity (ζ = ∆T/∆E) was calculated and the results are presented in Figure 7 for all
samples. In our case, the maximum of ζ is 0.56 K mm/kV, which is much higher than the
0.49 K mm/kV reported for the same composition by the direct method [18] and 0.17 K
mm/kV for Ba0.8Ca0.2TiO3 [19]. This result is also very good in comparison with another
barium titanate solid solution, single or double substituted [30–32].
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4. Conclusion

Ba0.90Ca0.10TiO3 ceramics with a porosity between 21% and 2% and grain sizes from
1.5 µm–10s of µm were prepared by solid-state reaction. The samples present very good
room temperature dielectric properties with permittivity larger than 800 and dielectric
losses below 5%. All the samples have well-saturated hysteresis loops with a regular
increase in loop area and remanent and saturation polarization with density and grain sizes.
The maximum electrocaloric responsivity was 0.56 Kmm/kV obtained for three different
samples with densities of approximately 93% r.d and grain sizes larger than three µm. This
response is larger than others reported in the literature for similar materials. In summary,
we can conclude that Ba0.90Ca0.10TiO3 ceramics with a density larger than 90% and grain
sizes of a few µm are suitable for electrocaloric devices.
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