Spark Plasma Sintered Soft Magnetic Composite Based on Fe-Si-Al Surface Oxidized Powders
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fe-Si-Al Powder Obtained by Mechanical Alloying
3.1.1. Structural Investigation by X-ray Diffraction
3.1.2. Powder Morphology Investigation by Scanning Electron Microscopy
3.1.3. Local Chemical Homogeneity–Energy Dispersive X-ray Spectroscopy
3.2. Fe-Al-Si@oxide Core-Shell Powder
3.3. Spark Plasma Sintered Composite Compacts
3.3.1. Compacts’ Microstructure and Density
3.3.2. Chemical Elements’ Distribution
3.3.3. Phases in SPSed Compacts
3.4. DC and AC Magnetic Properties of SPSed Toroidal Magnetic Cores. Electrical Resistivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamichhane, T.N.; Sethuraman, L.; Dalagan, A.; Wang, H.; Keller, J.; Paranthaman, M.P. Additive manufacturing of soft magnets for electrical machines—A review. Mater. Today Phys. 2020, 15, 100255. [Google Scholar] [CrossRef]
- Calata, J.N.; Lu, G.Q.; Ngo, K. Soft Magnetic Alloy–Polymer Composite for High-Frequency Power Electronics Application. J. Electron. Mater. 2014, 43, 126–131. [Google Scholar] [CrossRef]
- Birčáková, Z.; Füzer, J.; Kollár, P.; Streckova, M.; Szabó, J.; Bureš, R.; Fáberová, M. Magnetic properties of Fe-based soft magnetic composite with insulation coating by resin bonded Ni-Zn ferrite nanofibers. J. Magn. Magn. Mater. 2019, 485, 1–7. [Google Scholar] [CrossRef]
- Onderko, F.; Birčáková, Z.; Dobák, S.; Kollár, P.; Tkáč, M.; Fáberová, M.; Füzer, J.; Bureš, R.; Szabó, J. Magnetic properties of soft magnetic Fe@SiO2/ferrite composites prepared by wet/dry method. J. Magn. Magn. Mater. 2022, 543, 168640. [Google Scholar] [CrossRef]
- Ding, W.; Wu, R.; Xiu, Z.; Chen, G.; Song, J.; Liao, Y.; Wu, G. Effect of Iron Particle Size and Volume Fraction on the Magnetic Properties of Fe/Silicate Glass Soft Magnetic Composites. J. Supercond. Nov. Magn. 2014, 27, 435–441. [Google Scholar] [CrossRef]
- Evangelista, L.L.; Ramos Filho, A.I.; Silva, B.S.; Hammes, G.; Binder, C.; Klein, A.N.; Drago, V. Magnetic properties optimization of an iron-based soft magnetic composite coated by nano-ZnO and boron oxide. J. Magn. Magn. Mater. 2021, 539, 168319. [Google Scholar] [CrossRef]
- Neamțu, B.V.; Irimie, A.; Popa, F.; Gabor, M.S.; Marinca, T.F.; Chicinas, I. Soft magnetic composites based on oriented short Fe fibres coated with polymer. J. Alloys Compd. 2020, 840, 155731. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, B.; Chen, D.; Yang, Z.; Jiang, S.; Wang, J.; Wu, Z.; Li, G.; Li, Y.; Fan, X.; et al. Preparation and magnetic performance optimization of FeSiAl/Al2O3–MnO–Al2O3 soft magnetic composites with particle size adjustment. J. Mater. Sci. Mater. Electron. 2022, 33, 850–860. [Google Scholar] [CrossRef]
- Inoue, A.; Kong, F. Encyclopedia of Smart Materials; Wiley-VCH: Amsterdam, The Netherlands, 2022; Chapter 5; pp. 10–23. [Google Scholar] [CrossRef]
- Wang, W.; Ma, T.; Yan, M. Microstructure and magnetic properties of nanocrystalline Co-doped. Sendust alloys prepared by melt spinning. J. Alloys Compd. 2008, 459, 447–451. [Google Scholar] [CrossRef]
- Kim, S.S. Influence of magnetic and dielectric loss of polymer composites containing magnetic flake particles (Sendust, Permalloy) on noise absorption in microstrip lines. Res. Chem. Intermed. 2014, 40, 2553–2558. [Google Scholar] [CrossRef]
- Luo, F.; Fan, X.; Luo, Z.; Hu, W.; Li, G.; Li, Y.; Liu, X.; Wang, J. Ultra-low inter-particle eddy current loss of Fe3Si/Al2O3 soft magnetic composites evolved from FeSiAl/Fe3O4 core-shell particles. J. Magn. Magn. Mater. 2019, 484, 218–224. [Google Scholar] [CrossRef]
- Wang, J.; Fan, X.; Wu, Z.; Li, G. Synthesis, microstructure and magnetic properties of Fe3Si0.7Al0.3@SiO2 core–shell particles and Fe3Si/Al2O3 soft magnetic composite core. J. Solid State Chem. 2015, 231, 152–158. [Google Scholar] [CrossRef]
- Fan, X.; Wang, J.; Wu, Z.; Li, G. Core-shell structured FeSiAl/SiO2 particles and Fe3Si/Al2O3 soft magnetic composite cores with tunable insulating layer thicknesses. Mater. Sci. Eng. B 2015, 201, 79–86. [Google Scholar] [CrossRef]
- Amoohadi, M.; Mozaffari, M. A simple method to insulate nanostructure Sendust alloy, suitable for mid-high frequency applications. Phys. B Condens. Matter. 2020, 583, 411798. [Google Scholar] [CrossRef]
- Yang, Z.H.; Li, Z.W.; Yang, Y.H.; Liu, L.; Kong, L.B. Dielectric and magnetic properties of NiCuZn ferrite coated Sendust flakes through a sol-gel approach. J. Magn. Magn. Mater. 2013, 331, 232–236. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Jiang, W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2013, 39, 103–112. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhang, Z.H.; Cheng, X.W.; Wang, F.C.; Zhang, Y.F.; Li, S.L. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. 2020, 191, 108662. [Google Scholar] [CrossRef]
- Marinca, T.F.; Chicinaş, H.F.; Neamţu, B.V.; Popa, F.; Chicinaş, I. Reactive spark plasma sintering of mechanically activated α-Fe2O3/Fe. Ceram. Int. 2017, 43, 4281–14291. [Google Scholar] [CrossRef]
- Marinca, T.F.; Popa, F.; Neamțu, B.V.; Prică, V.C.; Chicinaș, I. Permalloy/alumina soft magnetic composite compacts obtained by reaction of Al-permalloy with Fe2O3 nanoparticles upon spark plasma sintering. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Geng, K.; Xie, Y.; Yan, L.; Yan, B. Fe-Si/ZrO2 composites with core-shell structure and excellent magnetic properties prepared by mechanical milling and spark plasma sintering. J. Alloys Compd. 2017, 718, 53–62. [Google Scholar] [CrossRef]
- Showkat Ali, K.; Karunanithi, R.; Prashanth, M.; Sivasankaran, S.; Subramanian, B.; Siddhi Jailani, H. Structure and mechanical properties of in-situ synthesized α-Ti/TiO2/TiC hybrid composites through mechanical milling and spark plasma sintering. Ceram. Int. 2022, 48, 11215–11227. [Google Scholar] [CrossRef]
- Shkodich, N.F.; Kuskov, K.V.; Sedegov, A.S.; Kovalev, I.D.; Panteleeva, A.V.; Vergunova, Y.S.; Scheck, Y.B.; Panina, E.; Stepanov, N.; Serhiienko, I.; et al. Refractory TaTiNb, TaTiNbZr, and TaTiNbZrX (X = Mo, W) high entropy alloys by combined use of high energy ball milling and spark plasma sintering: Structural characterization, mechanical properties, electrical resistivity, and thermal conductivity. J. Alloys Compd. 2022, 893, 162030. [Google Scholar] [CrossRef]
- Marinca, T.F.; Neamţu, B.V.; Popa, F.; Tarţa, V.F.; Pascuta, P.; Takacs, A.F.; Chicinaş, I. Synthesis and characterization of the NiFe2O4/Ni3Fe nanocomposite powder and compacts obtained by mechanical milling and spark plasma sintering. Appl. Surf. Sci. 2013, 285, 2–9. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Scherrer, P. Estimation of the size and structure of colloidal particles. Nachr. Ges. Wiss. Göttingen 1918, 2, 96–100. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH Verlag: Weinheim, Germany, 2003. [Google Scholar]
- Marinca, T.F.; Chicinaș, I.; Isnard, O.; Popescu, V. Nanocrystalline/nanosized Ni1−γFe2+γO4 ferrite obtained by contamination with Fe during milling of NiO–Fe2O3 mixture. Structural and magnetic characterization. J. Am. Ceram. Soc. 2013, 96, 469–475. [Google Scholar] [CrossRef]
- Neamțu, B.V.; Belea, A.; Popa, F.; Ware, E.; Marinca, T.F.; Vintiloiu, I.; Badea, C.; Pszola, M.; Nasui, M. Properties of soft magnetic composites based on Fe fibres coated with SiO2 by hydrothermal method. J. Alloys Compd. 2020, 826, 154222. [Google Scholar] [CrossRef]
- Adamczyk, A.; Długon, E. The FTIR studies of gels and thin films of Al2O3–TiO2 and Al2O3–TiO2–SiO2 systems. Spectrochim. Acta A 2012, 89, 11–17. [Google Scholar] [CrossRef]
- Yao, Z.; Peng, Y.; Xia, C.; Yi, X.; Mao, S.; Zhang, M. The effect of calcination temperature on microstructure and properties of FeNiMo@Al2O3 soft magnetic composites prepared by sol-gel method. J. Alloys Compd. 2020, 827, 154345. [Google Scholar] [CrossRef]
- Farahmandjou, M.; Khodadadi, A.; Yaghoubi, M. Low Concentration Iron-Doped Alumina (Fe/Al2O3) Nanoparticles Using Co-Precipitation Method. J. Supercond. Nov. Magn. 2020, 33, 3425–3432. [Google Scholar] [CrossRef]
- Atrak, K.; Ramazani, A.; Fardood, S.T. Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes. J. Mater. Sci. Mater. Electron. 2018, 29, 8347–8353. [Google Scholar] [CrossRef]
- Okumura, H.; Laughlin, D.E.; McHenry, M.E. Magnetic and structural properties and crystallization behavior of Si-rich FINEMET materials. J. Magn. Magn. Mater. 2003, 267, 347–356. [Google Scholar] [CrossRef]
- Bozorth, R.M. Ferromagnetism, 3rd ed.; IEEE Press: Piscataway, NJ, USA, 1993. [Google Scholar]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; IEEE Press&Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Streckova, M.; Szabo, J.; Batko, I.; Batkova, M.; Bircakova, Z.; Fuzer, J.; Kollar, P.; Kovalcikova, A.; Bures, R.; Medvecky, L. Design of Permalloy–ferrite–polymer soft magnetic composites doped by ferrite nanoparticles and visualization of magnetic domains. Bull. Mater. Sci. 2020, 43, 37. [Google Scholar] [CrossRef]
Magnetic Core | Maximum Relative Permeability | Maximum Induction (T) | Coercive Field (A/m) | Electrical Resistivity (Ω·m) | Density (g/cm3) |
---|---|---|---|---|---|
SPS 800 °C | 18.6 | 0.17 | 173 | 2.66 × 10−1 | 5.19 ± 0.1% |
SPS 900 °C | 23.6 | 0.22 | 256 | 3.75 × 10−3 | 5.61 ± 0.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinca, T.F.; Neamțu, B.V.; Popa, F.; Mesaroș, A.; Chicinaș, I. Spark Plasma Sintered Soft Magnetic Composite Based on Fe-Si-Al Surface Oxidized Powders. Materials 2022, 15, 7875. https://doi.org/10.3390/ma15227875
Marinca TF, Neamțu BV, Popa F, Mesaroș A, Chicinaș I. Spark Plasma Sintered Soft Magnetic Composite Based on Fe-Si-Al Surface Oxidized Powders. Materials. 2022; 15(22):7875. https://doi.org/10.3390/ma15227875
Chicago/Turabian StyleMarinca, Traian Florin, Bogdan Viorel Neamțu, Florin Popa, Amalia Mesaroș, and Ionel Chicinaș. 2022. "Spark Plasma Sintered Soft Magnetic Composite Based on Fe-Si-Al Surface Oxidized Powders" Materials 15, no. 22: 7875. https://doi.org/10.3390/ma15227875
APA StyleMarinca, T. F., Neamțu, B. V., Popa, F., Mesaroș, A., & Chicinaș, I. (2022). Spark Plasma Sintered Soft Magnetic Composite Based on Fe-Si-Al Surface Oxidized Powders. Materials, 15(22), 7875. https://doi.org/10.3390/ma15227875