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Abstract: Biodegradable pure iron has gained significant interest as a biomedical material. For
biodegradable implant applications, the biodegradation behavior of pure iron is important. In this
work, the influence of ferrite grain size on the biodegradation rate for pure iron was studied by
means of heat treatment that was annealed below the austenized temperature using as-forged pure
iron. Grains were coarsened and a spectrum of ferrite grain sizes was gained by changing the
annealed temperature. Biodegradation behavior was studied through weight loss tests, electrochem-
ical measurements and microscopic analyses. Hardness (HV) and biodegradation rate (Pi or Pw)
were linearly ferrite grain size-dependent: HV = 58.9 + 383.2d−

1
2 , and Pi = −0.023 + 0.425d−

1
2 or

Pw = 0.056 + 0.631d−
1
2 . The mechanism by which the role of grain size on biodegradation rate was

attributed to the ferrite grain boundary traits.

Keywords: pure iron; annealing; grain refinement; biodegradation; implant material

1. Introduction

Biodegradable pure iron has recently gained significant interest in terms of its use
in medical devices, such as bone scaffolds, fixtures and stents due to its good mechanical
properties and biocompatibility in physiological environments, which provides sufficient
temporary support to resist the applied load and effectively eliminates the potential risk
of long-term complications through the progressive degradation in the body [1–3]. The
degradable and absorbable functions for pure iron are highly desired because they do not
need a secondary surgical procedure for the removal, which easily increases risk of the
infection, surgical cost, and the likelihood of patient complications.

Work concerning the biodegradable implant applications of pure iron has involved in
the conventional manufacturing procedures, such as microwave sintering, laser melting,
casting and deformation processing [4–7]. Manufacturing processes play a fundamen-
tal role towards the biodegradation of pure iron. Zhao et al. comparatively studied the
biodegradation behavior of pure iron prepared by microwave sintering (MS) and laser
melting (LM) and found that the biodegradation rate of the MSed Fe was higher than that
of the LMed Fe and their biodegradation rates were higher than that of the as-cast Fe [4].
Carluccio et al. [5] reported that the biodegradation rate of the pure iron manufactured via
selective laser melting was over 50% higher than the corresponding cast equivalent. Bagher-
ifard et al. [6] found that the inclined and multi-directional surface impacts accelerated the
biodegradation of pure iron. Obayi et al. [7] studied the influence of the cross-rolling on
the biodegradation of pure iron as biodegradable material for medical implants and found
that the biodegradation was more uniform for the cross-rolled samples while the biodegra-
dation rates between the cross-rolled samples and the straight-rolled samples did not show
relevant differences in simulated body solution. Such conventional manufacturing methods
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often need further the post processing, such as annealing, to obtain the final product. It is
known that the annealing of the metals has an important impact on the microstructural
factors, such as grain szie, sub-structures, internal stresses, macro-segregations, impure in-
clusions and second phase particles, each of which might have an impact on the mechanical
properties and the degradation response. The annealing of pure iron only needs reheating
to a temperature below the austenized temperature for several hours, followed by air
cooling. The mechanical properties and biodegradation behavior of pure iron are important
for biodegradable implant applications. It is well established that the mechanical properties
of pure iron were significantly influenced by annealing [8]. However, only little work has
reported on the biodegradation behavior of pure iron upon annealing [9], and the details of
grain growth upon annealing and its influence on biodegradation rate for pure iron is not
yet fully understood, which restrains pure iron as biodegradable implant materials to meet
the requirements of clinical applications. The biodegradation rate dependence of the grain
size of pure iron is worthy of study. However, most work to date has only studied coarse
and/or fine grain size but not a spectrum of grain size.

In this work, pure iron was annealed at different annealing temperature to obtain a
spectrum of ferrite grain size, and grain growth upon annealing and its influence on the
biodegradation rate of pure iron was studied. The mechanism by which the role of the
ferrite grain size on the biodegradation rate of pure iron was revealed. This work provides
a reference to regulate the biodegradation behavior of pure iron through annealing and
facilitates its use in biodegradable implant applications.

2. Experiments

Pure iron (provided by Institute of Metal Research, Chinese Academy of Science,
Shenyang city, China) was used in this work at a high purity, with a chemical composition
(wt.%) of 0.006 C, 0.002 Mn, 0.003 Si, 0.005 P, 0.005 S, 0.003 Ni, 0.002 Cr, 0.009 Ti, 0.002 Cu
and Fe balance. Specimens of 10 mm diameter and 3 mm length were cut from the forged
rods, which were hot-forged from the initial as-cast ingots. Annealing was performed
for the forged specimens at 765, 785 and 805 ◦C for 2 h, followed by furnace cooling to
650 ◦C then air cooling, respectively. A schematic annealing procedure diagram is shown
in Figure 1. Hereafter, three annealed conditions are designed as Fe765, Fe785 and Fe805,
respectively. The microstructure was examined by optical microscopy by etching the
mechanically polished surfaces of metallographic specimens using nitric acid alcohol with
a 2% concentration. The microstructure was also characterized by electron back-scattered
diffraction (EBSD). The hardness was tested using a digital Vickers indenter.
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Potentiodynamic polarization test was conducted in Hank’s solution at 37 ± 0.5 ◦C
through an Autolab system using a common three-electrode system with platinum as the
counter electrode, saturated calomel as reference electrode (SCE) and the specimen as
working electrode. The electrochemical impedance spectrum (EIS) was measured after
open-circuit potential (OCP) had been stable for 3600 s. The biodegradation rate, Pi
(mm y−1), was calculated by Equation (1) using the corrosion current density measured,
icorr (mA cm−2), from potentiodynamic polarization curves [10,11]:

Pi = 11.16icorr (1)

Immersion test was performed in Hank’s solution for 14 days at 37 ± 0.5 ◦C. The
weight loss rate, ∆W (mg cm−2 d−1), was calculated by Equation (2), and the biodegradation
rate, Pw (mm y−1), was calculated by Equation (3), respectively [10,11].

∆W = (Wb −Wa)/AT (2)

Pw = 3.67 ∆W
/

D (3)

where Wb and Wa are the specimen mass before exposure and after exposure, respectively;
A is the specimen area exposed to the corrosive solution (cm2); T is the time (d); and D is the
density of the material in g/cm3 (7.87 g/cm2 for pure iron). Corroded surface morphology
was observed using a scanning electron microscopy and corroded topographic map was
characterized using a 3D-measuring laser microscope.

3. Results
3.1. Grain Growth and Hardness Variation

Figure 2 shows the optical micrographs of the initial forged condition (Figure 2a)
and the different annealed conditions (Figure 2b–d). There were no apparent inclusions
or second phase particles in the matrix for all the microstructures. This indicated that
the experimental pure iron was very clean and the influence of impure inclusions on its
biodegradation was expected to be negligible.

As shown in Figure 2a, the initial forged condition presented some sub-structures
or sub-grains in microstructure. Figure 3a,b shows the EBSD-characterized ferrite grain
boundaries and the IPF map of the initial forged condition. The black lines indicated
mis-orientations over 15◦ between the adjacent points (i.e., high angle grain boundary),
and the green lines reflected the mis-orientations between 1 and 15◦ (i.e., low angle grain
boundary). High angle grain boundaries were accompanied by large numbers of low
angle grain boundaries. Therefore, the forged pure iron essentially accumulated a large
number of sub-structures or sub-grains during deformation. When the forged pure iron
was annealed, the nuclei were generated at the subgrain or grain boundaries of the original
deformed microstructure, and the new undistorted ferrite grains with little residual stress
and low dislocation density were formed, i.e., the growth of ferrite grains [12]. All the an-
nealed microstructures consisted of quasi-polygonal ferrite grains, as shown in Figure 2b–d.
Figure 3c,d shows the EBSD-characterized ferrite grain boundaries and the IPF map of
the representative annealed condition of Fe765. The low angle grain boundaries almost
disappeared in microstructure.
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Figure 4 shows the average ferrite grain size in the initial forged condition and sub-
sequent annealed conditions. Average ferrite grain size in the initial forged condition
was 27 µm. A pronounced evolution of the ferrite grain size was presented when the
annealed temperature changed. The driving force of the regenerated undistorted ferrite
grains became higher at a higher annealed temperature, forming the new undistorted
larger grains. As annealed at 765 ◦C, average ferrite grain size was 33 µm. The increasing
annealed temperature caused the coarsening of the ferrite grain size. As annealed at 785 ◦C
and 805 ◦C, the average ferrite grain size was 43 µm and 82 µm, respectively. Figure 4 also
depicts the Vickers hardness values of the forged and different annealed conditions. For
the forged condition, the hardness was 134.6 HV. The hardness changed when the annealed
temperature changed. As annealed at 765 ◦C, the hardness was 123.9 HV. As annealed at
785 ◦C and 805 ◦C, the hardness was 116.1 HV and 102.2 HV, respectively. The hardness
decreased with the increase of the annealed temperature. The ferrite grain size increased
with the increase of the annealed temperature, as mentioned above. Therefore, the hardness
decreased with increasing the ferrite grain size. The grain boundaries blocked the disloca-
tion movement. A smaller grain size presented a larger grain boundary proportion, with
a more obvious hindrance [13]. The regression equation that described the relationship
between ferrite grain size and hardness was obtained as Equation (4) had a correlation
coefficient in 0.99, using all the measured data.

HV = 58.9 + 383.2d−
1
2 (4)
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Figure 4. Average grain size and Vickers hardness at different annealed conditions (Fe765, Fe785, and
Fe805), with the forged condition (Forg-Fe) as a comparison.

The hardness value of pure iron was linearly ferrite grain size-dependent, following a
so-called Hall–Petch relation [14].

3.2. Biodegradation

Figure 5a depicts potentiodynamic polarization curves for the specimens at different
annealed temperatures in Hank’s solution. The corrosion potential (Ecorr) value had little
change for the specimens at different annealed temperature. The Ecorr value can reflect
the thermodynamic information of the corrosion and can thus reflect the biodegradable
tendency. The Ecorr value of the metal is related to such internal states as the residual
stress, the deformed twins and texture, etc [15]. A similar Ecorr value for the specimens at
different annealed temperatures in the present work indicated that there had been a similar
internal state, which means that the designed annealed conditions excluded the effects
of other structure factors from the processing, such as sub-structures, internal stresses,
residual stress, twins and texture. The icorr values of the specimens at the different annealed
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temperature had relatively obvious differences, which were measured from the linear
cathodic branch of polarization potential curves according to Tafel extrapolation and are
shown in Table 1. The icorr value decreased with the increase of the annealed temperature.
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Table 1. Polarization data of the different annealed conditions in Hank’s solution.

Specimens No. Ecorr (VSCE) icorr (µA/cm2)

Fe765 −0.587 4.686
Fe785 −0.574 3.514
Fe805 −0.586 2.196

Figure 5b,c shows the electrochemical impedance spectra (EIS) data of the specimens
at the different annealed temperature in Hank’s solution. The shape of the Nyquist plots are
similar for the specimens at the different annealed temperature, with one single capacitive
loop in the measured frequency range. The corresponding capacitive loop diameter was
involved in the anti-polarization. A larger capacitive loop diameter reflected a lower
corrosion rate [16,17]. The diameter size order increased with the increase of the annealed
temperature. The equivalent circuit that can be used to study the Nyquist spectra is
illustrated in Figure 5d. The corresponding results are shown in Table 2, in which Rt is the
charge transfer resistance, Rs is the solution resistance, CPEdl is the double-layer capacitor,
Rf is the film resistance and CPEf is the capacitance that reflects the effect of the surface
film. The Rt value order is Fe805 > Fe785 > Fe765, corresponding to the size order of the
above-mentioned EIS spectra diameter.
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Table 2. Parameters obtained from the simulation circuit in Hank’s solution.

Specimen No. RS (Ω cm2) CPEfilm-T
(Ω−1 s−n/cm2) n Rf (Ω cm2) CPEct-T

(Ω−1 s−n/cm2) n Rt (Ω cm2)

Fe765 20.47 6.339 × 10−5 0.692 15.11 1.275 × 10−4 0.724 2.822 × 103

Fe785 21.79 1.59 × 10−4 0.708 14.38 6.18 × 10−6 0.883 3.40 × 103

Fe805 19.62 4.272 × 10−5 0.747 8.964 1.335 × 10−4 0.775 4.915 × 103

Figure 6 shows the corroded surface morphologies and topographic maps of the
specimens at the different annealed temperatures after removing the products of the
biodegradation, which were immersed in Hank’s solution for 14 days. The corroded
surfaces were relatively intact and compact, and the dimly discernible biodegradation
became lighter with the increase of the annealed temperature, as shown in Figure 6a–c. The
corroded topographic maps, as shown in Figure 6a1–c1, agreed with the corresponding
corroded surface morphologies. There were some preferential small and shallow pits when
annealed at 765 ◦C and 785 ◦C (Figure 6a1,b1), while there was relatively more uniform on
a macro-scale when annealed at 805 ◦C (Figure 6c1).
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Table 3 shows the biodegradation rate, Pi, of the specimens at different annealed
temperatures that were calculated by Equation (1) using the measured icorr data, and the
biodegradation rate, Pw, of the specimens at the different annealed temperatures that were
calculated by Equation (2) and Equation (3) using the weight loss data. The corresponding
initially forged data were also listed in Table 3 as the controls. The Pi value or the Pw value
of the initial forged condition was relatively high. Those of the specimens at the different
annealed temperature decreased with the increase of the annealed temperature.

Table 3. Biodegradation rate of the initial forged and different annealed conditions in Hank’s solution.

Specimen No. Pi (mm y−1) Pw (mm y−1)

Initial forged condition 0.0718 0.207 ± 0.6
Fe765 0.0523 0.170 ± 0.5
Fe785 0.0392 0.147 ± 0.3
Fe805 0.0245 0.128 ± 0.3

4. Discussion
4.1. Grain Growth upon Annealing

Ferrite grain growth upon annealing is a cannibalistic process. The growth of some
grains must be accommodated by the shrinkage and ultimate disappearance of other
grains. The increase of the average ferrite grain size decreases the area of grain boundary
and thus decreases the energy of grain boundary. For pure iron, the circumstance of the
grain grown upon annealing is almost entirely decided by the decrease of grain boundary
energy, because the influence of other structural factors, such as impure inclusions, macro-
segregations and second phase particles, may be negligible. The EBSD characterized ferrite
grain boundaries well described the new undistorted ferrite grains with little residual stress
and low dislocation density upon annealing, i.e., the growth of ferrite grains. Therefore, the
driving force of the ferrite grain growth is the reduction of the grain boundary energy [18],
indicated as:

Fd = 2
γ

R
(5)

where Fd is the driving force of grain growth, γ is grain boundary energy and R is grain size.
From a thermo-dynamic viewpoint, the grain growth kinetic is assumed to obey an

Arrhenius relation:
dR

/
dt = AFdexp(−Q/KT) (6)

where A is constant, Q is the activation energy of grain growth, k is gas constant and T is
the absolute temperature.

Substituting Equation (5) into Equation (6)

dR
/

dt = 2Aγexp(−Q/kT)/R (7)

Based on some calculus relation assumptions

R2 = 4Aγ(t− C)exp(−Q/kT) (8)

where C is calculus constant. Therefore, the ferrite grain size increases with the increasing
annealed temperature, which is substantiated by the present results, as depicted in Figure 2.

4.2. Biodegradation

The biodegradation rate of the specimens at the different annealed temperatures in
Hank’s solution was different, as stated above. This difference in biodegradation rate
was primarily due to the evolution of ferrite grain size caused by annealing. The evo-
lution of the ferrite grain size produced the change of the ferrite grain boundary area.
The micro-segregation of the ferrite grain boundary occurred in pure iron (99.9%). The
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standard electrode potential of iron is −0.44 V, which is usually higher than the main
metal impurities in pure iron, such as Cr (−0.74), Mn (−1.179), Ti (−1.630) and Al (−1.663).
Therefore, the potential at grain boundary with more metal impurities is lower than that of
the pure iron matrix, and iron acts as cathode and grain boundary as anode. Reducing grain
size is equivalent to increasing grain boundary area [19]. At this time, the biodegradation
resistance decreases with decreasing grain size, because the biodegradation resistance of the
grain boundary is low and the increase of grain boundary area reduces the biodegradation
resistance. Therefore, the ferrite grain boundary largely influences the biodegradation of
pure iron. Furthermore, the ferrite grain size (d) increased with increasing the annealed
temperature, while the biodegradation rate (Pi or Pw) decreased with increasing the an-
nealed temperature. Figure 7 depicts the plots of Pi versus d−1/2 and Pw versus d−1/2, in
which the initial forged condition is also used as a control. The obtained plots synchronized
well to achieve a monotonic character. The relationship between the Pi and the d was
expressed as Equation (9) with a correlation coefficient of 0.97 and that between the Pw
and the d was expressed as Equation (10) with a correlation coefficient of 0.94. As a result,
the biodegradation rate of pure iron was linearly ferrite grain size-dependent, following a
so-called Hall–Petch relation [14].

Pi = −0.04 + 0.55d−
1
2 (9)

Pw = 0.02 + 0.91d−
1
2 (10)
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4.3. Safe Intake and Toxicity

Acceptable safe intake and toxicity is essential for a biodegradable implant metal,
which mainly relies on the biodegradation product toxicity [20], the released concentration
of the metal ions [21], and the metal ions themselves against the cell metabolic activi-
ties [22]. As the biodegradation of pure iron occurs, the anodic reaction is expressed
as: Fe− 2e→ Fe2+ and the cathodic reaction is expressed as: 2H2O + O2 + 4e→ 4OH−1 .
Therefore, Fe(OH)2 is obtained according to Fe2+ + 2OH−1 → 2Fe(OH)2 and subsequently
the obtained Fe(OH)2 is easily oxidized to form Fe(OH)3 due to its instability according
to 4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3 . Furthermore, the Ca/P compounds usually pre-
cipitate on the hydroxide layer surface as the biodegradation proceeds [23]. All these
biodegradation products are nontoxic [24]. The concentration of the released iron ions
immersed in Hank’s solution for 24 h was 2.52 µg/(mL day) for the Fe765, which was the
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maximum in the present annealed conditions due to its relatively high biodegradation
rate. Iron as an element is essential for the human body. Fe(OH)3 or Fe3+ was produced
during the biodegradation as described above. Fe3+ binds to the transferrin exclusively,
and subsequently the iron-loaded transferrins are transported to the cell surface, where the
iron ion is absorbed due to the endocytosis [25]. The average daily released iron ion concen-
tration of Fe765 is maximum in the present annealed conditions and is 2.52 µg/(mL day) as
mentioned above, much lower than the value of the iron half-maximal inhibitory concentra-
tion (IC50) [21]. As reported, an iron ion concentration of less than 10 µg/(mL day) had a
favorable influence on the endothelial cell metabolic activity and less than 50 µg/(mL day)
had little inhibitory influence on the endothelial cell metabolic activities [26]. Therefore,
the biocompatibility of the pure iron experiencing annealing is acceptable.

5. Conclusions

1. As annealed, the nuclei were generated at the sub-grain or grain boundaries of the
original deformed microstructure, and the new undistorted ferrite grains with little
residual stress and low dislocation density were formed.

2. A spectrum of ferrite grain size was gained by changing the annealed tempera-
ture. Hardness (HV) and biodegradation rate (Pi or Pw) were linearly ferrite grain
size-dependent:

3. HV = 58.9 + 383.2d−
1
2 ; and Pi = −0.04 + 0.55d−

1
2 or Pw = 0.02 + 0.91d−

1
2 .

4. The biocompatibility of the pure iron experiencing annealing is acceptable.
5. The obtained results were quite helpful for better regulating the biodegradation of

biodegradable pure iron through annealing.
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