Investigating Microstructural Evolution and Its Influence on Tribological Behaviors of In-Situ Formed VCp Reinforced Iron-Based Composites with Variable Mn Content
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Phase Constitution
3.2. Hardness
3.3. Tribological Behaviors
4. Discussion
4.1. Influence Mechanism of Mn Content on Microstructure
4.2. Wear Mechanism
5. Conclusions
- Mn had a positive effect on adjusting the shape, size, and distribution of VC. The shape of VC was changed from dendrite grains of the 1.5 Mn sample to block grains of the 4.5 Mn sample. In addition, the size of VC particles decreased gradually from ~50 μm to ~5 μm with increasing Mn content.
- Due to a stronger inhibition effect of Mn on the diffusion rate of other alloying elements and the formation of titanium carbide, their synergistic effect could contribute to nucleation and growth mechanism. With increasing Mn content, the nucleation mechanism was transferred from homogeneous nucleation to heterogeneous nucleation. Furthermore, the addition of Mn also contributed to the reduction of Ms and the stability of retained austenite.
- With increasing Mn content, hardness could express increase first and then decrease; the maximum value existed in the 3.0 Mn sample, its value is 3.6% and 72.8% higher than that of the 1.5 Mn and 4.5 Mn samples, respectively. Higher microhardness can be attributed mainly to coarse carbides, bcc-structure matrix, and the existence of TiC with higher hardness. However, the FCC-structure matrix and tiny carbide could not withstand a relatively heavy load and thus resulted in the entire collapse and the lower microhardness.
- Hardness and friction coefficient could contribute to wear resistance. The friction coefficient of the 1.5 Mn, 3.0 Mn, and 4.5 Mn samples were 0.45, 0.38, and 0.48, respectively. Meanwhile, the minimum wear rate of 1.77 × 10−6 mm3/(N·m) appeared in the 3.0 Mn sample. In addition, the relative wear resistance of the 3.0 Mn sample was 64.4% and 344.1% higher than that of the 1.5 Mn and 4.5 Mn samples. With increasing Mn content, their wear mechanism could be transformed from primary adhesive wear to main abrasive wear.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, T.X.; Li, Z.; Huang, Y.Q.; Li, Y.; Xiao, P. Microstructure and wear properties of SiC woodceramics reinforced high-chromium cast iron. Ceram. Int. 2019, 46, 2592–2601. [Google Scholar] [CrossRef]
- Chen, H.; Gu, D.; Kosiba, K.; Lu, T.; Kühn, U. Achieving high strength and high ductility in WC-reinforced iron-based composites by laser additive manufacturing. Addit. Manuf. 2020, 35, 101195. [Google Scholar] [CrossRef]
- Gualtieri, T.; Bandyopadhyay, A. Additive manufacturing of compositionally gradient metal-ceramic structures: Stainless steel to vanadium carbide. Mater. Des. 2018, 139, 419–428. [Google Scholar] [CrossRef]
- Abraham, S.J.; Dinaharan, I.; Selvam, J.D.R.; Akinlabi, E.T. Microstructural characterization of vanadium particles reinforced AA6063 aluminum matrix composites via friction stir processing with improved tensile strength and appreciable ductility. Compos. Commun. 2019, 12, 54–58. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.S.; Ding, Y.C. Production of (Ti,V)C reinforced Fe matrix composites. Mater. Sci. Eng. A 2007, 454–455, 75–79. [Google Scholar]
- Wang, X.H.; Song, S.L.; Qu, S.Y.; Zou, Z.D. Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process. Surf. Coat. Technol. 2007, 201, 5899–5905. [Google Scholar] [CrossRef]
- Chen, H.Y.; Gu, D.D.; Deng, L.; Lu, T.W.; Kühn, U.; Kosiba, K. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure. J. Mater. Sci. Technol. 2021, 89, 242–252. [Google Scholar] [CrossRef]
- Wei, S.Z.; Zhu, J.H.; Xu, L.J. Research on wear resistance of high speed steel with high vanadium content. Mater. Sci. Eng. A 2005, 404, 138–145. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.L.; Wang, X.H.; Liu, S.S.; Ying, W.L. Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing. Surf. Coat. Technol. 2020, 403, 126445. [Google Scholar] [CrossRef]
- Paraye, N.K.; Ghosh, P.K.; Das, S. A novel approach to synthesize surface composite by in-situ grown VC reinforcement in steel matrix via TIG arcing. Surf. Coat. Technol. 2020, 399, 126129. [Google Scholar] [CrossRef]
- Li, B.; Qian, B.; Xu, Y.; Liu, Z.Y.; Zhang, J.R.; Xuan, F.Z. Additive manufacturing of ultrafine-grained austenitic stainless steel matrix composite via vanadium carbide reinforcement addition and selective laser melting: Formation mechanism and strengthening effect. Mater. Sci. Eng. A 2019, 745, 495–508. [Google Scholar] [CrossRef]
- Bai, H.Q.; Zhong, L.S.; Cui, P.J.; Shang, Z.; Lv, Z.L.; Xu, Y.H. Microstructure and compressive properties of V–V8C7/Fe core-shell rod-reinforced iron-based composite fabricated via two-step in-situ reaction. Vacuum 2020, 176, 109302. [Google Scholar] [CrossRef]
- Zhong, L.S.; Ye, F.X.; Xu, Y.H.; Li, J.S. Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites. Mater. Des. 2014, 54, 564–569. [Google Scholar] [CrossRef]
- Zhao, W.M.; Liu, Z.X.; Ju, Z.L.; Liao, B.; Chen, X.G. Effects of Vanadium and Rare-Earth on Carbides and Properties of High Chromium Cast Iron. Mater. Sci. Forum 2008, 575–578, 1414–1419. [Google Scholar] [CrossRef]
- Xu, L.J.; Wei, S.Z.; Ji, Y.P.; Zhang, G.S.; Li, J.W.; Long, R. Effect of Carbon on Frictional Wear Behaviours of High Vanadium High Speed Steel under Dry Sliding Condition. Mater. Sci. Forum 2010, 654–656, 370–373. [Google Scholar] [CrossRef]
- Wei, S.Z.; Zhu, J.H.; Xu, L.J. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel. Tribol. Int. 2006, 39, 641–648. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.H.; Zhang, S.; Wu, C.L.; Zhang, J.B.; Chen, H.T.; Abdullah, A.O. Design, preparation, microstructure and properties of novel wear-resistant stainless steel-base composites using laser melting deposition. Vacuum 2019, 165, 139–147. [Google Scholar] [CrossRef]
- Moghaddam, E.G.; Karimzadeh, N.; Varahram, N.; Davami, P. Impact–abrasion wear characteristics of in-situ VC-reinforced austenitic steel matrix composite. Mater. Sci. Eng. A 2013, 585, 422–429. [Google Scholar] [CrossRef]
- Moghaddam, E.G.; Karimzadeh, N.; Varahram, N.; Davami, P. Investigation of the Effect of Tungsten Substitution on Microstructure and Abrasive Wear Performance of In Situ VC-Reinforced High-Manganese Austenitic Steel Matrix Composite. Metall. Mater. Trans. A 2013, 44, 3826–3835. [Google Scholar] [CrossRef]
- Chen, P.H.; Li, Y.B.; Li, R.Q.; Jiang, R.P.; Zeng, S.S.; Li, X.Q. Microstructure, mechanical properties, and wear resistance of VCp-reinforced Fe-matrix composites treated by Q&P process. Int. J. Min. Met. Mater. 2018, 25, 1060–1069. [Google Scholar]
- Chen, P.H.; Zhang, Y.; Li, R.Q.; Liu, Y.X.; Zeng, S.S. Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite. Int. J. Min. Met. Mater. 2020, 27, 100–111. [Google Scholar] [CrossRef]
- Chen, P.H.; Zhang, Y.; Zhang, Z.Y.; Li, R.Q.; Zeng, S.S. Tuning the microstructure, mechanical properties, and tribological behavior of in-situ VCp-reinforced Fe―matrix composites via manganese-partitioning treatment. Mater. Today Commun. 2020, 24, 101135. [Google Scholar] [CrossRef]
- Efremenko, V.; Shimizu, K.; Pastukhova, T.; Chabak, Y.; Brykov, M.; Kusumoto, K.; Efremenko, A. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents. Int. J. Mater. Res. 2018, 109, 147–156. [Google Scholar] [CrossRef]
- Efremenko, V.G.; Shimizu, K.; Cheiliakh, A.P.; Pastukhova, T.V.; Chabak, Y.G.; Kusumoto, K. Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method. Int. J. Min. Met. Mater. 2016, 23, 645–657. [Google Scholar] [CrossRef]
- Zong, L.; Guo, N.; Zhang, X.L. Investigation on wear resistance of in-situ (Ti, V)C reinforced Fe-based composite material. Trans. China Weld. Inst. 2017, 38, 10–14. [Google Scholar]
- Xu, L.J.; Wang, F.F.; Zhou, Y.H.; Wang, X.; Chen, C.; Wei, S.Z. Fabrication and wear property of in-situ micro-nano dual-scale vanadium carbide ceramics strengthened wear-resistant composite layers. Ceram. Int. 2020, 47, 953–964. [Google Scholar] [CrossRef]
- Masanta, M.; Shariff, S.M.; Choudhury, A.R. Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2-TiC-Al2O3 composite coating developed by SHS and laser cladding. Mater. Sci. Eng. A 2011, 528, 5327–5335. [Google Scholar] [CrossRef]
- Wang, A.Q.; Xie, J.P.; Li, J.W.; Liu, Z.X.; Wang, W.Y.; Yan, S.Q. Solidification microstructures and mechanism of grain refinement of electrolytic low titanium Al alloys. Trans. Nonferr. Metal. Soc. 2006, 16, s1545–s1551. [Google Scholar]
- Wang, L.W.; Suo, Y.C.; Liang, Z.M.; Wang, D.L.; Wang, Q. Effect of titanium powder on microstructure and mechanical properties of wire + arc additively manufactured Al-Mg alloy. Mater. Lett. 2019, 241, 231–234. [Google Scholar] [CrossRef]
- Mao, H.K.; Li, C.; Dong, Y.; Wang, Y.; Xu, H.; Yu, Q.; Shang, Y.C.; Li, X.F.; Zhao, Z.Y. The effect of Mn on particles morphology and property of 5 wt.% TiB2/Al-4.5Cu-0.4Mn alloys. J. Alloys Compd. 2022, 904, 163907. [Google Scholar] [CrossRef]
- Wu, W.T.; Zhang, Y.S.; Wang, W.H.; Li, K.; Du, S.W.; Yang, W. Mn diffusion in the ferritic Fe-25%Cr Alloy: A First-principles study. Mater. Sci. Eng. B 2022, 286, 116042. [Google Scholar] [CrossRef]
- Sheibani, S.; Najafabadi, M.F. In situ fabrication of Al–TiC Metal Matrix Composites by reactive slag process. Mater. Des. 2007, 28, 2373–2378. [Google Scholar] [CrossRef]
- Wang, X.H.; Cheng, L.; Zhang, M.; Qu, S.Y.; Du, B.S.; Zou, Z.D. Reaction synthesis of (Ti, V) C carbide reinforced Fe based surface composite coating by laser cladding. Surf. Eng. 2009, 25, 211–217. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Yang, Y.L.; Yang, J.; Hao, F.F.; Li, D.; Ren, X.J.; Yang, Q.X. Effect of Ti additive on (Cr, Fe)7C3 carbide in arc surfacing layer and its refined mechanism. Appl. Surf. Sci. 2012, 258, 6653–6659. [Google Scholar] [CrossRef]
- Yan, Y.; Pan, C.L.; Zhang, R.H.; Zhao, C.; Qu, Y.B. The effect of Ti addition on the microstructure and properties of high chromium iron-based coatings. J. Alloys Compd. 2018, 765, 782–790. [Google Scholar] [CrossRef]
- Zhang, G.H.; Chae, J.Y.; Kim, K.H.; Suh, D.W. Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe-1mass%C alloy. Mater. Charact. 2013, 81, 56–67. [Google Scholar] [CrossRef]
- Yang, H.Y.; Dong, E.T.; Zhang, B.Q.; Chen, L.Y.; Jin, Y.X.; Shu, S.L. Effects of alloying elements on the phase constitution and microstructure of in situ SiC/Al composites. Int. J. Mod. Phys. B 2019, 33, 1940048. [Google Scholar] [CrossRef]
- Clarke, C.; Upson, S. A global portrait of the manganese industry-A socioeconomic perspective. Neurotoxicology 2017, 58, 173–179. [Google Scholar] [CrossRef]
- Jacob, R.; Sankaranarayanan, S.R.; Babu, S.P.K. Recent advancements in manganese steels—A review. Mater. Today Proc. 2020, 27, 2852–2858. [Google Scholar] [CrossRef]
- Li, P.; Yang, Y.H.; Shen, D.P.; Gong, M.Y.; Tian, C.; Tong, W. Mechanical behavior and microstructure of hypereutectic high chromium cast iron: The combined effects of tungsten, manganese and molybdenum additions. J. Mater. Res. Technol. 2020, 9, 5735–5748. [Google Scholar] [CrossRef]
- Lis, J.; Lis, A.; Kolan, C. Manganese partitioning in low carbon manganese steel during annealing. Mater. Charact. 2008, 59, 1021–1028. [Google Scholar] [CrossRef]
- Chen, P.H.; Wu, Z.Z.; Huang, Q.; Ji, S.P.; Weng, Y.C.; Wu, Z.C.; Ma, Z.Y.; Chen, X.; Weng, M.Y.; Fu, R.K.Y.; et al. A quasi-2D material CePO4 and the self-lubrication in micro-arc oxidized coatings on Al alloy. Tribol. Int. 2019, 138, 157–165. [Google Scholar] [CrossRef]
- Fang, Q.H.; Huang, Z.; Li, L.; Huang, Z.W.; Liu, B.; Liu, Y.; Li, J.; Liaw, P.K. Modeling the competition between solid solution and precipitate strengthening of alloys in a 3D space. Int. J. Plast. 2022, 149, 103152. [Google Scholar] [CrossRef]
- Li, Z.B.; Zhang, H.; Zhang, G.H.; Chou, K.C. Superior strength-ductility synergy in a novel tailored Zr-based particle-strengthened medium W content alloys. Compos. B Eng. 2022, 236, 109817. [Google Scholar] [CrossRef]
- Ma, X.T.; Du, J.; Su, G.S.; Xu, C.H.; Chongyan Zhang, C.Y.; Kong, X.M. Study on strengthening mechanism and high temperature mechanical properties of TiC-Fe-HEA cemented carbide. Mater. Today Commun. 2022, 32, 104013. [Google Scholar] [CrossRef]
- Candela, C.S.D.R.; Riquelme, A.A.; Rodrigo, P.; Torres, B.; Rams, J. Wear behavior of additively manufactured 316L/SiCp composites with up to 60 wt% SiCp. Ceram. Int. 2022, 48, 33736–33750. [Google Scholar] [CrossRef]
- Chen, L.Y.; Zhao, Y.; Meng, F.W.; Yu, T.B.; Ma, Z.L.; Qu, S.; Sun, Z.Y. Effect of TiC content on the microstructure and wear performance of in situ synthesized Ni-based composite coatings by laser direct energy deposition. Surf. Coat. Technol. 2022, 444, 128678. [Google Scholar] [CrossRef]
Materials | Alloying Elements (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
C | V | Mn | Cr | Si | Mo | Ti | Fe | |
1.5 Mn | 2.8 | 8.1 | 1.5 | 2.5 | 1.5 | 1.5 | 1.5 | Bal. |
3.0 Mn | 2.8 | 8.1 | 3.0 | 2.5 | 1.5 | 1.5 | 1.5 | Bal. |
4.5 Mn | 2.8 | 8.1 | 4.5 | 2.5 | 1.5 | 1.5 | 1.5 | Bal. |
Atomic Ratio (at.%) | ||||||||
---|---|---|---|---|---|---|---|---|
Al | Si | Ti | V | Cr | Mn | Fe | Mo | |
1# | 0.16 | 1.79 | 0 | 4.33 | 2.66 | 0.54 | 89.9 | 0.59 |
2# | 0.34 | 3.04 | 0 | 2.18 | 2.48 | 0.52 | 90.79 | 0.62 |
3# | 0 | 0.97 | 0.28 | 71.73 | 4 | 0.2 | 18.7 | 4.04 |
4# | 0.4 | 3.26 | 0 | 1.39 | 1.59 | 1.73 | 91.27 | 0.31 |
5# | 0.72 | 5.22 | 0.27 | 2.82 | 1.02 | 1.87 | 87.8 | 0.27 |
6# | 0 | 0.1 | 18.49 | 76.62 | 0.5 | 0.19 | 2.04 | 2.07 |
7# | 0 | 0.88 | 0 | 0.73 | 1.5 | 0.6 | 96.11 | 0.15 |
8# | 0 | 0 | 15.38 | 79 | 0.57 | 0.18 | 2.64 | 2.09 |
9# | 0.25 | 2.74 | 0 | 0.65 | 1.6 | 1.27 | 93.21 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zhao, W.; Liu, Z.; Zhang, Y.; Weng, C.; Li, R.; Chen, Y. Investigating Microstructural Evolution and Its Influence on Tribological Behaviors of In-Situ Formed VCp Reinforced Iron-Based Composites with Variable Mn Content. Materials 2022, 15, 8158. https://doi.org/10.3390/ma15228158
Chen P, Zhao W, Liu Z, Zhang Y, Weng C, Li R, Chen Y. Investigating Microstructural Evolution and Its Influence on Tribological Behaviors of In-Situ Formed VCp Reinforced Iron-Based Composites with Variable Mn Content. Materials. 2022; 15(22):8158. https://doi.org/10.3390/ma15228158
Chicago/Turabian StyleChen, Pinghu, Wenguang Zhao, Zhen Liu, Yun Zhang, Caifeng Weng, Ruiqing Li, and Yong Chen. 2022. "Investigating Microstructural Evolution and Its Influence on Tribological Behaviors of In-Situ Formed VCp Reinforced Iron-Based Composites with Variable Mn Content" Materials 15, no. 22: 8158. https://doi.org/10.3390/ma15228158
APA StyleChen, P., Zhao, W., Liu, Z., Zhang, Y., Weng, C., Li, R., & Chen, Y. (2022). Investigating Microstructural Evolution and Its Influence on Tribological Behaviors of In-Situ Formed VCp Reinforced Iron-Based Composites with Variable Mn Content. Materials, 15(22), 8158. https://doi.org/10.3390/ma15228158