Effect of Aging Treatment on the Precipitation Behavior of a Novel Al-Cu-Zr Cast Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. As-Cast and Solution-Treated Microstructures
3.2. One-Step Aging
3.3. Two-Step Aging
4. Discussion
4.1. Effect of Micro-Alloying Element Zr
4.2. Effect of Aging Treatment on Precipitation Behavior
4.3. Strengthening Mechanism
5. Conclusions
- (1)
- The Zr added to the alloy forms L12-Al3Zr during non-equilibrium solidification, which can act as a heterogeneous nucleation site to promote non-uniform nucleation and play a role in refining grains.
- (2)
- The 120 °C/4 h + 165 °C/16 h aging treatment is found to be the optimum two-step aging treatment for the alloy. A large number of stable GP zones are formed in the pre-aging step by two-step aging, and they are transformed into θ′ strengthening precipitate in the secondary aging step. Compared with one-step aging, the θ′ phase is smaller in size and more in quantity, which significantly improves the mechanical properties of the alloy.
- (3)
- The Al3Zr phase can be formed in the alloy due to the addition of Zr, which is coherent with the Al matrix. On the one hand, it can promote the precipitation of the θ′ phase and improve the mechanical properties of the alloy; on the other hand, more importantly, the Al3Zr phase has the effect of refining the grain and improving the thermal stability of the alloy. Therefore, the addition of Zr can improve the mechanical properties of the alloy in terms of both precipitation strengthening and grain refinement strengthening.
Author Contributions
Funding
Conflicts of Interest
References
- Talamantes-Silva, M.A.; Rodríguez, A.; Talamantes-Silva, J.; Valtierra, S.; Colás, R. Characterization of an Al–Cu cast alloy. Mater. Charact. 2008, 59, 1434–1439. [Google Scholar] [CrossRef]
- Sweet, G.A.; Amirkhiz, B.S.; Williams, B.W.; Taylor, A.; Hexemer, R.L.; Donaldson, I.W.; Bishop, D.P. Microstructural evolution of a forged 2XXX series aluminum powder metallurgy alloy. Mater. Charact. 2019, 151, 342–350. [Google Scholar] [CrossRef]
- Sun, T.-T.; Geng, J.-W.; Bian, Z.-Y.; Wu, Y.; Wang, M.-L.; Chen, D.; Ma, N.-H.; Wang, H.-W. Enhanced thermal stability and mechanical properties of high-temperature resistant Al-Cu alloy with Zr and Mn micro-alloying. Trans. Nonferrous Met. Soc. China 2022, 32, 64–78. [Google Scholar] [CrossRef]
- Jiang, L.; Rouxel, B.; Langan, T.; Dorin, T. Coupled segregation mechanisms of Sc, Zr and Mn at θ′interfaces enhances the strength and thermal stability of Al-Cu alloys. Acta Mater. 2021, 206, 116634. [Google Scholar] [CrossRef]
- Zhu, A.; Chen, J.; Starke, E. Precipitation strengthening of stress-aged Al–xCu alloys. Acta Mater. 2000, 48, 2239–2246. [Google Scholar] [CrossRef]
- Cvijović, Z.; Radenković, G.; Maksimović, V.; Dimčić, B. Application of ANOVA method to precipitation behaviour studies. Mater. Sci. Eng. A 2005, 397, 195–203. [Google Scholar] [CrossRef]
- Bai, Z.; Qiu, F.; Wu, X.; Liu, Y.; Jiang, Q. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium. Mater. Charact. 2013, 86, 185–189. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Chen, Z.; Tsalanidis, A.; Weyland, M.; Findlay, S.; Allen, L.J.; Li, J.; Medhekar, N.V.; Bourgeois, L. The enhanced theta-prime (θ′) precipitation in an Al-Cu alloy with trace Au additions. Acta Mater. 2017, 125, 340–350. [Google Scholar] [CrossRef]
- Dumitraschkewitz, P.; Gerstl, S.S.A.; Stephenson, L.T.; Uggowitzer, P.J.; Pogatscher, S. Clustering in Age-Hardenable Aluminum Alloys. Adv. Eng. Mater. 2018, 20, 1800255. [Google Scholar] [CrossRef] [Green Version]
- Chung, T.-F.; Yang, Y.-L.; Shiojiri, M.; Hsiao, C.-N.; Li, W.-C.; Tsao, C.-S.; Shi, Z.; Lin, J.; Yang, J.-R. An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy. Acta Mater. 2019, 174, 351–368. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Yang, X.; Ren, S.; Wu, C.; Xu, H.; Zou, J. Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy. Scr. Mater. 2010, 63, 1061–1064. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 2013, 50, 193–215. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yi, D.; Liu, H.; Wang, B. Microstructure and mechanical properties of interrupted aged cast Al–4.5Cu–3.5Zn–0.5 Mg alloy. Mater. Leff. 2021, 285, 129199. [Google Scholar] [CrossRef]
- Lumley, R.N.; Polmear, I.J.; Morton, A.J. Development of mechanical properties during secondary aging in aluminum alloys. Mater. Sci. Tech-Long 2013, 21, 1025–1032. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, K.; Wen, S.; Huang, H.; Nie, Z.; Zhou, D. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy. J. Alloys Compd. 2014, 610, 27–34. [Google Scholar] [CrossRef]
- Xue, D.; Wei, W.; Shi, W.; Guo, Y.W.; Wen, S.P.; Wu, X.L.; Huang, H.; Nie, Z.R. Effect of cold rolling on mechanical and corrosion properties of stabilized Al–Mg–Mn–Er–Zr alloy. J. Mater. Res. Technol. 2021, 15, 6329–6339. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Ztschrift Fur Met. 2006, 97, 246–265. [Google Scholar] [CrossRef] [Green Version]
- Shower, P.; Morris, J.; Shin, D.; Radhakrishnan, B.; Poplawsky, J.; Shyam, A. Mechanisms for stabilizing θ′(Al2Cu) precipitates at elevated temperatures investigated with phase field modeling. Materialia 2019, 6, 100335. [Google Scholar] [CrossRef]
- Poplawsky, J.D.; Milligan, B.K.; Allard, L.F.; Shin, D.; Shower, P.; Chisholm, M.F.; Shyam, A. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys. Acta Mater. 2020, 194, 577–586. [Google Scholar] [CrossRef]
- Ocenasek, V.; Slamova, M. Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys. Mater. Charact. 2001, 47, 157–162. [Google Scholar] [CrossRef]
- Gao, Y.; Qiu, F.; Zhao, Q.; Jiang, Q. A new approach for improving the elevated-temperature strength and ductility of Al–Cu–Mg–Si alloys with minor amounts of dual-phased submicron/nanosized TiB2–TiC particles. Mater. Sci. Eng. A 2019, 764, 138266. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, P.; Shao, D.; Wang, R.; Cao, L.; Zhang, J.; Liu, G.; Chen, B.; Sun, J. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater. 2016, 119, 68–79. [Google Scholar] [CrossRef]
- Dorin, T.; Ramajayam, M.; Lamb, J.; Langan, T. Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys. Mater. Sci. Eng. A 2017, 707, 58–64. [Google Scholar] [CrossRef]
- Shanmugasundaram, T.; Heilmaier, M.; Murty, B.S.; Sarma, V.S. On the Hall–Petch relationship in a nanostructured Al–Cu alloy. Mater. Sci. Eng. A 2010, 527, 7821–7825. [Google Scholar] [CrossRef]
- Hammer, E.W. Symposium on internal stresses in metals and alloys: Organized by The Institute of Metals. J. Frankl. Inst. Eng. Appl. Math. 1949, 247, 526–527. [Google Scholar] [CrossRef]
- Liu, M.P.; Roven, H.J.; Murashkin, M.Y.; Valiev, R.Z.; Kilmametov, A.; Zhang, Z.; Yu, Y. Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation. J. Mater. Sci. 2013, 48, 4681–4688. [Google Scholar] [CrossRef]
- Choi, H.; Lee, S.; Park, J.; Bae, D. Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders. Scr. Mater. 2008, 59, 1123–1126. [Google Scholar] [CrossRef]
- Nie, J.F.; Muddle, B.C. Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Mater. 2008, 56, 3490–3501. [Google Scholar] [CrossRef]
- Elgallad, E.; Zhang, Z.; Chen, X.-G. Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy. Mater. Sci. Eng. A 2015, 625, 213–220. [Google Scholar] [CrossRef]
Cu | Mn | Mg | Zr | Er | Ti | Fe | Al | |
---|---|---|---|---|---|---|---|---|
Design | 5~5.5 | 0.3~0.5 | 0.2~0.3 | 0.1~0.2 | 0.1~0.2 | <0.2 | <0.3 | Bal |
Actual | 5.05 | 0.35 | 0.25 | 0.15 | 0.14 | 0.15 | 0.25 | Bal |
Age Type | Solid Solution | Quenching | Pre-Aging | Aging Temperature | Aging Time |
---|---|---|---|---|---|
One-step aging | 540 °C/12 h | Water quenching | - | 155–195 °C | 0–48 h |
Two-step aging | 540 °C/12 h | Water quenching | 120 °C/4 h | 155–195 °C | 0–48 h |
One-Step Aging | Two-Step Aging | ||||||
---|---|---|---|---|---|---|---|
Ultimate Tensile Strength, MPa | Yield Strength, MPa | Elongation, % | Ultimate Tensile Strength, MPa | Yield Strength, MPa | Elongation, % | ||
As-cast | 233.7 | 173.3 | 3.2 | As-cast | 233. 7 | 173.3 | 3.2 |
155 °C/32 h | 368.7 | 273.8 | 6.7 | 120 °C/4 h + 155 °C/32 h | 373.0 | 295.7 | 7.4 |
165 °C/16 h | 375 | 277.3 | 5.5 | 120 °C/4 h + 165 °C/16 h | 413.0 | 322.6 | 7.6 |
175 °C/16 h | 379.8 | 279.5 | 5 | 120 °C/4 h + 175 °C/10 h | 398.7 | 313.3 | 7.9 |
185 °C/6 h | 389.3 | 288.7 | 4.6 | 120 °C/4 h + 185 °C/6 h | 384.3 | 307.3 | 7.8 |
195 °C/6 h | 375.5 | 275.5 | 5.7 | 120 °C/4 h + 195 °C/6 h | 374.4 | 304.6 | 6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Zuo, R.; Xue, D.; Wen, S.; Wu, Y.; Shi, W.; Zhou, X.; Huang, H.; Wu, X.; Gao, K.; et al. Effect of Aging Treatment on the Precipitation Behavior of a Novel Al-Cu-Zr Cast Alloy. Materials 2022, 15, 8163. https://doi.org/10.3390/ma15228163
Wei W, Zuo R, Xue D, Wen S, Wu Y, Shi W, Zhou X, Huang H, Wu X, Gao K, et al. Effect of Aging Treatment on the Precipitation Behavior of a Novel Al-Cu-Zr Cast Alloy. Materials. 2022; 15(22):8163. https://doi.org/10.3390/ma15228163
Chicago/Turabian StyleWei, Wu, Rui Zuo, Da Xue, Shengping Wen, Yang Wu, Wei Shi, Xiaorong Zhou, Hui Huang, Xiaolan Wu, Kunyuan Gao, and et al. 2022. "Effect of Aging Treatment on the Precipitation Behavior of a Novel Al-Cu-Zr Cast Alloy" Materials 15, no. 22: 8163. https://doi.org/10.3390/ma15228163
APA StyleWei, W., Zuo, R., Xue, D., Wen, S., Wu, Y., Shi, W., Zhou, X., Huang, H., Wu, X., Gao, K., Rong, L., & Nie, Z. (2022). Effect of Aging Treatment on the Precipitation Behavior of a Novel Al-Cu-Zr Cast Alloy. Materials, 15(22), 8163. https://doi.org/10.3390/ma15228163