Diffusing Mn4+ into Dy3+ Doped SrAl2O4 for Full-Color Tunable Emissions
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of SrAl2O4:Dy3+,Mn4+
2.2. Phase, Morphology, and Elemental Composition of SrAl2O4:Dy3+,Mn4+
2.3. PL Spectra of SrAl2O4:Dy3+,Mn4+
2.4. PL Decay Curves of SrAl2O4:Dy3+,Mn4+
3. Results and Discussions
3.1. Phase and Morphology of SrAl2O4:Dy3+,Mn4+
3.2. EDX Spectrum of SrAl2O4:Dy3+,Mn4+
3.3. XPS Spectrum of SrAl2O4:Dy3+,Mn4+
3.4. PL Spectra of SrAl2O4:Dy3+ after Mn4+ Diffusion at Different Temperatures
3.5. Emission Colors of SrAl2O4:Dy3+,Mn4+
3.6. PL Spectra of SrAl2O4:Dy3+ after Mn4+ Diffusion for Different Times
3.7. PL Decays of SrAl2O4:Dy3+,Mn4+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrivastava, R.; Kaur, J.; Dubey, V. White Light Emission by Dy3+ Doped Phosphor Matrices: A Short Review. J. Fluoresc. 2015, 26, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.-L.; Zhai, B.-G.; Huang, Y.M. Effect of sol–gel combustion temperature on the luminescent properties of trivalent Dy doped SrAl2O4. Ceram. Int. 2015, 41, 5830–5835. [Google Scholar] [CrossRef]
- Huang, Y.M.; Ma, Q.-L. Long afterglow of trivalent dysprosium doped strontium aluminate. J. Lumin. 2015, 160, 271–275. [Google Scholar] [CrossRef]
- Zhai, B.-G.; Yang, L.; Ma, Q.-L.; Liu, X.; Huang, Y.M. Mechanism of the prolongation of the green afterglow of SrAl2O4:Dy3+ caused by the use of H3BO3 flux. J. Lumin. 2017, 181, 78–87. [Google Scholar] [CrossRef]
- Zhai, B.G.; Huang, Y.M. Green afterglow of undoped SrAl2O4. Nanomaterials 2021, 11, 2331. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, R.; Kaur, J.; Dash, M. Studies on white light emission of Sr2MgSi2O7 doped with Dy3+ phosphors. Superlattices Microstruct. 2015, 82, 262–268. [Google Scholar] [CrossRef]
- Cho, S. Photoluminescence properties of BaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb, Tm) phosphors. J. Korean Phys. Soc. 2016, 69, 1479–1484. [Google Scholar] [CrossRef]
- Xiong, F.B.; Han, C.Y.; Lin, H.F.; Wang, Y.P.; Lin, H.Y.; Shen, H.X.; Zhu, W.Z. White light emission from novel host-sensitized single-phase Y2WO6:Ln3+ (Ln3+ = Eu3+, Dy3+) phosphors. Ceram. Int. 2016, 42, 13841–13848. [Google Scholar] [CrossRef]
- Naidu, S.A.; Boudin, S.; Varadaraju, U.; Raveau, B. Host-sensitized emission of LiInW2O8 wolframites: From red-Eu3+ to white-Dy3+ phosphors. J. Solid State Chem. 2011, 184, 2566–2570. [Google Scholar] [CrossRef]
- Balakrishna, A.; Ntwaeaborwa, O.M. Study of luminescent behavior and crystal defects of different MNa[PO4]-Dy3+ phos-phors (M = Mg, Ca, Sr and Ba). Sens. Actuat. B 2017, 242, 305–317. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.; Ben, Y.; Chen, H.; Fu, X.; Wong, C. Improved full-color emission and switched luminescence in single Ca3(PO4)2: Dy3+, Eu3+ phosphors for white LEDs. J. Alloy. Compd. 2017, 697, 215–221. [Google Scholar] [CrossRef]
- Brik, M.; Srivastava, A. On the optical properties of the Mn4+ ion in solids. J. Lumin. 2013, 133, 69–72. [Google Scholar] [CrossRef]
- Li, Y.; Qi, S.; Li, P.; Wang, Z. Research progress of Mn doped phosphors. RSC Adv. 2017, 7, 38318–38334. [Google Scholar] [CrossRef] [Green Version]
- Chi, N.T.K.; Tuan, N.T.; Lien, N.T.K.; Nguyen, D.H. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes. J. Electron. Mater. 2018, 47, 4571–4578. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, D.; Wang, L.; Ding, N.; Shi, M.; Zhong, J.; Qi, S. Preparation and luminescent properties of a new red phosphor (Sr4Al14O25:Mn4+) for white LEDs. J. Alloy. Compd. 2012, 550, 226–230. [Google Scholar] [CrossRef]
- Ye, T.; Li, S.; Wu, X.; Xu, M.; Wei, X.; Wang, K.; Bao, H.; Wang, J.; Chen, J. Sol–gel preparation of efficient red phosphor Mg2TiO4:Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+. J. Mater. Chem. C 2013, 1, 4327–4333. [Google Scholar] [CrossRef]
- Medić, M.M.; Brik, M.G.; Dražić, G.; Antić, Z.M.; Lojpur, V.M.; Dramićanin, M.D. Deep-Red Emitting Mn4+ Doped Mg2TiO4 Nanoparticles. J. Phys. Chem. C 2015, 119, 724–730. [Google Scholar] [CrossRef]
- Murata, T.; Tanoue, T.; Iwasaki, M.; Morinaga, K.; Hase, T. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED. J. Lumin. 2005, 114, 207–212. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, F.; Cao, C.; Yu, X.; Liang, A.; Guo, S.; Xue, H. Synthesis and luminescence properties of CaAl2O4:Mn4+ phosphor. Opt. Mater. 2014, 38, 53–56. [Google Scholar] [CrossRef]
- Zhai, B.G.; Huang, Y.M. Blue afterglow from undoped CaAl2O4. Europhys. Lett. 2019, 127, 17001. [Google Scholar] [CrossRef]
- Zhai, B.G.; Ma, Q.L.; Xiong, R.; Li, X.; Huang, Y.M. Blue-green afterglow of BaAl2O4:Dy3+ phosphors. Mater. Res. Bull. 2016, 75, 1–6. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Zhai, B.-G.; Xu, H.; Zhuo, F.; Huang, Y.M. Annealing temperature dependent photoluminescence and afterglow of undoped CaAl2O4. J. Alloy. Compd. 2019, 821, 153563. [Google Scholar] [CrossRef]
- Zhai, B.-G.; Xu, H.; Huang, Y.M. Annealing temperature dependent afterglow of Tb3+ doped CaAl2O4. Opt. Mater. 2020, 112, 110739. [Google Scholar] [CrossRef]
- Zhai, B.-G.; Huang, Y.M. Green photoluminescence and afterglow of Tb-doped SrAl2O4. J. Mater. Sci. 2016, 52, 1813–1822. [Google Scholar] [CrossRef]
- De Biasi, R.S.; Grillo, M.L.N. Investigation of Mn2+ diffusion in lime (CaO) using electron magnetic resonance. Mater. Res. 2014, 17, 434–435. [Google Scholar] [CrossRef] [Green Version]
- Portavoce, A.; Abbes, O.; Rudzevich, Y.; Chow, L.; le Thanh, V.; Girardeaux, C. Manganese diffusion in monocrystalline germanium. Scr. Mater. 2012, 67, 269–272. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, A.; Ntwaeaborwa, O.M.; Dutta, V.; Swart, H.C. Structural and luminescence properties of Eu3+/Dy3+ embedded sodium silicate glass for multicolour emission. J. Alloys Compd. 2017, 708, 922–931. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Li, X.; Cheng, L.; Tong, L.; Wang, W.; Sun, J.; Zhang, J.; Chen, B. Luminescence studies of Sm3+ single-doped and Sm3+, Dy3+ co-doped NaGdTiO4 phosphors. Phys. B Condens. Matter 2016, 481, 197–203. [Google Scholar] [CrossRef]
- Pawar, P.P.; Munishwar, S.R.; Gedam, R.S. Physical and optical properties of Dy3+/Pr3+ co-doped lithium borate glasses for W-LED. J. Alloy. Compd. 2016, 660, 347–355. [Google Scholar] [CrossRef]
- Ma, Q.-L.; Xiong, R.; Huang, Y.M. Tunable photoluminescence of porous silicon by liquid crystal infiltration. J. Lumin. 2011, 131, 2053–2057. [Google Scholar] [CrossRef]
- Ma, Q.-L.; Zhai, B.-G.; Huang, Y.M. Sol–gel derived ZnO/porous silicon composites for tunable photoluminescence. J. Sol-Gel Sci. Technol. 2012, 64, 110–116. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Devakumar, B.; Sun, L.; Liang, J.; Huang, X. Synthesis, crystal structure, and photoluminescence characteris-tics of high–efficiency deep–red emitting Ba2GdTaO6:Mn4+ phosphors. ACS Omega 2019, 4, 13474–13480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senden, T.; Van Dijk-Moes, R.J.A.; Meijerink, A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors. Light Sci. Appl. 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Lian, H.; van Deun, R. Site occupancy and photoluminescence properties of a novel deep-redemitting phosphor NaMgGdTeO6:Mn4+ with perovskite structure for w-LEDs. J. Lumin. 2018, 198, 155–162. [Google Scholar] [CrossRef]
- Jara, E.; Valiente, R.; Bettinelli, M.; Rodríguez, F. Understanding the efficiency of Mn4+ phosphors: Study of the spinel Mg2Ti1−xMnxO4. J. Phys. Chem. C 2021, 125, 27118–27129. [Google Scholar] [CrossRef]
- Babin, V.; Bohacek, P.; Bender, E.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Senguttuvan, N.; Stolovits, A.; Usuki, Y.; Zazubovich, S. Decay kinetics of the green emission in tungstates and molybdates. Radiat. Meas. 2004, 38, 533–537. [Google Scholar] [CrossRef]
- Zhai, B.G.; Yang, L.; Zhou, F.F.; Shi, J.S.; Huang, Y.M. Strong photo-oxidative capability of ZnWO4 nanoplates with highly exposed {0-11} facets. Catalysts 2019, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.M.; Li, M.Y.; Yang, L.; Zhai, B.G. Eu2+ and Eu3+ doubly doped ZnWO4 nanoplates with superior photocatalytic per-formance for dye degradation. Nanomaterials 2018, 8, 765. [Google Scholar] [CrossRef] [Green Version]
- Zhai, B.-G.; Ma, Q.-L.; Yang, L.; Huang, Y.M. Growth of ZnMoO4 nanowires via vapor deposition in air. Mater. Lett. 2017, 188, 119–122. [Google Scholar] [CrossRef]
- Zhai, B.-G.; Ma, Q.-L.; Yang, L.; Huang, Y.M. Effects of Sintering Temperature on the Morphology and Photoluminescence of Eu3+ Doped Zinc Molybdenum Oxide Hydrate. J. Nanomater. 2018, 2018, 7418508. [Google Scholar] [CrossRef] [Green Version]
- Zhai, B.-G.; Ma, Q.-L.; Yang, L.; Huang, Y.M. Synthesis and optical properties of Tb-doped pentazinc dimolybdate pentahydrate. Results Phys. 2017, 7, 3991–4000. [Google Scholar] [CrossRef]
- Zhai, B.G.; Yang, L.; Huang, Y.M. Intrinsic defect engineering in Eu3+ doped ZnWO4 for annealing temperature tunable photoluminescence. Nanomaterials 2019, 9, 99. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, B.-g.; Chen, M.M.; Huang, Y.M. Diffusing Mn4+ into Dy3+ Doped SrAl2O4 for Full-Color Tunable Emissions. Materials 2022, 15, 8170. https://doi.org/10.3390/ma15228170
Zhai B-g, Chen MM, Huang YM. Diffusing Mn4+ into Dy3+ Doped SrAl2O4 for Full-Color Tunable Emissions. Materials. 2022; 15(22):8170. https://doi.org/10.3390/ma15228170
Chicago/Turabian StyleZhai, Bao-gai, Meng Meng Chen, and Yuan Ming Huang. 2022. "Diffusing Mn4+ into Dy3+ Doped SrAl2O4 for Full-Color Tunable Emissions" Materials 15, no. 22: 8170. https://doi.org/10.3390/ma15228170
APA StyleZhai, B. -g., Chen, M. M., & Huang, Y. M. (2022). Diffusing Mn4+ into Dy3+ Doped SrAl2O4 for Full-Color Tunable Emissions. Materials, 15(22), 8170. https://doi.org/10.3390/ma15228170