Improved Hydrogen Generation of Al-H2O Reaction by BiOX (X = Halogen) and Influence Rule
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Additive Preparation
2.2.1. Preparation of BiOF
2.2.2. Preparation of BiOBr
2.2.3. Preparation of BiOI
2.3. Preparation of Al-BiOX (X = F, Br and I) Composite
2.4. Hydrogen Measurement and Characterization
2.5. Computational Methods
3. Results and Discussion
3.1. Characterization of BiOF, BiOBr and BiOI
3.2. Hydrogen Generation Performances of Al-BiOX (X = F, Cl, Br and I)
3.3. Effects of Doped Content of BiOI
3.4. Effects of Ball Milling Conditions
3.5. Effects of Reaction Temperature
4. Mechanism Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhao, Z.; Hao, M.; Wang, D. Hydrogen generation by splitting water with Al-Li alloys. Int. J. Energy Res. 2013, 37, 1624–1634. [Google Scholar] [CrossRef]
- Hou, X.; Wang, Y.; Yang, Y.; Hu, R.; Yang, G.; Feng, L.; Suo, G. Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys. Energy 2019, 188, 16081. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef]
- Huang, X.; Gao, T.; Pan, X.; Wei, D.; Lv, C.; Qin, L.; Huang, Y. A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. J. Power Sources 2013, 229, 133–140. [Google Scholar] [CrossRef]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Zhu, Y.; Liu, Y.; Li, L. Controllable hydrogen generation behavior by hydrolysis of MgH2-based materials. J. Power Sources 2021, 494, 229726. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Zhang, D.; Dong, W.; Jiang, T.; Zhou, H.; Li, L.; Mao, B. Industrial stainless steel meshes for efficient electrocatalytic hydrogen evolution. J. Energy Storage 2021, 41, 102844. [Google Scholar] [CrossRef]
- Lee, G.J.; Zheng, Y.C.; Wu, J.J. Fabrication of hierarchical bismuth oxyhalides (BiOX, X = Cl, Br, I) materials and application of photocatalytic hydrogen production from water splitting. Catal. Today 2018, 307, 197–204. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Shanmugam, S.; Sekar, M.; Mathimani, T.; Incharoensakdi, A.; Kim, S.H.; Parthiban, A.; Geo, V.E.; Brindhadevi, K.; Pugazhendhi, A. Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield. Fuel 2021, 291, 120136. [Google Scholar] [CrossRef]
- Abutaleb, A.; Zouli, N.; El-Halwany, M.M.; Ubaidullah, M.; Yousef, A. Graphitic nanofibers supported NiMn bimetallic nanoalloys as catalysts for H2 generation from ammonia borane. Int. J. Hydrog. Energy 2021, 46, 35248–35260. [Google Scholar] [CrossRef]
- Prabu, S.; Wang, H.W. Improved hydrogen generation from Al/water reaction using different synthesized Al(OH)3 catalyst crystalline phases. Int. J. Energy Res. 2021, 45, 9518–9529. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J. Metal-based direct hydrogen generation as unconventional high density energy. Front. Energy 2019, 13, 27–53. [Google Scholar] [CrossRef]
- Dai, H.B.; Ma, G.L.; Xia, H.J.; Wang, P. Reaction of aluminium with alkaline sodium stannate solution as a controlled source of hydrogen. Energ. Environ. Sci. 2011, 4, 2206–2212. [Google Scholar] [CrossRef]
- Kravchenko, O.V.; Semenenko, K.N.; Bulychev, B.M.; Kalmykov, K.B. Activation of aluminum metal and its reaction with water. J. Alloys Compd. 2005, 397, 58–62. [Google Scholar] [CrossRef]
- Soler, L.; Macanas, J.; Munoz, M.; Casado, J. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications. J. Power Sources 2007, 169, 144–149. [Google Scholar] [CrossRef]
- Liu, H.; Yang, F.; Yang, B.; Zhang, Q.; Chai, Y.; Wang, N. Rapid hydrogen generation through aluminum-water reaction in alkali solution. Catal. Today 2018, 318, 52–58. [Google Scholar] [CrossRef]
- Uehara, K.; Takeshita, H.; Kotaka, H. Hydrogen gas generation in the wet cutting of aluminum and its alloys. J. Mater. Process. Technol. 2002, 127, 174–177. [Google Scholar] [CrossRef]
- Dupiano, P.; Stamatis, D.; Dreizin, E.L. Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders. Int. J. Hydrog. Energy 2011, 36, 4781–4791. [Google Scholar] [CrossRef]
- Huang, X.N.; Lv, C.J.; Wang, Y.; Shen, H.Y.; Chen, D.; Huang, Y.X. Hydrogen generation from hydrolysis of aluminum/graphite composites with a core-shell structure. Int. J. Hydrog. Energy 2012, 37, 7457–7463. [Google Scholar] [CrossRef]
- du Preez, S.P.; Bessarabov, D.G. The effects of bismuth and tin on the mechanochemical processing of aluminum-based composites for hydrogen generation purposes. Int. J. Hydrog. Energy 2019, 44, 21896–21912. [Google Scholar] [CrossRef]
- Ilyukhina, A.V.; Kravchenko, O.V.; Bulychev, B.M. Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction. J. Alloys Compd. 2017, 690, 321–329. [Google Scholar] [CrossRef]
- Fan, M.Q.; Xu, F.; Sun, L.X. Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int. J. Hydrog. Energy 2007, 32, 2809–2815. [Google Scholar] [CrossRef]
- Xu, F.; Sun, L.X.; Lan, X.F.; Chu, H.L.; Sun, Y.J.; Zhou, H.Y.; Li, F.; Yang, L.; Si, X.L.; Zhang, J.; et al. Mechanism of fast hydrogen generation from pure water using Al-SnCl2 and bi-doped Al-SnCl2 composites. Int. J. Hydrog. Energy 2014, 39, 5514–5521. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, F.; Sun, L.X.; Chen, J.; Guo, X.L.; Yan, E.H.; Chu, H.L.; Peng, H.L.; Zou, Y.J.; Liu, Z.W.; et al. A novel Al-BiOCl composite for hydrogen generation from water. Int. J. Hydrog. Energy 2019, 44, 6655–6662. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, X.F.; Sun, L.X.; Yu, F.; Li, P.; Chen, J.; Wu, Y.P.; Cao, L.Z.; Xu, C.C.; Yang, X.; et al. Hydrogen generation of a novel Al-NaMgH3 composite reaction with water. Int. J. Hydrog. Energy 2017, 42, 30535–30542. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 49, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Davies, J.; du Preez, S.P.; Bessarabov, D.G. On-Demand Hydrogen Generation by the Hydrolysis of Ball-Milled Aluminum–Bismuth–Zinc Composites. Materials 2022, 15, 1197. [Google Scholar] [CrossRef]
- Chen, C.; Guan, X.; Wang, H.B.; Dong, S.J.; Luo, P. Hydrogen generation from splitting water with Al-Bi(OH)3 composite promoted by NaCl. Int. J. Hydrog. Energy 2020, 45, 13139–13148. [Google Scholar] [CrossRef]
- Liu, Z.H.; Xiao, F.; Tang, W.Q.; Cong, K.; Li, J.J.; Yang, R.J.; Hao, J.W. Study on the hydrogen generation performance and hydrolyzates of active aluminum composites. Int. J. Hydrog. Energy 2022, 47, 1701–1709. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, R.J.; Gao, W.B.; Hu, J.H.; Li, J.M. Effect of carbon materials and bismuth particle size on hydrogen generation using aluminum-based composites. J. Alloys Compd. 2020, 817, 152800. [Google Scholar] [CrossRef]
- Zhu, L.; Zou, M.; Zhang, X.; Zhang, L.; Wang, X.; Song, T.; Wang, S.; Li, X. Enhanced Hydrogen Generation Performance of Al-Rich Alloys by a Melting-Mechanical Crushing-Ball Milling Method. Materials 2021, 14, 7889. [Google Scholar] [CrossRef]
- Yusuf, M.; Beg, M.; Ubaidullah, M.; Shaikh, S.F.; Keong, L.K.; Hellgardt, K.; Abdullah, B. Kinetic studies for DRM over high-performance Ni–W/Al2O3–MgO catalyst. Int. J. Hydrog. Energy 2021, in press. [Google Scholar] [CrossRef]
- Liu, C.; Noda, I.; Chase, B.; Zhang, Y.; Qu, J.; Jia, M.; Ni, C.; Rabolt, J.F. Crystallization Retardation of Ultrathin Films of Poly[(R)-3-hydroxybutyrate] and a Random Copolymer Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] on an Aluminum Oxide Surface. Macromolecules 2019, 52, 7343–7352. [Google Scholar] [CrossRef]
- Dharmadhikari, V.S.; Sainkar, S.R.; Badrinarayan, S.; Goswami, A. Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy. J. Electron Spectrosc. 1982, 25, 181–189. [Google Scholar] [CrossRef]
- Ruan, Z.; Liu, G.; Shu, J.; Ren, C.; Wang, Z. Green synthesis of a AgCl@AgI nanocomposite using Laminaria japonica extract and its application as a visible-light-driven photocatalyst. Rsc Adv. 2019, 9, 5858–5864. [Google Scholar] [CrossRef]
Samples | Amount of H2 mL g−1 | Conversion Yield % | MHGR mL g−1 min−1 |
---|---|---|---|
Al-15 wt% BiOF | 103.1 | 8.9 | 666.0 |
Al-15 wt% BiOCl [24] | 1058.1 | 91.6 | 491.4 |
Al-15 wt% BiOBr | 1113.4 | 96.3 | 430.9 |
Al-15 wt% BiOI | 1101.6 | 95.3 | 3451.8 |
Samples | Amount of H2 mL g−1 | Conversion Yield % | MHGR mL g−1 min−1 |
---|---|---|---|
Al-5 wt% BiOI | 704.9 | 54.6 | 250.6 |
Al-10 wt% BiOI | 988.1 | 81.5 | 571.8 |
Al-15 wt% BiOI | 1101.6 | 95.3 | 3451.8 |
Al-20 wt% BiOI | 888.8 | 81.7 | 4545.9 |
Al-25 wt% BiOI | 759.0 | 74.4 | 2265.9 |
The Mass Ratio of Ball to Powder | Amount of H2 mL g−1 | Conversion Yield % | MHGR mL g−1 min−1 |
---|---|---|---|
30:1 | 1055.4 | 91.3 | 3261.2 |
45:1 | 1057.7 | 91.5 | 3314.1 |
60:1 | 1101.6 | 95.3 | 3451.8 |
90:1 | 1064.6 | 92.1 | 4217.6 |
120:1 | 1035.7 | 89.6 | 3974.1 |
Ball Milling Time h | Amount of H2 mL g−1 | Conversion Yield % | MHGR mL g−1 min−1 |
---|---|---|---|
1 | 886.5 | 76.6 | 769.4 |
3 | 1011.5 | 87.5 | 2756.5 |
5 | 1101.6 | 95.3 | 3451.8 |
7 | 1085.4 | 93.9 | 3688.2 |
Materials | Amount of H2 mL g−1 | MHGR mL g−1 min−1 | Reaction Temperature °C | Ref. |
---|---|---|---|---|
Al-BiOI | 1101.6 | 3451.8 | 25 | This work |
Al-BiOCl | 1058.1 | 491.4 | 25 | [24] |
Al-Bi-Zn | 1223.0 | 390.4 | 20 | [31] |
Al-Bi(OH)3-NaCl | 1020.0 | 2850.0 | 50 | [32] |
Al-Bi-Bi2O3 | 1170.0 | 1200.0 | 65 | [33] |
Al-nanoBi-GNS | 925.0 | 978.0 | 20 | [34] |
Al-Ga-In-Sn-NiCl2 | 869.0 | 4060.0 | 25 | [35] |
Al-Ga-In-Sn-CoCl2 | 82.68 | 1634.0 | 25 | [35] |
Model | Eads eV | d Å | Atomic Charge e |
---|---|---|---|
*H + *F | −1.195 | 1.707 | 0.850 |
*H + *Cl | −1.086 | 2.198 | 0.798 |
*H + *Br | −1.269 | 2.389 | 0.728 |
*H + *I | −1.348 | 2.647 | 0.655 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.; Liu, J.; Wang, T.; Xu, F.; Sun, L.; Zhou, T.; Wu, J.; Guan, Y.; Luo, Y.; Zou, Y.; et al. Improved Hydrogen Generation of Al-H2O Reaction by BiOX (X = Halogen) and Influence Rule. Materials 2022, 15, 8199. https://doi.org/10.3390/ma15228199
Liao L, Liu J, Wang T, Xu F, Sun L, Zhou T, Wu J, Guan Y, Luo Y, Zou Y, et al. Improved Hydrogen Generation of Al-H2O Reaction by BiOX (X = Halogen) and Influence Rule. Materials. 2022; 15(22):8199. https://doi.org/10.3390/ma15228199
Chicago/Turabian StyleLiao, Lumin, Jiaxi Liu, Tao Wang, Fen Xu, Lixian Sun, Tianhao Zhou, Jinfan Wu, Yanxun Guan, Yumei Luo, Yongjin Zou, and et al. 2022. "Improved Hydrogen Generation of Al-H2O Reaction by BiOX (X = Halogen) and Influence Rule" Materials 15, no. 22: 8199. https://doi.org/10.3390/ma15228199
APA StyleLiao, L., Liu, J., Wang, T., Xu, F., Sun, L., Zhou, T., Wu, J., Guan, Y., Luo, Y., Zou, Y., & Chu, H. (2022). Improved Hydrogen Generation of Al-H2O Reaction by BiOX (X = Halogen) and Influence Rule. Materials, 15(22), 8199. https://doi.org/10.3390/ma15228199