The Influence of Nanosilica on Properties of Cement Based on Tetracalcium Phosphate/Monetite Mixture with Addition of Magnesium Pyrophoshate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cement Mixture and Samples for Evaluation
2.2. Characterization Methods
2.3. In Vitro Cytotoxicity Testing of Mg-Si Cement Extracts
2.4. Gene Expression of Specific Markers in Differentiated Rat MSCs in Long-Term Culture
3. Results
3.1. XRD and FTIR Analyses of Powder Mixtures and Cements
3.2. Microstructure of Cements and Morphology of HAP Particles
3.3. Release of Ca2+, Mg2+, Silicate, and Phosphate Ions from Cements to SBF and pH Measurement
3.4. In Vitro Testing of Cement Extracts, Live/Dead Staining of Cells, Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carey, L.E.; Xu, H.H.; Simon, C.G.; Takagi, S.; Chow, L.C.; Simon, C., Jr. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005, 26, 5002–5014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, Z.; Zhang, Y.L.; Grover, L.; Merle, G.E.; Tamimi, F.; Barralet, J. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts. Acta Biomater. 2015, 26, 338–346. [Google Scholar] [CrossRef]
- Bigi, A.; Foresti, E.; Gregorini, R.; Ripamonti, A.; Roveri, N.; Shah, J.S. The role of magnesium on the structure of biological apatites. Calcif. Tissue Res. 1992, 50, 439–444. [Google Scholar] [CrossRef]
- Percival, M. Bone health & osteoporosis. Appl. Nutr. Sci. Rep. 1999, 5, 1–6. [Google Scholar]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A.M. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.W.; Kirkland, N.T.; Truong, J.; Wang, J.; Smith, P.N.; Birbilis, N.; Nisbet, D.R. The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. Part A 2014, 102, 4346–4357. [Google Scholar] [CrossRef]
- Arise, R.O.; Davies, F.F.; Malomo, S.O. Independent and interactive effects of Mg2+ and Co2+ on some kinetic parameters of rat kidney alkaline phosphatase. Sci. Res. Ess. 2008, 3, 488–494. [Google Scholar]
- Goldberg, M.A.; Smirnov, V.V.; Antonova, O.S.; Khairutdinova, D.R.; Smirnov, S.V.; Krylov, A.I.; Sergeeva, N.S.; Sviridova, I.K.; Kirsanova, V.A.; Ahmedova, S.A.; et al. Magnesium-substituted calcium phosphate bone cements containing MgO as a separate phase: Synthesis and in vitro behavior. Mendeleev Commun. 2018, 28, 329–331. [Google Scholar] [CrossRef]
- Shams, M.; Nezafati, N.; Poormoghadam, D.; Zavareh, S.; Zamanian, A.; Salimi, A. Synthesis and characterization of electrospun bioactive glass nanofibersreinforced calcium sulfate bone cement and its cell biological response. Ceram. Int. 2020, 46, 10029–10039. [Google Scholar] [CrossRef]
- Kim, K.; Oh, J.; Jin, G.; Lee, J.; Oh, D.; Kang, H.; Kim, H.; Lee, S.; Cho, D.; Ahn, S.-H.; et al. Preparation and evaluation of PLGA-silica scaffold with human adipose-derived stromal cells for bone tissue engineering. Tissue Eng. Regen. Med. 2010, 7, 291–297. [Google Scholar]
- Carlisle, E.M. Silicon as an essential trace-element in animal nutrition. Ciba Found. Symp. 1986, 121, 123–139. [Google Scholar] [PubMed]
- Alkhraisat, M.H.; Rueda, C.; Jerez, L.B.; Marino, F.T.; Torres, J.; Gbureck, U.; Cabarcos, E.L. Effect of silica gel on the cohesion, properties and biological performance of brushite cement. Acta Biomater. 2010, 6, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.; Areva, S.; Spliethoff, B.; Linden, M. Sol–gel synthesis of a multifunctional, hierarchically porous silica/apatite composite. Biomaterials 2005, 26, 6827–6835. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M. Silicon-substituted calcium phosphates—A critical view. Biomaterials 2009, 30, 6403–6406. [Google Scholar] [CrossRef] [PubMed]
- Hesaraki, S.; Alizadeh, M.; Borhan, S.; Pourbaghi-Masouleh, M. Polymerizable nano-particulate silica-reinforced calcium phosphate bone cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 1627–1635. [Google Scholar] [CrossRef]
- Lopez-Alvarez, M.; Solla, E.; Gonzalez, P.; Serra, J.; Leon, B.; Marques, A.; Reis, R.L. Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. J. Mater. Sci. Mater. Med. 2009, 20, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Morejon-Alonso, L.; Carrodeguas, R.G.; dos Santos, L.A. Effects of silica addition on the chemical, mechanical and biological properties of a new alpha-tricalcium phosphate/tricalcium silicate cement. Mater. Res.-Ibero-Am. J. Mater. 2011, 14, 475–482. [Google Scholar]
- Pietak, A.; Reid, J.; Stott, M.; Sayer, M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007, 28, 4023–4032. [Google Scholar] [CrossRef]
- Xu, J.; Khor, K. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J. Inorg. Biochem. 2007, 101, 187–195. [Google Scholar] [CrossRef]
- Phan, P.; Grzanna, M.; Chu, J.; Polotsky, A.; El Ghannam, A.; van Heerden, D.; Hungerford, D.S.; Frondoza, C.G. The effect of silica containing calcium phosphate particles on human osteoblasts in vitro. J. Biomed. Mater. Res. Part A 2003, 67, 1001–1008. [Google Scholar] [CrossRef]
- Ahn, G.; Lee, J.Y.; Seol, D.W.; Pyo, S.G.; Lee, D. The effect of calcium phosphate cement-silica composite materials on proliferation and differentiation of pre-osteoblast cells. Mater. Lett. 2013, 109, 302–305. [Google Scholar] [CrossRef]
- Borhan, S.; Hesaraki, S.; Ahmadzadeh-Asl, S. Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement. J. Mater. Sci. Mater. Med. 2010, 21, 3171–3181. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Lan, X.; Li, Y.; Ni, Y.; Lu, C.; Chen, Y.; Xu, Z. Preparation and characterization of novel alkali-activated nano silica cements for biomedical application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 95B, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Xu, Z.; Lan, X.; Ni, Y.; Lu, C. The reactivity of nano silica with calcium hydroxide. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 99B, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Medvecky, L.; Stulajterova, R.; Giretova, M.; Luptakova, L.; Sopcak, T. Injectable enzymatically hardened calcium phosphate biocement. J. Funct. Biomater. 2020, 11, 74. [Google Scholar] [CrossRef]
- Artilia, I.; Sidiqa, A.N.; Fakhira, Z.P.; Zakaria, M.N.; el-Ghannam, A.; Cahyanto, A. Morphology, crystal size and crystallinity degree of silica-calcium phosphate composite (S) and apatite cement formulation—In vitro bioactivity test. Mater. Sci. Forum 2022, 1069, 121–128. [Google Scholar] [CrossRef]
- Huang, S.H.; Chen, Y.J.; Kao, C.T.; Lin, C.C.; Huang, T.H.; Shie, M.Y. Physicochemical properties and biocompatibility of silica doped b-tricalcium phosphate for bone cement. J. Dent. Sci. 2015, 10, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Luchini, T.J.F.; Agarwal, A.K.; Goel, V.K.; Bhaduri, S.B. Development of monetite-nanosilica bone cement: A preliminary study. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1620–1626. [Google Scholar] [CrossRef]
- Medvecky, L.; Giretova, M.; Stulajterova, R.; Luptakova, L.; Sopcak, T. Tetracalcium phosphate/monetite/calcium sulfate hemihydrate biocement powder mixtures prepared by the one-step synthesis for preparation of nanocrystalline hydroxyapatite biocement-properties and in vitro evaluation. Materials 2021, 14, 2137. [Google Scholar] [CrossRef]
- ISO 10993-12; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Giretova, M.; Medvecky, L.; Petrovova, E.; Cizkova, D.; Danko, J.; Mudronova, D.; Slovinska, L.; Bures, R. Poly-hydroxybutyrate/chitosan 3D scaffolds promote in vitro and in vivo chondrogenesis. Appl. Biochem. Biotechnol. 2019, 189, 556–575. [Google Scholar] [CrossRef]
- Medvecky, L.; Giretova, M.; Stulajterova, R.; Luptakova, L.; Sopcak, T.; Girman, V. Osteogenic potential and properties of injectable silk fibroin/ tetracalcium phosphate/monetite composite powder biocement systems. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 668–678. [Google Scholar] [CrossRef]
- Grässel, S.; Ahmed, N.; Göttl, C.; Grifka, J. Gene and protein expression profile of naive and osteo-chondrogenically differentiated rat bone marrow-derived mesenchymal progenitor cells. Int. J. Mol. Med. 2009, 23, 745–755. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Yuan, T.; Yang, X.; Fan, Y.; Zhang, X. Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells(MSCs) by collagen-based scaffolds during chondrogenesis. Mater. Sci. Eng. C 2017, 70, 983–991. [Google Scholar] [CrossRef]
- Yusop, N.; Battersby, P.; Alraies, A.; Sloan, A.J.; Moseley, R.; Waddington, R.J. Isolation and characterisation of mesenchymal stem cells from rat bone marrow and the Endosteal niche: A comparativestudy. Stem Cells Int. 2018, 2018, 6869128. [Google Scholar] [CrossRef] [PubMed]
- Karaoz, E.; Aksoy, A.; Ayhan, S.; Sarıboyaci, A.E.; Kaymaz, F.; Kasap, M. Characterization of mesenchymal stem cells from rat bone marrow: Ultra-structural properties, differentiation potential and immunophenotypicmarkers. Histochem. Cell Biol. 2009, 132, 533–546. [Google Scholar] [CrossRef]
- Sun, X.; Su, W.; Ma, X.; Zhang, H.; Sun, Z.; Li, X. Comparison of the osteogenic capability of rat bone mesenchymal stem cells on collagen, collagen/hydroxyapatite, hydroxyapatite and biphasic calcium phosphate. Regen. Biomater. 2018, 5, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moseke, C.; Gbureck, U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 2010, 6, 3815–3823. [Google Scholar] [CrossRef]
- Jalota, S.; Tas, A.C.; Bhaduri, S.B. Synthesis of HA-Seeded TTCP (Ca4(PO4)2O) Powders at 1230 °C from Ca(CH3COO)2 ·H2O and NH4H2PO4. J. Am. Ceram. Soc. 2005, 88, 3353–3360. [Google Scholar] [CrossRef]
- Xu, J.; Butler, I.S.; Gilson, D.F.R. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dehydrate (CaHPO4.2H2O) and anhydrous dicalcium phosphate (CaHPO4 ). Spectrochim. Acta Part A 1999, 55, 2801–2809. [Google Scholar] [CrossRef]
- Harcharras, M.; Ennaciri, A.; Rulmont, A.; Gilbert, B. Vibrational spectra and structures of double diphosphates M2CdP2O7 (M = Li, Na, K, Rb, Cs). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 345–352. [Google Scholar] [CrossRef]
- Mata, N.A.; Velasquez, P.; Murciano, A.; de Aza, P.N. Multilayer Mg-pyrophosphate glass ceramic with discontinuous bioac-tivity. Physicochemical characterization. Ceram. Int. 2021, 47, 14612–14620. [Google Scholar] [CrossRef]
- Mahajan, R.; Prakash, R. Effect of Sm3+ doping on optical properties of Mg2P2O7 and Mg3P2O8 phosphors. Mater. Chem. Phys. 2020, 246, 122826. [Google Scholar] [CrossRef]
- Ren, F.; Ding, Y.; Leng, Y. Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study. J. Biomed. Mater. Res. Part A 2014, 102A, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Grunenwald, A.; Keyser, C.; Sautereau, A.; Crubézy, E.; Ludes, B.; Drouet, C. Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. J. Archaeol. Sci. 2014, 49, 134–141. [Google Scholar] [CrossRef]
- Stulajterova, R.; Medvecky, L.; Giretova, M.; Sopcak, T.; Luptakova, L.; Bures, R.; Szekiova, E. Characterization of tetracalcium phosphate/monetite biocement modified by magnesium pyrophosphate. Materials 2022, 15, 2586. [Google Scholar] [CrossRef]
- Chappell, H.F.; Jugdaohsingh, R.; Powell, J.J. Physiological silicon incorporation into bone mineral requires orthosilicic acid metabolism to SiO44−. J. R. Soc. Interface 2020, 17, 20200145. [Google Scholar] [CrossRef]
- Grover, L.M.; Wright, A.J.; Gbureck, U.; Bolarinwa, A.; Song, J.; Liu, Y.; Farrar, D.F.; Howling, G.; Rose, J.; Barralet, J.E. The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. Biomaterials 2013, 34, 6631–6637. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Hesarakin, S.; Hafezi-Ardakani, M. Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: Comparison of nano-titania, nano-silicon carbide and amorphous nano-silica. Ceram. Int. 2014, 40, 8377–8387. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Pan, H.; Darvell, B.W.; Matinlinna, J.P. Effect of Magnesium on the Solubility of Hydroxyapatite. Eur. J. Inorg. Chem. 2016, 2016, 5623–5629. [Google Scholar] [CrossRef]
- Song, C.W.; Kim, T.W.; Kim, D.H.; Jin, H.H.; Hwang, K.H.; Lee, J.K.; Park, H.C.; Yoon, S.Y. In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro. J. Phys. Chem. Solids 2012, 73, 39–45. [Google Scholar] [CrossRef]
- Martin, R.I.; Brown, P.W. The Effects of Magnesium on Hydroxyapatite Formation In Vitro from CaHPO4 and Ca4(PO4)2O at 37.4 °C. Calcif. Tissue Int. 1997, 60, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tang, T.; Guo, H.; Tang, S.; Niu, Y.; Zhang, J.; Zhang, W.; Ma, R.; Su, J.; Liu, C.; et al. In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids Surf. B Biointerfaces 2014, 120, 38–46. [Google Scholar] [CrossRef]
- Annenkov, V.V.; Danilovtseva, E.N.; Pal’shin, V.A.; Verkhozina, O.N.; Zelinskiy, S.N.; Krishnan, U.M. Silicic acid condensation under the influence of water-soluble polymers: From biology to new materials. RSC Adv. 2017, 7, 20995. [Google Scholar] [CrossRef] [Green Version]
- Belton, D.J.; Deschaume, O.; Perry, C.C. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J. 2012, 279, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Rasskazova, L.A.; Zhuk, I.V.; Korotchenko, N.M.; Brichkov, A.S.; Chen, Y.W.; Paukshtis, E.A.; Ivanov, V.K.; Kurzina, I.A.; Kozik, V.V. Synthesis of Magnesium- and Silicon-modified Hydroxyapatites by Microwave-Assisted Method. Sci. Rep. 2019, 9, 14836. [Google Scholar] [CrossRef] [Green Version]
- Jugdaohsingh, R.; Pedro, L.D.; Watson, A.; Powell, J.J. Silicon and boron differ in their localization and loading in bone. Bone Rep. 2015, 1, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Jugdaohsingh, R.; Watson, A.I.E.; Pedro, L.D.; Powell, J.J. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover. Bone 2015, 75, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Uribe, P.; Johansson, A.; Jugdaohsingh, R.; Powell, J.J.; Magnusson, C.; Davila, M.; Westerlund, A.; Ransjö, M. Soluble silica stimulates osteogenic differentiation and gap junction communication in human dental follicle cells. Sci. Rep. 2020, 10, 9923. [Google Scholar] [CrossRef]
- Shie, M.Y.; Ding, S.J.; Chang, H.C. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011, 7, 2604–2614. [Google Scholar] [CrossRef]
- Ning, C.Q.; Mehta, J.; El-Ghannam, A. Effects of silica on the bioactivity of calcium phosphate composites in vitro. J. Mater. Sci. Mater. Med. 2005, 16, 355–360. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Lin, D.; Shi, H.; Yuan, Y.; Tang, W.; Zhou, H.; Guo, H.; Qian, J.; Liu, C. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 2015, 53, 251–264. [Google Scholar] [CrossRef] [PubMed]
Genes | Primers | References |
---|---|---|
B-actin rat | F: GTAGCCATCCAGGCTGTGTT R: CCCTCATAGATGGGCAGAGT | [34] |
Typ I collagen rat | F: CCAGCTGACCTTCCTGCGCC R: CGGTGTGACTCGTGCAGCCA | [35] |
Osteocalcin rat | F: ACAGACAAGTCCCACACAGCAACT R: CCTGCTTGGACATGAAGGCTTTGT | [36] |
Osteopontin rat | F: CCGATGAATCTGATGAGTCCTT R: TCCAGCTGACTTGACTCATG | [37] |
Osteonectin rat | F: GGAAGCTGCAGAAGAGATGG R: TGCACACCTTTTCAAACTCG | [37] |
Alkaline phosphatase rat | F: AACCTGACTGACCCTTCCCTCT R: TCAATCCTGCCTCCTTCCACTA | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stulajterova, R.; Giretova, M.; Medvecky, L.; Sopcak, T.; Luptakova, L.; Girman, V. The Influence of Nanosilica on Properties of Cement Based on Tetracalcium Phosphate/Monetite Mixture with Addition of Magnesium Pyrophoshate. Materials 2022, 15, 8212. https://doi.org/10.3390/ma15228212
Stulajterova R, Giretova M, Medvecky L, Sopcak T, Luptakova L, Girman V. The Influence of Nanosilica on Properties of Cement Based on Tetracalcium Phosphate/Monetite Mixture with Addition of Magnesium Pyrophoshate. Materials. 2022; 15(22):8212. https://doi.org/10.3390/ma15228212
Chicago/Turabian StyleStulajterova, Radoslava, Maria Giretova, Lubomir Medvecky, Tibor Sopcak, Lenka Luptakova, and Vladimir Girman. 2022. "The Influence of Nanosilica on Properties of Cement Based on Tetracalcium Phosphate/Monetite Mixture with Addition of Magnesium Pyrophoshate" Materials 15, no. 22: 8212. https://doi.org/10.3390/ma15228212
APA StyleStulajterova, R., Giretova, M., Medvecky, L., Sopcak, T., Luptakova, L., & Girman, V. (2022). The Influence of Nanosilica on Properties of Cement Based on Tetracalcium Phosphate/Monetite Mixture with Addition of Magnesium Pyrophoshate. Materials, 15(22), 8212. https://doi.org/10.3390/ma15228212